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Abstract: Prosthetic joint infection (PJI) is a prevalent and severe complication characterized by
high diagnostic challenges. Currently, a unified diagnostic standard incorporating both computed
tomography (CT) images and numerical text data for PJI remains unestablished, owing to the
substantial noise in CT images and the disparity in data volume between CT images and text
data. This study introduces a diagnostic method, HGT, based on deep learning and multimodal
techniques. It effectively merges features from CT scan images and patients’ numerical text data via
a Unidirectional Selective Attention (USA) mechanism and a graph convolutional network (GCN)-
based Feature Fusion network. We evaluated the proposed method on a custom-built multimodal
PJI dataset, assessing its performance through ablation experiments and interpretability evaluations.
Our method achieved an accuracy (ACC) of 91.4% and an area under the curve (AUC) of 95.9%,
outperforming recent multimodal approaches by 2.9% in ACC and 2.2% in AUC, with a parameter
count of only 68 M. Notably, the interpretability results highlighted our model’s strong focus and
localization capabilities at lesion sites. This proposed method could provide clinicians with additional
diagnostic tools to enhance accuracy and efficiency in clinical practice.

Keywords: prosthetic joint infection (PJI); deep learning diagnosis; multimodal fusion; CT imaging;
graph convolutional neural networks (GCNs); unidirectional selective attention (USA)

1. Introduction

Periprosthetic joint infection (PJI) is a catastrophic complication that may arise fol-
lowing joint replacement surgery. The diagnosis of prosthetic joint infections (PJI) poses a
significant challenge since real evidence-based guidelines to aid clinicians in choosing the
most accurate diagnostic strategy are lacking. The Musculoskeletal Infection Society (MSIS)
criteria for PJI, proposed by the Second International Consensus Meeting (ICM) in 2018,
offers an evidence-based definition for diagnosing hip and knee PJI [1], which presents a
scoring approach to diagnosis based on the most robust evidence. However, this criteria
is based on clinical performance and biochemical test results, particularly the serological,
synovial, and microbiological tests, keeping its complexity during clinical use.

In fact, most signs and symptoms that might indicate the presence of a PJI may be
simply related to an aseptic loosening of the prosthesis or to a soft tissue infection [2].
Radiographical examinations are widely used to detect the cause of the symptoms. Among
various radiographical examinations, X-ray examination is the primary method for the
evaluation of possibly infected cases, while computed tomography (CT) findings are rarely
utilized as a diagnostic basis [3]. In regards to the radiological perspective, CT scans contain
more invisible radiologic signs than X-ray, which achieves its significant potential value
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for PJI diagnosis [4]. As computer vision technology advances, deep learning techniques
can be now employed to utilize imaging findings for PJI diagnosis, extracting features
from invisible sites within the information-rich CT scans. Among the numerous image
processing networks, transformer-based architectures exhibit exceptional texture extraction
capabilities, rendering them suitable for PJI diagnosis based on CT images. Nevertheless,
traditional transformer-based structures struggle to aggregate information from multiple
images (generated by single CT-scan), and the immense computational cost arising from
the large number of images is unacceptable. As a result, there is a pressing need for a
method that can effectively aggregate information from numerous CT images.

Joint evaluation of Radiological and biochemical examination results can maximize
the accuracy of PJI diagnosis; however, a unified diagnostic standard for PJI is yet to be
established. As a solution, multimodal techniques can integrate imaging findings with
patient text data (e.g., serological markers, medical history). There are five main challenges
in the research field of multimodal machine learning. (1) Representation learning, how
to represent and summarize multimodal data in a way that exploits the complementarity
and redundancy of multiple modalities; (2) translation learning, to translate data from
one modality to another; (3) alignment learning, to identify the direct relations between
(sub)elements from two or more different modalities; (4) fusion learning, to join informa-
tion from two or more modalities to perform a prediction; and (5) co-learning learning, to
transfer knowledge between modalities, their representation, and their predictive mod-
els [5]. From these challenges listed above, PJI Diagnosis can be considered as a modality
fusion challenge.

