
Citation: Zeng, L.; Wang, W.; Zuo, W.

A Federated Learning Latency

Minimization Method for UAV

Swarms Aided by Communication

Compression and Energy Allocation.

Sensors 2023, 23, 5787. https://

doi.org/10.3390/s23135787

Academic Editor: Petros S. Bithas

Received: 20 March 2023

Revised: 8 June 2023

Accepted: 16 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Federated Learning Latency Minimization Method for UAV
Swarms Aided by Communication Compression and
Energy Allocation
Liang Zeng 1,*, Wenxin Wang 2 and Wei Zuo 3

1 School of Cyberspace Science and Technology, Beijing Institute of Technology, No. 5 Zhongguancun South
Street, Beijing 100081, China

2 School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
1120190897@bit.edu.cn

3 School of Automation, Beijing Institute of Technology, Beijing 100081, China; 1120201520@bit.edu.cn
* Correspondence: liang@bit.edu.cn

Abstract: Unmanned aerial vehicle swarms (UAVSs) can carry out numerous tasks such as detection
and mapping when outfitted with machine learning (ML) models. However, due to the flying height
and mobility of UAVs, it is very difficult to ensure a continuous and stable connection between
ground base stations and UAVs, as a result of which distributed machine learning approaches, such
as federated learning (FL), perform better than centralized machine learning approaches in some
circumstances when utilized by UAVs. However, in practice, functions that UAVs must perform
often, such as emergency obstacle avoidance, require a high sensitivity to latency. This work attempts
to provide a comprehensive analysis of energy consumption and latency sensitivity of FL in UAVs
and present a set of solutions based on an efficient asynchronous federated learning mechanism
for edge network computing (EAFLM) combined with ant colony optimization (ACO) for the cases
where UAVs execute such latency-sensitive jobs. Specifically, UAVs participating in each round of
communication are screened, and only the UAVs that meet the conditions will participate in the
regular round of communication so as to compress the communication times. At the same time,
the transmit power and CPU frequency of the UAV are adjusted to obtain the shortest time of an
individual iteration round. This method is verified using the MNIST dataset and numerical results are
provided to support the usefulness of our proposed method. It greatly reduces the communication
times between UAVs with a relatively low influence on accuracy and optimizes the allocation of
UAVs’ communication resources.

Keywords: UAV network management; federated learning; latency; sustainability; energy consumption;
communication resource optimization

1. Introduction

The application of aerial platforms such as unmanned aerial vehicle swarms (UAVs),
also known as swarms of drones, is expanding quickly. UAVs are unmanned aircraft
consisting of several single small, low-cost UAVs. By working in concert, UAVs have
demonstrated a powerful capability to achieve significant advantages in missions that
would be difficult for a single UAV to accomplish. With their unique advantages, including
high mobility and flexibility, UAVs have played an important role in many areas [1],
including rescue, signal detection, terrain mapping [2–6], etc. The expanding prospects of
the applications of UAVs has attracted a significant amount of attention from academia
and industry. However, due to the flying height and mobility of UAVs, it is very difficult
to ensure a continuous and stable connection between ground base stations and UAVs.
Therefore, UAVs are better suited to perform tasks using distributed machine learning
approaches than centralized machine learning approaches.
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A distributed machine learning method called federated learning (FL) deconstructs
data silos and unleashes the potential of AI applications [7]. FL enables the participants
to achieve joint modeling by exchanging only encrypted intermediate results of machine
learning without disclosing the underlying data and their encrypted form. Such a dis-
tributed FL approach can be well suited for UAV communication: after each UAV in the
cluster has individually trained a model based on the data it has collected, it uses an intra-
cluster network to share FL parameters with other UAVs. This not only reduces volume of
communication between UAVs but also avoids the disclosure of sensitive data and protects
privacy security to a certain extent.