The deep integration of image and text modalities is the key to improving PJI diagnosis
accuracy. Recent multimodel neural networks, such as ViLT [6], ViLBERT [7], IMAGE-
BERT [8], and UniT [9], typically manage modality fusion between text in sentences and
image information. For PJI diagnosis, patient text features consist of single numerical vec-
tors that are considerably smaller in data volume compared to images. Furthermore, due
to the substantial noise in CT images, the numerical vectorized text features might show a
greater correlation with PJI. Consequently, The difficulty of employing recent multimodel
neural networks for PJI diagnosis arises from two main problems, (1) the overfitting of text
data and (2) the excessive reliance on text data, neglecting feature extraction from images.
To better utilize image data, as well as mitigate the network’s bias towards text data, it
is crucial to minimize the impact of extensive noise within CT images and prevent the
overfitting of text data.

To address these challenges, we proposed a novel network structure, named as HGT in
this study, which is a 5-stage modality fusion network based on Transformer Architecture.
Three main innovations of the architecture can be elaborated in three main aspects, (1) before
all stages, an image sampling strategy is proposed to reduce computational complexity
by sampling the CT images derived from single-scan before the whole modality fusion
process; (2) in the first to fourth stage of HGT, a Unidirectional Selective Attention (USA)
is used for deep fusion between image features and text feature; and (3) at the final stage
of the network, a Feature Fusion network based on graph convolutional neural networks
(GCNs) [10] is proposed to fuse features between different CT images. In more detail,
the Unidirectional Selective Attention (USA) enables text data to selectively attend to
important features within high-noise CT image data for modality fusion. The proposed
Feature Fusion network integrates features by reducing the graph complexity through a
coarsening process. For this process, we develop a feature selective algorithm to sample
lesion site features among all input CT images. By evaluating on self-created PJI dataset,
HGT achieves state-of-the-art performance. The network structure is shown in Figure 1.

This network effectively utilizes both the numerical text data of patients and CT
image features for PJI diagnosis. It substantially enhances clinical diagnostic efficiency and
reduces PJI misdiagnosis rates, which has significant clinical implications for the prevention
and treatment of secondary occurrence of PJI.
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Figure 1. (a) The overall architecture of HGT. (b) The architecture of GCN Feature Fusion Net. The
Encoder in our architecture is a ViT-based encoder. (c) The Sampling Block using FSA algorithm to
sample from multiple features. (d) A GCN Block that maintains the dimensionality of input features
and output features.

2. Related Work
2.1. PJI Diagnosis

Periprosthetic joint infection (PJI) diagnosis has been a topic of interest in recent years
due to the increased prevalence of joint replacement surgeries. Various studies have focused
on the development of new markers or the combination of existing markers to improve
the specificity and sensitivity of PJI diagnosis [1,11,12]. Other research has investigated the
use of imaging techniques, such as ultrasound [13], MRI [14], and nuclear imaging [15], to
provide additional information on the infection status within the joint.

As a highly robust method, machine learning-based methods are capable of identifying
personalized important features missing from criteria-based methods and providing inter-
pretable decision support for individual diagnosis [16]. Klemt et al. have compared three
different machine learning methods, Artificial Neural Network (ANN), Random Forest,
and Elastic-net Penalized Logistic Regression in PJI diagnosis [17]. Tao et al. use the Convo-
lutional Neural Network (CNN) to analyze the pathological sections of PJI patients under
high magnification fields [18]. For greater accuracy, integrating information from different
modalities (clinical performance, biochemical test results, and radiographical examinations)
is highly important as imaging findings can potentially improve diagnostic accuracy. How-
ever, such diagnostic methods based on the fusion of multimodal information is still to
be established.

2.2. Transformer

The transformer architecture, first introduced by Vaswani et al. [19], has become a cor-
nerstone in the development of deep learning models for natural language processing and
computer vision tasks. Transformer-based models have shown exceptional performance in
a wide range of applications, including machine translation [19], text summarization [20],
and image classification [21]. Specifically, ViT [21], SWIN [22], and Max-ViT [23] are
transformer-based visual architectures that have shown great promise in feature extraction
from images. The general architecture of a ViT-based transformer is shown in Figure 2

In disease diagnosis, transformer-based methods have shown their high practicality.
Lei et al. developed an automated diagnosis framework for COVID-19 in chest CTs based
on the SWIN Transformer [24]. Jafari et al., use Deep Transformers and Explainable Ar-
tificial Intelligence for the Automatic Diagnosis of Myocarditis Disease in Cardiac MRI
Modality [25]. Xu et al., have developed a hierarchical transformer for eye diseases diag-
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nosis [26]. Nogales et al., have applied BERT in Parkinson’s Disease diagnosis. In recent
trends, Transformer-based multimodal architectures are widely used for high accurate diag-
nosis. Xing et al., proposed a method for Alzheimer disease diagnosis by fusing multimodal
visual features using a transformer [27]. Dai et al. have developed a multimodal method
for image classification using a transformer [28]. Cai et al. have developed a method for
skin disease by fusing images and metadata using a transformer [29]. As above, for PJI
diagnosis, transformer-based multimodal architectures can be a suitable candidates for
improving diagnostic accuracy.

Liner Embedding

Transformer Encoder

Task 

Head

0 1 2 3 4 5 6 7 8 9c

n Position embedding

Patches

Learnable class tokenc

Figure 2. The general architecture of a ViT-based transformer. We split an image into multiple patches,
and feed them into the transformer encoder. A task head is incorporated at the end of the architecture.

2.3. GCN

Graph Convolutional Networks (GCNs) [10] are effective tools for analyzing graph-
structured data. They have demonstrated success in diverse domains, including social
network analysis [30], drug discovery [31], computer vision [32], and recommendation
systems [33]. GCNs excel in handling irregular data structures and capturing the relational
information between data points, making them an ideal choice for feature fusion.

Numerous applications exist for feature fusion based on Graph Convolutional Net-
works (GCNs). In the semantic segmentation field, GCNs are used as a feature fusion
tool during the semantic segmentation process [34]. Apart from that, GCNs have also
been used for feature fusion during hyperspectral image classification [35,36]. For traffic
prediction, GCNs are used to build traffic network flow for deep feature fusion [37]. As
in medical feature integration, GCNs have also been widely used. The feature derived
from different medical characteristics can be easily integrated to diagnose a variety of
diseases [38–40]. Thus, the potential of GCNs in integrating large scale radiographical
features can be easily shown.

In our work, we represent a CT images graph and define GCN on it. By a proposed
feature sampling algorithm (FSA), our novel GCN-based feature fusion network can easily
achieve feature integration between numerous CT images with low parameters.

3. Methods

In our design, the proposed architecture processes multiple CT images and medical
numerical vectors within a single feedforward calculation. All images belonging to a
single CT scan initially undergo a sampling strategy to reduce computational complexity.
Subsequently, the sampled images and medical numerical vectors are fed into the network
for in-depth feature extraction and combination. Finally, the deeply fused features extracted
by the first four stages of the network are fed into a GCN feature fusion network to
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obtain the final fused feature, denoted as fout. This feature is directly used for diagnosing
periprosthetic joint infection (PJI).

3.1. Sampling Strategy

For two primary reasons, directly feeding all images from a single CT scan into our
proposed architecture poses challenges; (1) a single CT scan generates hundreds of images,
which could significantly increase computational complexity and training difficulty; (2) the
number of images produced by a single CT scan varies, leading to an uneven distribution
of images within the dataset.

To effectively address these issues, a sampling strategy is applied to each CT scan. An
ideal sampling strategy should select an equal number of images from different CT scans
while preserving the overall features of the original CT scans. A uniform sampling strategy
maintains the number of sampled images but reduces the number of used images. Alongside
feature reduction, this approach may substantially decrease the network’s performance.

As a solution, a random distribution can be introduced on top of the uniform sampling
method. Assuming the number of images generated by a single CT scan is N, with
picture index indexk, k ∈ 0, 1, ..., N − 1. The target number of sampled images is NS. The
images are divided into NS non-overlapping groups, Si, i ∈ 0, 1, ..., NS − 1, based on their
index. During sampling, an image within group Si is randomly chosen as the group’s
sampled image, denoted as ni. The final image set can be represented as n0, n1, ..., nNS−1, as
illustrated in Figure 3.

N images 

NS images

grouping

sampling sampling sampling sampling

n0 n1 n2 n3

S0 S1 S2 S3

Figure 3. The process of sampling strategy, with N = 4, NS = 12 here for illustration.

This method not only addresses the aforementioned issues but also allows all images
in the original CT scan to be utilized by the network during training, as the sampled image
sets differ each time.