A number of recent works have investigated the feasibility of FL-based UAVs com-
munication, these aerial access networks are also regarded to be very important in the
upcoming sixth-generation (6G) wireless systems [8–10]: Ref. [11] built a leader–follower
mode UAVs-FL architecture for the first time, and discussed how wireless factors such
as bandwidth and UAV angle deviation affect FL convergence. They also minimized the
convergence cycle of UAVs-FL. The limited resources that a single UAV can carry also
limit the performance of UAVs: when UAVs perform complex tasks, the pressure of the
self-organized data interaction network increases with the expansion of the scale of the task
model, and the communication energy consumption increases. In reference [12], path gain
was examined depending on the distance between the UAVs using a ray tracing method in
various scenarios and with various antenna types in an air-to-air communication channel
during communication for two UAVs, one of which was considered to be a receiver and
the other as a transmitter, with direct vision between them. Ref. [13] improved the task
allocation mechanism of UAVs, effectively reduces communication energy consumption,
and ensures model performance. Under various constraints of power control, transmission
time, accuracy, bandwidth allocation, and computing resources, Ref. [14] minimized the
overall energy consumption of each UAV with limited bandwidth. Ref. [15] maximized the
transmission rate and improved the probability of successful data transmission based on
deep Q-network (DQN), a convolutional block attention module (CBAM), and the value
decomposition network (VDN) algorithm. Ref. [16] built a synchronous federated learning
(SFL) structure for multi-UAVs and also performed a comparative analysis of asynchronous
federated learning (AFL) and SFL. Ref. [17] reformulated the optimization problem as the
framework of a Markov decision process (MDP) and designed a DRL-based algorithm to
solve the MDP. Refs. [18,19] proposed a secure transmission approach with energy effi-
ciency in UAV networks to deal with the crucial challenges of energy saving and security
in UAV wireless networks. Refs. [20,21] suggested some new frameworks for distributed
learning for sharing the model parameters that use less energy while maintaining good test
accuracy performance.

However, there still exists a problem with these edge-oriented distributed machine
learning approaches, which is that the communication demand is often very high, resulting
in high communication consumption [22]. A typical parallel SGD model was designed
and implemented through research, with a parameter matrix size of 2,400,000, running
on a distributed parameter server system with one server node and 10 work nodes, and
an Ethernet bandwidth of 1 Gbps between nodes. Under the above model and hardware
configuration conditions, 60,000 sample data from the MNIST handwritten digit recognition
dataset were used as input, and each sample underwent only one iterative training. The
final complete training took 23 h, and it was found that 80% of the time and energy were
spent on parameter exchange between the parameter server and the working node [23].
Thus, reducing communication consumption is a valuable entry point for improving such
distributed machine learning methods.

In reality, the tasks that UAVs need to deal with are often very sensitive to latency,
such as dynamic target recognition, emergency obstacle avoidance, etc. [24]. This latency
sensitivity will directly affect the completion of the task and should be one of the primary
considerations for optimizing the network management of UAVs. Based on this pilot–
follower mode of UAVS-FL architecture, Ref. [25] proposed a non-orthogonal multiple
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access (NOMA) based UAVs-FL framework to jointly optimize the uplink and downlink
transmission duration of the model and UAV power, aiming for minimization of the latency
of a FL iteration round until a specified accuracy is reached. In addition, while considering
the convergence, reliability, and latency-sensitivity requirements of UAVs, the constraints
on the energy consumed by learning, communication and flight during FL convergence
should also be considered. However, at present, most of the research on task allocation
of unmanned aircraft clusters focuses on non-real-time tasks, and there is still a lack of
more complete solutions for task allocation that consider both latency and reliability [26].
Therefore, motivated by the above reasons, this paper proposes a relatively complete
solution for the situation where UAVs perform such latency-sensitive tasks.

It is worth mentioning that in the field of federated learning for edge computing,
there is a similar problem: the network and node computing load are too heavy [27]. In
large-scale training scenarios, a large amount of communication bandwidth is often re-
quired for gradient switching, which will greatly increase the cost of network infrastructure.
At the same time, the limited computing resources of the edge nodes will also lead to
higher overall latency, lower throughput, and intermittent poor connections in the model.
Ref. [28] proposed a method for distributed machine learning to save communication
resources named lazily aggregated gradient (LAG). This is a communication-efficient vari-
ant of stochastic gradient descent (SGD), which can adaptively skip gradient calculation
based on the current gradient, and help reduce the communication and computing bur-
den. Later, in order to further improve the performance in the random gradient scenario,
lazily aggregated stochastic gradients (LASG) was proposed, which further reduces the
communication bandwidth requirements, and the convergence rate is equivalent to the
original SGD [29]. In addition to the idea of skipping redundant communication rounds,
there have also been studies devoted to skipping some nodes in a certain round to ulti-
mately achieve the purpose of saving communication resources. Ref. [30] proposed an
efficient asynchronous federated learning mechanism (EAFLM) for edge network comput-
ing which compresses the redundant communication between the node and the parameter
server in the training process according to the adaptive threshold to further reduce the
communication consumption.