3.2. Unidirectional Selective Attention

In mainstream transformer-based multimodal architectures, cross-attention is widely
employed for feature integration between vision and text modalities. The information
flow between these two modalities in this attention mechanism is bidirectional. For PJI
diagnosis, the vision modality consists of high-noise CT images, while patient text features
comprise single numerical vectors that are considerably smaller in data volume compared
to images and could exhibit a stronger correlation with PJI. Consequently, the difficulty of
employing bidirectional cross-attention for cross-modal feature integration is apparent due
to the overfitting of numerical indicators data and neglect of image feature extraction. In
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contrast, the Unidirectional Selective Attention (USA) we propose can easily circumvent
this issue.

In our Unidirectional Selective Attention (USA) mechanism, only a one-way infor-
mation flow exists from the vision to numerical indicators modality. This mechanism
allows the numerical indicators to directly select key information from high-noise images
for modality combination, accelerating the feature fusion between image and numerical
indicators information. Initially, numerical indicators features are extracted by encoding
the original numerical indicators information T ∈ RdimT through a linear transforma-
tion encoder. The resulting numerical indicators feature, denoted as FT ∈ RdimT , can be
represented as

FT = Encoder(T; θEncoder) (1)

where encoder is a linear transformation with an output dimension of dimT. Subsequently,
the input image feature FI ∈ RN×dim is considered, along with the Q, K, and V vectors of
the attention mechanism. The Q, K, and V vectors can be expressed as:

Q = Ψ1(FT ; θΨ1) (2)

K = Ψ2([FT , FI
0 , FI

1 , . . . , FI
N ]; θΨ2) V = Ψ3([FT , FI

0 , FI
1 , . . . , FI

N ]; θΨ3) (3)

where [·] denotes the concatenation operation, and Ψ represents a linear transformation
with parameters θΨ. For practical purposes, a multi-head attention mechanism is employed.
Thus, the Unidirectional Selective Attention (USA) can be represented as

USA(Q, K, V) = Ψ0[head1, . . . , headh] (4)

headi = Attention(ΨQ
i (Q), ΨK

i (K), ΨV
i (V)) (5)

where the attention is the same as in ViT [21], and [·] denotes the concatenation operation.
Through this mechanism, the low-noise information in the images can be selected

by the numerical indicators information for more efficient modality combination. In
practice, the Unidirectional Selective Attention (USA) has been incorporated by utilizing
the structure depicted in Figure 4.
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Figure 4. The detailed architecture of the Unidirectional Selective Attention Block. MLP here is a
2 layer Multilayer Perception with GeLU activate function [41], USA is the Unidirectional Selective
Attention mechanism proposed above.
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3.3. GCN Feature Fusion Net

After the first four stages of the entire architecture, the integrated features of numerical
indicators and images can be obtained, which can be denoted as FI ∈ RN×dim. To further
acquire a lower-dimensional feature representation, FI is processed by the GCN Feature
Fusion Net, as illustrated in Figure 5.

GCN

Block
FSA

GCN

Block

N×dim

FSA
GCN

Block

M
a

x
P

o
o

l

...
...

Stage1 Stage2

Fused feature

1×dim

Fused feature

1×dim

N×dimN×dim N/2×dimN/2×dim N/4×dimN/4×dim

Stage3

Figure 5. The detailed architecture of the GCN Feature Fusion Net. This intricate architecture
encompasses three stages. Within each stage, the number of features progressively diminishes, with
the feature count reducing by half following every FSA implementation.

3.4. Graph Based on Features of CT Images and Numerical Indicators

Upon obtaining the integrated features FI , an undirected graph G with N nodes
based on the vectors FI can be constructed to represent the intrinsic relationships between
multiple features. The adjacency matrix of this graph, S ∈ RN×N , is defined as

Sij = Ω(gij; θΩ) (6)

where gij = [FI
i , FI

j , |FI
i − FI

j |2] ∈ R2×dim+1 represents the spatial relation of two distinct
image features, and [] denotes vectorized concatenation of elements. Ω is a three-layer
MLP with GeLU activation function, and its parameters are denoted by θΩ, with the MLP
outputting a scalar Sij.

Next, the KNN algorithm is utilized, based on the index of the input images, to calcu-
late the k nearest neighbors for each feature, retaining only the edges between neighboring
features in G. Consequently, the sparse adjacency matrix A for G is obtained, defined as

Aij = Sij · I{FI
j ∈ N(FI

i )} (7)

where I(·) is a binary function indicating whether FI
j is the neighbor of FI

i . Clearly, the
undirected graph G effectively represents the abstract relationships between the features of
each image, encompassing the complete image features and numerical indicators features.

3.5. Image Feature Fusion and Sampling

The Graph Convolutional Neural Network (GCN) is well-suited for learning abstract
relationships between nodes in an undirected graph and can learn the abstract representa-
tion of the entire graph. Let Gl represent the feature undirected graph at the l-th stage; a
forward pass of the l-th stage GCN Block in our network can be defined as

Fl
middle = Γ(Al LN(Fl), θΓ)W l + Fl (8)

where Al represents the sparse adjacency matrix of Gl , LN represents Layer Normaliza-
tion [42], W l ∈ Rd×d is the learnable weight matrix, and Γ(·) is a non-linear transform
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comprising a Layer Normalization followed by a GeLU activation. The dimension of FI

remains the same before and after the GCN Blocks.
Next, in order to extract global features, the undirected graph G must be coarsened.

Let the coarsened features be defined as Fl+1. Ideally, if the feature information remains un-
changed before and after coarsening, the prediction results using the pre-coarsened features
Fl

middle and the post-coarsened features Fl+1 should be the same. As for PJI diagnosis, if any
of the features Fl

i among Fl shows positive, the diagnosis should be considered positive.
The final diagnostic judgment largely depends on the most significant features among
the many features in feature matrix F; therefore, it is necessary to retain these features in
the coarsened feature matrix Fl+1 from Fl

middle. To meet the above requirements, a novel
selective feature sampling strategy (FSA) based on the max function has been designed.
The FSA strategy can be defined as:

j = arg max
i≤N

, max(Φ(Fl
middle,i, θΦ)), M (9)

Fl+1 = Fl
middle,j (10)

where N denotes the quantity of image features prior to sampling, and M signifies the
number of image features after sampling has occurred. The term max refers to the process
of obtaining the highest value within a vector, and argmax(·) represents the extraction of
index values corresponding to the top M largest elements present in the input vector. Φ is
a two-layer MLP incorporating the GeLU activation function, and its parameters θΦ can be
effectively trained utilizing the loss described in Section 4.2, Network Training.

With this strategy, a coarsened graph Gl+1 along with its new nodes Fl+1 can be
obtained. By stacking GCN Blocks and FSA, the architecture of GCN feature fusion network
can be achieved. After passing the features F1 through the GCN feature fusion network,
the low-dimensional representation of fused feature can be obtained.

4. Implementation and Results
4.1. Datasets

In this study, a custom-built periprosthetic joint infection (PJI) dataset is employed.
The dataset includes 103,049 black and white CT image samples and 489 numerical text
samples. Each numerical indicators sample comprises 14 numerical indicators, which
represent various medical and demographic factors associated with PJI. The SOMATOM
Definition AS+ CT machine are utilized to generate the images, primarily employing
original axial images under the CT_SOM5 SPI protocol.

All numerical indicators are normalized to [0, 1]. The composition of PJI dataset is
presented in Table 1, while the composition of a single numerical text sample and the
relationships between PJI with 14 numerical indicators are introduced in Table 2. One
numerical text sample on the dataset is associated with multiple images. One sample in
our dataset contains a text sample and its related images. The structure of the dataset is
shown in Figure 6.

Table 1. The composition of the custom-built PJI dataset.

Modality Positive Samples Negative Samples Total Samples

Train Test Valid Train Test Valid

image 25,303 5517 13,222 42,106 5365 11,536 103,049
text 98 20 50 168 20 50 489

Total Positive Samples Total Negative Samples

image 44,042 59,007
text 221 268
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Table 2. The composition of a single numerical text sample.

Data Type Value Range Relationship with PJI

C-reactive Protein (CRP) [0,120] Serology indicators related with PJIErythrocyte Sedimentation Rate (ESR) [0,120]

Lesion Site 0 or 1 Site of prosthetic join

Sex 0 or 1 Basic information about patientAge [0,100]

Hypertension 0 or 1

Diseases history may related with PJI

Diabetes 0 or 1
Rheumatoid Arthritis 0 or 1

Anemia 0 or 1
Osteoporosis 0 or 1

Cerebral Infarction 0 or 1
Hypoalbuminemia 0 or 1
Hypothyroidism 0 or 1

Liver Disease 0 or 1

T1

I1,1

I1,2

I1,3

I1,n1

T2

I2,1

I2,2

I2,3

I2,n2

Tm

Im,1

Im,2

Im,3

Im,nm

Sample 1 Sample 2 Sample m

Figure 6. The structure of the dataset. T1, T2, Tm represent different numerical indicators data. Im,n

represents the nth image associated with numerical indicators Tm. The range of n varies from
150 to 400.