Based on the UAVs-FL model proposed in Ref. [11], we construct a leader–follower
framework. On this basis, we have established an optimization problem and proposed a
resource scheduling planning method specifically for the class of tasks that UAVs perform
in practice, the latency-sensitive tasks. Our primary goal is to minimize communication
latency in a federated learning round. Overall, the primary contributions of this paper are:

1. Introduction of the efficient asynchronous federated learning mechanism (EAFLM),
which compresses communication times by up to 92.5% compared to the original
communication times and minimizes the risk of private data leakage.

2. Establishment of an optimization problem with the aim of minimizing FL latency.
Although this problem is non-convex, we have transformed it into two convex sub-
problems related to the transmit power and the CPU frequency of UAVs. By intro-
ducing the ant colony optimization (ACO) algorithm to plan the power allocation
of UAVs, lower global latency can be achieved for latency-sensitive tasks. The FL
iteration latency per round can also be reduced to 48.9% of the similar method.

3. In the MNIST dataset, the accuracy of machine learning tasks remained above 95%,
which did not decrease compared to the situation without introducing the scheduling
strategy in this paper.

In summary, in order to achieve a shorter global latency, the strategy initially allocates
a portion of time and energy for local operations and subsequently plans for the power
allocation methods, and ultimately achieves a reduced global latency.

The remainder of this paper is organized as follows: Section 2 describes the system
model and gives out the problem model. Section 3 elaborates on the EAFLM-ACO strategy
and the implementation of our proposed algorithm. In Section 4, simulations and analyses
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are presented to prove the efficiency of our proposed method. Section 5 summarizes
this article.

2. System Model

To study UAV network management based on FL, this chapter establishes a model as
follows: a single group of UAVs consists of a leader UAV and I follower UAVs, with the
follower UAVs forming the set I . The leader UAV is denoted as UAV L, and each follower
UAV is denoted as UAV i (i ∈ I). The UAV group maintains a specific formation in the
air, flying at a constant speed in the same direction at a certain altitude. The leader UAV
and follower UAVs utilize FL to cooperate, performing machine learning tasks such as
trajectory planning and target recognition. The overall architecture is shown in Figure 1.

Dataset

Local FL Models

Global FL Models

Follower (UAV i)

Leader (UAV L)

Dataset

Local FL Models

Follower (UAV i)

Dataset

Local FL Models

Follower (UAV i)

……

Figure 1. An illustration of the UAVs-FL architecture.

2.1. Federated Learning Model

Use w to represent the global model parameters of UAV L, and wi represents the
local model parameters of UAV i(i ∈ I). The size of the model parameters is defined as
S(wi). Ni is the amount of sample data of UAV i. Assuming that each UAV i has a input
sample set

{
xi1, xi2, . . . , xiNi

}
, and every xin only corresponds to one output yin through

model wi, which means the output set is
{

yi1, yi2, . . . , yiNi

}
[31]. TakeDi as the local sample

set of UAV i, which means Di =
{
(xi1, yi1), (xi2, yi2), . . . , (xiNi , yiNi )

}
. The loss function

f (wi, xin, yin) reflects the predicted loss results of each sample. For every UAV i, the local
loss function Fi(w) on its sample set Di can thus be represented as the average of the loss
function of each sample, and the global loss function F(w) is the weighted average of all
local loss functions, that is:

F(w) = ∑
i∈I

NiFiw
N

=
1
N ∑

i∈I
∑

n∈Di

f (wi, xin, yin), (1)

The purpose of federated learning is to find a parameter model that minimizes the
global loss function above. To achieve this optimal model, traditional centralized machine
learning algorithms require all follower UAVs to upload their datasets to the leader UAV
for centralized training. In the federated learning circumstances described in this paper,
the following five steps are performed in a certain round [32].
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1. Local gradient calculation: each UAV i computes its local gradient gi(t) at moment t
based on its own local dataset Di and quantizes the gradient as follows:

gi(t) = 5wFi(w(t)), (2)

2. Local gradient upload: after quantizing the local gradient, each UAV i establishes a
communication link with UAV L to upload its local gradient.