4.2. Training Loss and Implementation Details

Within the comprehensive training framework, the overall loss function encompasses
both diagnosis and select loss components. The total loss can be expressed as follows:

L = LDiagnosis(A( fout), y) +
L−1

∑
l=0

∑
i∈j
LSelect(Φ(Fl

middle,j, θΦ), y) (11)

In this equation, y denotes the true label of the diagnosis, while both LDiagnosis and
LSelect represent cross-entropy loss. A signifies a fully connected (FC) layers with output
dimensions of 2.

The model is trained for 200 epochs using a batch size of 128 (64 images per text and
2 texts in total) on a single NVIDIA RTX 4090 GPU. The AdamW optimizer is employed [43],
featuring a weight decay of 0.01. The learning rate is warmed up to 1 × 10−4 in the
first 5 epochs and decays to 1× 10−6 following a cosine schedule. Images are resized
to a resolution of 224 × 224, with augmentations such as RandomHorizontalFlip and
RandomRotation applied. The numerical text indicators vector size is set to 1× 14. The
k-value for the KNN algorithm in each GCN layer is set to 2, while the M-values for all
sampling block structures are equal to N/2. To expedite the training process, the NVIDIA
AMP Strategy is utilized.
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4.3. Evaluation Metrics

The accuracy (ACC) is a widely used performance metric that quantifies the propor-
tion of correct predictions made by a model relative to the total number of predictions.
Mathematically, it can be expressed as

ACC =
TP + TN

TP + TN + FP + FN
(12)

where TP is the number of true positives, TN is the number of true negatives, FP is the
number of false positives, and FN is the number of false negatives. The area under the
curve (AUC) is a performance metric that evaluates the trade-off between the true positive
rate (sensitivity or recall) and the false positive rate (1-specificity) at various threshold
settings. Specifically, it refers to the area under the receiver operating characteristic (ROC)
curve. The true positive rate (TPR) and false positive rate (FPR) can be defined as follows:

TPR =
TP

TP + FN
(13)

FPR =
FP

FP + TN
(14)

Throughput, measured in images per second (images/s), is a performance metric
commonly used to evaluate the efficiency of a machine learning model, particularly in the
context of image processing and computer vision tasks. In our study, the throughput of the
model can be calculated through the following equation

Throughput =
NI

TB × B
(15)

where NI is the total number of processed images, TB is the total processing time of one
batch in seconds, and B represents Batchsize

4.4. Experiment on PJI Dataset

To evaluate the model’s performance, experiments were conducted on the PJI dataset
using various multimodal methods. The performance comparisons, based on the aforemen-
tioned settings, are presented in Table 3. The comparison of ACC between different models
under the same experiment configuration is shown in Figure 7.

Table 3. Performance comparison under PJI dataset settings. Throughput is measured on a single
RTX4090 GPU with batch size 128. In vision modality networks, numerical text indicators information
obtained from the text indicators encoder is processed through a three-layer multi-layer perception
(MLP) featuring a GELU activation function, while the images are passed through the entire network
accompanied by a Maxpool operation in the batch dimension. The fused image and text indicators
features are directly concatenated to perform PJI prediction.

Model Eval Size Multimodal Fusion Parameters Throughput (Image/s) ACC AUC

SWIN-B [22] 2242

MLP
88 M 483 88.5 92.6

ViT-B [21] 2242 86 M 630 85.3 91.5
MaxViT-S [23] 2242 79 M 428 87.3 93.7

ViLT [6] 2242 Merged-attn. 88 M 624 87.0 93.7

UniT [9] 2242

Cross-attn.
135 M 556 81.7 91.2

BLiP [44] 2242 147 M 549 85.8 93.1
ALBEF [45] 2242 149 M 547 85.5 93.2

HGT 2242 USA+GCN 68 M 552 91.4 95.9
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Figure 7. The ACC of different models under the same experiment configuration. Each circle
represents a model. The size of the circle reflects the Params. of the Model.