3. Global gradient aggregation: UAV L weights and averages the gradients uploaded by
each UAV m and obtains the aggregated gradient g(t) as follows:

g(t) =
1
N ∑

i∈I
Nigi(t), (3)

4. Global gradient update: UAV L updates the parameters of the aggregated gradient
using the method of gradient descent, where w(t + 1) represents the global model
parameters of iteration round t + 1, η represents the learning rate and η > 0:

w(t + 1) = w(t)− ηg(t), (4)

5. Global parameter broadcast: UAV L broadcasts the updated global model parameters
to all other UAV i. Each UAV i obtains the latest parameters and updates its local
parameters for the next round of iterative learning.

In a federated learning system, these five steps are repeated until the maximum
number of rounds is reached.

2.2. Communication Model

We assume that every follower UAV i in this FL iteration forms a group and communi-
cates with UAV L using its local training model wi. In Section 3.1, the selection procedure
for determining which follower UAV participates in this iteration will be explained in detail.
We assume that UAV L utilizes the index in the group as the decoding order for uploading
the local model parameters to UAV L. We use pi to represent the transmit power of UAV i,
i.e., the transmit power for uploading its data to the leader UAV. According to Shannon’s
formula, we can represent the uplink data rate Rup

i between UAV i and UAV L as:

Rup
i = Bup

i log2

(
1 +

pigi

∑i−1
j=1 pjgj + Bup

i γ0

)
, ∀i ∈ I , (5)

where Bup
i represents the uplink bandwidth, pi ∈ (0, pmax) represents the signal power of

UAV i, gi is the channel power gain from UAV i to UAV L, and γ0 is the spectral power
density of the background noise.

After receiving model parameters uploaded by the follower UAVs, UAV L performs
local model aggregation. Once the aggregation is complete, the updated global model is
broadcast to all follower UAVs. Considering the follower UAV with the weakest channel
power obtained from the leader UAV, the downlink data rate Rdown from the leader UAV
to the follower UAV with the weakest channel power gain can be expressed as:

Rdown = Bdown log2

(
1 +

pL mini∈I{hi}
Bdownγ0

)
, (6)

where Bdown represents the downlink bandwidth, pL ∈ (0, pmax) represents the signal
power of UAV L, hi is the downlink channel power gain from the UAV L to UAV i, and γ0
is the spectral power density of the background noise.

Once the uplink and downlink data transmission rates of the channel are determined,
the transmission latency can be calculated by the ratio of the size of the model parameters
S(wi) to the data transmission rate Rup

i or Rdown.
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2.3. Latency Analysis

As previously stated, our goal is to reduce end-to-end latency by optimizing the latency.
In this section, we calculate the main types of latency in a single communication round [32].

2.3.1. Local Time Consumption of Follower UAVs

The total time consumption of follower UAVs can be divided into two parts, local gra-
dient computation Tcomputation

i and local gradient upload Tupload
i . They can be expressed as:

Tcomputation
i =

∑Ni
n=1 S(xin)c

fi
(7)

Tupload
i =

S(wi)

Rup
i

(8)

where ∑Ni
n=1 S(xin) represents the size of collected data for UAV i, c represents the workload

of CPU cycles per data bit, fi ∈ ( fmin, fmax) represents the CPU frequency of UAV i, S(wi)
represents the total data size of UAV i corresponding to the local parameter gradient, and
Rup

i represents the uplink data rate.

2.3.2. Global Time Consumption of Leader UAV

The total time consumption of a leader UAV can also be divided into two parts: global
gradient computation Taggregation

L and broadcast Tbroadcast
L . They can be expressed as:

Taggregation
L =

∑I
i=1 S(wi)α

fL
(9)

Tbroadcast
L =

S(wi)

RDown (10)

where α represents the computational complexity, fL ∈ ( fmin, fmax) represents the CPU
frequency of UAV L, I represents the total number of devices involved in model aggregation,
and Rdown represents the downlink data rate.