Under the basic settings, the HGT model significantly outperforms the most recent
robust models. With only 68 M parameters, HGT achieves a top-1 accuracy of 91.4% and
an AUC of 0.959, surpassing the most powerful model by 2.9% in top-1 accuracy and 2.2%
in AUC, while utilizing fewer parameters. In summary, the proposed model outperforms
other models employing MLP, merged-attention, and co-attention as their multimodal
fusion methods. The substantial improvement of our proposed model demonstrates the
considerable advantage of using the USA and GCN fusion network as multimodal fusion
methods for PJI diagnosis.

4.5. Ablation Study

To assess the effectiveness of the USA Block and GCN feature fusion network, an
ablation study was conducted. The results are presented in Table 4. As illustrated, the USA
Block methods considerably outperform the Non-USA Block methods, yielding an increase
of up to 3.5% in top-1 accuracy and 5.6% in AUC. Furthermore, the GCN feature fusion
network methods exhibit significant improvement over the non-fusion network methods,
with gains of up to 2.4% in top-1 accuracy and 3.6% in AUC.

Table 4. The ablation study results are presented. In the Non-USA Block methods, numerical
indicators information acquired from the text indicators encoder undergoes processing through a
three-layer multilayer perceptron (MLP) with a GELU activation function, while images pass through
the entire SWIN-S network, followed by a Maxpool operation in the batch dimension. The fused
image and numerical indicators features are directly concatenated for PJI prediction. In the non-fusion
network methods, the GCN feature fusion network is substituted with an Averagepool operation.

Feature Fusion Method ACC AUC

Avg 87.9 90.3
GCN 90.3 93.9

USA+Avg 90.0 92.9
USA+GCN 91.4 95.9

In order to examine the implications of each block, Gradient Class Activation Map-
ping++ (Grad-CAM++) [46] was employed on a single PJI-positive CT scan to visualize
the features extracted by different models. Overall, 16 uniformly sampled images from the
same CT examination were input into the network, with the results displayed in Figure 8. It
is evident that the GCN feature fusion network enhances performance by enabling a height-
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ened focus on images related to the lesion site. Additionally, incorporating the USA Block
facilitates more precise identification of regions within images where the infection occurs.

Original

Avg

Avg+USA

GCN

GCN+USA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 8. The visualization results of the methods based on ablation study settings are presented. In
the Figure, “Avg” represents the Averagepool, USA represents the Unidirectional Selective Attention,
while “GCN” denotes the GCN Feature FuseNet. The images with index ranging from 4 to 8 are
observed to contain features indicative of infection occurrence, with the infection manifesting in
the patient’s right hip bone. The images with index ranging from 0 to 3 and 9 to 15 are observed to
contain no features indicative of infection occurrence.

4.5.1. Influence of k in Undirected Graph Construction

The value of k, an important hyperparameter in the KNN algorithm for GCN undirected
graph construction, is tested for various values to assess model performance. The feature
maps are visualized using Grad-CAM++ to evaluate the feature extraction capabilities.

Model performance results are presented in Table 5. It is evident that performance
declines as the value of k increases. The k = 2 model outperforms the k = 4 model by 0.8%
in ACC and 1.8% in AUC. The k = 4 model shows a 1.2% higher ACC and a 1.7% higher
AUC compared to the k = 6 model.

To explain these results, the visualization outcomes are displayed in Figure 9. The
ability to locate lesion sites in all CT images and focus on a single lesion within an image
diminishes with increasing k values. As k increases, the GCN can aggregate more non-
neighborhood features, resulting in a dilution of local features and, consequently, reduced
model performance.

Table 5. Performance with different k values.

k Feature Fusion Method ACC AUC

2 USA + GCN 91.4 95.9
4 USA + GCN 90.6 94.1
6 USA + GCN 89.4 92.4
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k=3

k=5

k=7

Figure 9. Visualization results of methods based on different k values. The original images are the
same as in Figure 8.

4.5.2. Impact of Sampling Strategy

The choice of sampling strategies can significantly impact a model’s performance.
Various sampling strategies are evaluated using the same settings as the experiment on the
PJI dataset, as depicted in Figure 10. The feature extraction capabilities of these strategies
are assessed by visualizing the feature maps using Grad-CAM++.

1 2 3 4 5 6 7 8

Sample1 Sample2

1 2 3 4 5 6 7 8

Sample1 Sample2

1 2 3 4 5 6 7 8

Sample1 Sample2

1 2 3 4 5 6 7 8

Sample1 Sample2

1 3 6 7 2 4 5 8 1 3 5 7 2 4 6 8

1 3 5 7 1 3 5 7 1 3 4 5 2 6 7 8

Uniform Random Sampling(Ours) Equally Spaced Random Sampling(ESRS)

Equally Spaced Sampling(ESS) Random Sampling（RS）

Figure 10. This figure illustrates the detailed mechanisms of four different sampling strategies, where
two batches of images are obtained from the same CT scan using four distinct approaches.

The model performance results are displayed in Table 6. As observed, our sampling
strategy outperforms other strategies. Our sampling strategy bring a promotion in both
ACC and AUC by 2.9% and 3.6%, respectively, when compared to the least effective
sampling strategy. The suboptimal performance of the equally spaced sampling strategy
can be ascribed to the diminished number of CT image samples. The equally spaced
random sampling strategy surpasses the equally spaced sampling strategy by 2.4% in
ACC and 0.5% in AUC, which can be attributed to the comprehensive utilization of the
CT image dataset. The random sampling strategy results in a performance decline due
to the increased difficulty for the GCN feature fusion network in learning the topological
structures of the undirected graph. The shortcomings of other sampling strategies further
underscore the efficacy of our sampling strategy.
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Table 6. Performance with different sampling strategies.

Sample
Strategy

Uniform
Random

Sampling
(Ours)

Equally Spaced
Random

Sampling
(ESRS)

Equally Spaced
Sampling (ESS)

Random
Sampling (RS)

ACC 91.4 90.9 88.5 89.4
AUC 95.9 92.8 92.3 93.4

The aforementioned analysis is corroborated by the visualization results in Figure 11.
Among all strategies, our approach attains the highest concentration on lesion sites.

Ours

ESS

ESRS

RS

Figure 11. Visualization results of methods based on different sampling strategies. The original
images are the same as in Figure 8.

4.6. Performance on Single Modality

To assess the performance of our model within a single modality, we employed a
method where data from one modality were isolated by setting the values of the other
modality to zero. The results are presented in Table 7.

Observations indicate that UGT(Text) incurs a minor performance decline when com-
pared to MLP. In contrast, UGT(Image) demonstrates a substantial improvement over
SwinS, attributable to its Unidirectional Selective Attention (USA) and GCN feature fusion
block. This supports the notion that our method can adeptly manage the high-noise image
modality independently, even without the text modality.

Table 7. Performance on single Modality. HGT(Text) and HGT(Image) represents padding Image and
Text indicators modalities to zero in HGT separately. MLP here is a five-layer multilayer perception
with a hidden dim of [96, 192, 384, 768] and GELU activation function. In SwinS, the images are
passed through the entire network accompanied by a Maxpool operation in the batch dimension.

Method Type Text Only Image Only
Methods UGT (Text) MLP UGT (Image) SwinS

ACC 87.0 87.3 83.5 81.1
AUC 92.6 93.5 88.2 85.9

5. Limitations

There are still limitations in our research that we hope to address in the future. For
instance, the proposed method requires both CT images and numerical text data, which
may not be available in all clinical settings. Although this study significantly enhances
the precision and practicality of infection diagnosis using deep learning methods, it was
only validated in a single self-built dataset. Therefore, further research may be needed to
validate the effectiveness of the proposed method in different settings and populations.
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6. Conclusions

In conclusion, this study introduces a hierarchical CGN-based transformer (HGT)
for multimodal PJI diagnosis, utilizing CT images and patients’ numerical text data to
enhance diagnostic accuracy. A distinctive sampling strategy was implemented, along with
a GCN-based feature fusion approach for efficient image processing and precise infection
localization. Moreover, an Unidirectional Selective Attention (USA) Block was employed to
balance learning between easily acquired low-noise numerical indicators and challenging
high-noise image modalities.

The proposed method was validated using a custom-built PJI dataset and compared
to multiple competitive multimodal methods under the same experimental configuration.
The results demonstrate that the ACC of this method reaches 91.4%, which is 2.9% higher
than the most recent powerful model, and the AUC attains 95.9%, signifying a substantial
improvement of 2.2% compared to other methods with fewer parameters.

In the future, we aim to expand this approach to other complications, harnessing the
power of large-scale language generation models to achieve automatic diagnosis and case
writing for multiple concurrent conditions.
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