2.3.3. Total Time

For UAV L, it must first wait for the local gradient to be uploaded by the follower
UAVs before starting gradient aggregation and model broadcast. This implies that the total
latency of a round of federated learning is the sum of the longest local time consumption
among all follower UAVs and the global time consumption of the leader UAV. Therefore,
for a swarm of UAVs, the total latency of a complete federated learning round is:

T = max
i∈I

{
Tcomputation

i + Tupload
i

}
+ Taggregation

L + Tbroadcast
L (11)

2.4. Energy Consumption Model

In this paper, we only consider the computation energy consumption, communication
energy consumption, and maneuvering energy consumption related to federated learning
and communication between UAVs. The energy consumption of the follower UAVs and
the leader UAV can be expressed by the following formulae, respectively:

Ei = Ecomputation
i + Eupload

i + Emaneuvering
i

= κ f µ
i Tcomputation

i + piT
upload
i + δ(Tcomputation

i + Tupload
i )

(12)

EL = Eaggregation
L + Ebroadcast

L + Emaneuvering
L

= κ f µ
L Taggregation

L + pLTbroadcast
L + δ(Taggregation

L + Tbroadcast
L )

(13)
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where κ and µ represent the energy consumption efficiency and are both positive con-
stants [25] and δ represents the average maneuvering power.

2.5. Optimization for Minimizing Latency

We take the transmit power and CPU frequency of each UAV as optimization variables
and optimize the time of each round of federated learning to minimize it. So, we can
establish the following optimization problem, referred to as Problem 1.

(P1) min
pi , fi ,pL , fL

T(t),

s.t. c1 : 0 6 pi 6 pmax, i ∈ I ,

c2 : fmin 6 fi 6 fmax, i ∈ I ,

c3 : 0 6 pL 6 pmax,

c4 : fmin 6 fL 6 fmax,

c5 : Ei 6 Emax
i , i ∈ I ,

c6 : EL 6 Emax
L .

(14)

where T(t) is the total time per round, which is the goal of the optimization problem. By
controlling the transmit power of follower UAV pi, CPU frequency of follower UAV fi,
transmit power of leader UAV pL, and CPU frequency of leader UAV fL, the single-round
latency is minimized. The constraints include the transmit power and CPU frequency
ranges of the UAVs. The energy consumption of follower UAV Ei and leader UAV EL
should also be lower than the maximum energy limit Emax.

3. The Proposed Method

In the previous section, we have established an optimization problem that minimizes
the federated learning time per round by considering the transmit power and CPU fre-
quency of the UAV as variables. In this section, we propose a resource optimization
configuration scheme that combines EAFLM and ACO. The goal is to achieve the minimum
communication latency in each round.

3.1. UAVs Network Management Based on EAFLM

A complete federated learning framework includes a parameter server and several
learning nodes corresponding to UAV L and UAV i in this model. In each round t, the
learning nodes obtain the global model w(t− 1), compute the local gradient5m(w(t− 1)),
and upload it to the server. The server aggregates the gradients, executes the optimiza-
tion algorithm to update the model parameters, and then broadcasts the updated model
parameters to each learning node. To minimize the need for establishing communication
links, in this paper, we locally select learning nodes and allow some of them to skip certain
rounds of communication. Here, we introduce the concept of ‘lazy nodes’ [30]. A lazy node
is defined as a node that contributes less to the global gradient in a particular round of
global gradient aggregation. In other words, the participation or exclusion of these nodes
in a specific round of global gradient aggregation has almost no impact on the final result.
Therefore, ignoring these nodes in this round of aggregation can have a good effect on the
model performance. The set of lazy nodes satisfies:

|| 5t−1
Ineg
||2

Ineg
≤
|| 5t−1

I ||2

I
(15)

where 5t−1
I represents the total gradient uploaded by all followers within round t− 1,

5t−1
Ineg

represents the total gradient uploaded by all lazy nodes within round t− 1, Ineg is
the size of the lazy node set, and I is the total number of follower UAVs.
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In this paper, we optimize the global model using the gradient descent algorithm.

w(t) = w(t− 1)− η∇t−1
I (16)

where w(t) represents the global model parameters of iteration round t. η represents the
learning rate.

Therefore, ∥∥∥5t−1
Ineg

∥∥∥2
≤

Ineg

η2 I
‖w(t)−w(t− 1)‖2 (17)

Because the global model tends to converge, the following approximation is used:

w(t)−w(t− 1) ≈ w(t− 1)−w(t− 2) (18)

According to the mean inequality, we have:

∥∥∥∇t−1
Ineg

∥∥∥2
=

∥∥∥∥∥∥ ∑
i∈Ineg

S(xin)∇t−1
i

∑Ni
n=1 S(xin)

∥∥∥∥∥∥
2

6
Ineg

∑Ni
n=1 S(xin)

2 ∑
i∈Ineg

∥∥∥S(xin)∇t−1
i

∥∥∥2
,

(19)

where ∑Ni
n=1 S(xin) represents the size of collected data for UAV i.

Let Ineg = (1 − β)I. This implies that (1 − β) represents the proportion of lazy
nodes, which do not participate in communication, among all follower UAVs. Therefore, β
represents the participation rate, which is the proportion of follower UAVs that participate
in communication. If Equation (20) is satisfied, Equation (15) is also satisfied.

∥∥∥S(xin)∇t−1
i

∥∥∥2
6

∑Ni
n=1 S(xin)

2

η2 I2(1− β)
‖w(t− 1)−w(t− 2)‖2 (20)

In summary, in each round t, UAV i locally verifies whether it satisfies Equation (20).
If it does, the current round of upload will be skipped.

In the extreme case where all nodes in a particular round t satisfy Equation (20), UAV
L will not receive the model information uploaded by any follower UAV. In such cases,
UAV L selects a follower UAV randomly to participate in the upload after a specified
time interval ∆T. This ensures that the federated learning task can continue in a relatively
efficient situation. The specific time interval ∆T can be determined based on different
scenarios. In this paper, we set ∆T as:

∆T ≥ Tcomputation
i + Tupload

i , i ∈ I (21)

As for the time consumption in these extreme rounds, assuming that the device
selected to the device is i0(i0 ∈ I), the latency for this round can be defined as:

T = Tcomputation
i0

+ Tupload
i0

+ Taggregation
L + 2 ∗ Tbroadcast

L + ∆T (22)

3.2. Latency Minimization Based on ACO

In the previous section, we formulated an optimization problem to minimize the time
consumed in each round of federated learning by optimizing the transmit power and CPU
frequency of each UAV. Next, we will solve this optimization problem based on ant colony
optimization (ACO) Algorithm 1.

To solve the optimization problem, we will decompose it into sub-problems that will
be solved independently through mathematical derivation and simplification. In Problem
1, the total time is defined as local time consumption and global time consumption. We
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have also calculated the time consumed for each step in the previous section. Due to the
separate control of follower UAVs and the leader UAV, we will divide Problem 1 into two
sub-problems: one focuses on the latency consumption of the follower UAVs, and the
other focuses on the latency consumption of the leader UAV. Therefore, this optimization
problem can be rewritten as Problem 2 and Problem 3 as follows.

Algorithm 1: ACO for minimized the latency in one round.
Input :

UAVs communication parameters: I, Ni, S(xin), S(wi), c, gi, γ0, c′L, hi,
Bup

i orBdown;
Output :

Best solution of pi, fi or pL, fL and the minimum latency;

Initialize the model parameters: the size of ant colony N, pheromone value τ,
pheromone evaporation coefficient ρ, pheromone weight α, transfer factor weight
β, total pheromone release Q ;

Randomly initialize N ant solutions and pheromone value τ ;
Take iteration times as k ;
while k < max iteration times do

Obtain the best index and its τ ;
for each individual in the colony do

Calculate the transition probability by τ(t + n) = (1− ρ) · τ(t) + ∆τ ;
end
for each individual in the colony do

Update individual locations using local search and global search ;
Determine whether an individual can move based on the restriction
condition and penalty function [33] ;

The penalty function is calculated as:

PF(x) = k
√

k ∑
i

θ(pi(x)) ∗ pi(x)γp(x)
,

where pi(x) = max(0, gi(x)),

θ is the multi-stage assignment function,

γ depends on specific cases.
Calculate the pheromone value ;
Record the minimum latency with the solution ;

end
end

Problem 2 represents the follower’s latency consumption:

(P2)max
i

min
pi , fi

∑Ni
n=1 S(xin)c

fi
+

S(wi)

Bup
i log2

(
1 + pi gi

∑i−1
j=1 pjgj+Bup

i γ0

) ,

s.t. c1 : 0 6 pi 6 pmax,

c2 : fmin 6 fi 6 fmax,

c3 : (κ f µ
i + δ)(

∑Ni
n=1 S(xin)c

fi
) + (pL + δ)

S(wi)

Bup
i log2

(
1 + pi gi

∑i−1
j=1 pjgj+Bup

i γ0

) 6 Emax
i .

(23)

where κ and µ represent the energy consumption efficiency and are both positive constants.
δ represents the average maneuvering power. ∑Ni

n=1 S(xin) represents the size of collected
data for UAV i. c represents the workload of CPU cycles per data bit. Bup

i represents the



Sensors 2023, 23, 5787 10 of 17

uplink bandwidth. gi is the channel power gain from UAV i to UAV L. γ0 is the spectral
power density of the background noise.

Problem 3 represents the leader’s latency consumption:

(P3) min
pL , fL

∑I
i=1 S(wi)α

fL
+

S(wi)

Bdown log2

(
1 + pL mini∈I{hi}

Bdownγ0

) ,

s.t. c1 : 0 6 pL 6 pmax,

c2 : fmin 6 fL 6 fmax,

c3 : (κ f µ
L + δ)

(
c0 ∑M0

m=1|gm|+ c′L
fL

)
+ (pL + δ)

S(wi)

Bdown log2

(
1 + pL mini∈I{hi}

Bdownγ0

) 6 Emax
L .

(24)

where Bdown represents the downlink bandwidth, pL ∈ (0, pmax) represents the signal
power of UAV L, and hi is the downlink channel power gain from the UAV L to UAV i.

Therefore, this simplified optimization problem can be solved by the Algorithm 1 above.

3.3. Overall Architecture

The overall architecture is shown in Figure 2.

Global FL Models

Leader (UAV L)

Dataset

Local FL Models

Follower (UAV i)

Ⅱ. ACO for power 

reallocate (follower UAVs)

Ⅰ. Collect data 

Ⅳ. EAFLM for local 

parameters upload 

(follower UAVs)

Ⅴ. ACO for power 

reallocate (leader UAV)

Ⅵ. Global parameters 

aggregation and broadcast

Ⅶ. Local parameters 

update

Ⅲ. Local parameters 

computation

Figure 2. Overall architecture of the system.

4. Results and Discussion

In this section, we verify the validity of our EAFLM scheme through numerical results.
Specifically, we utilized the TensorFlow framework to construct a leader–follower UAVs-
FL model comprising a leader UAV and nine follower UAVs. The follower UAVs are
distributed in a circle centered around the leader UAV. The UAVs maintain the same
constant speed while moving and a fixed distance from each other, which means that their
power consumption for maneuvering can be roughly considered as the same constant.
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Meanwhile, the channel power gain gi between the leader UAV and the follower UAV during FL
can also be roughly considered as a constant. We test the performance of the proposed method
on the handwritten numeric dataset MNIST. Among them, 10% of the data are retained as the
test set of the global model, and a three-layer MLP (multi-layer perceptron) neural network
is used as the model of the classification task for the machine learning task of recognizing
handwritten digits. The simulation parameters are as Table 1 [25]:

Table 1. Simulation parameters.

Parameters Value

Number of follower UAVs, I0 9
Uplink bandwidth, Bup 5 MHz

Downlink bandwidth, Bdown 5 MHz
Noise power density, γ0 −174 dBm/Hz
Uplink channel gain, gi 2× 10−7

Downlink channel gain, h 1× 10−7

Workload of CPU cycles per data bit, c 70 CPU cycle/bit
Computational complexity, α 50

Size of local model, S(wi) 1.8 MB
Size of global model, S(w) 1.3 MB

Size of collected data, ∑Ni
n=1 S(xin) 1.8 MB

UAV CPU frequency limit, ( fmin, fmax) [0.2 GHz, 0.4 GHz]
UAV transmit power limit, (pmin, pmax) 0.3 w

Average maneuvering power, δ 0.01 w
Leader UAV energy limit, Emax

L 0.1 J per round
Follower UAV energy limit, Emax

i 0.04 J per round
Learning rate, η 0.01 [32]

Energy consumption efficiency, κ, µ 10−28, 2

Firstly, the accuracy and loss function of classification results were evaluated, shown
in Figures 3 and 4, respectively. The experimental results show that the proposed method
EAFLM-ACO can achieve FL convergence in 50 rounds.

It can be observed that as the value of β decreases (indicating fewer follower UAVs
participating in each round of federated learning theoretically), the accuracy curve and loss
function curve exhibit more fluctuations before reaching convergence. The introduction of
the EAFLM strategy introduces some instability to the federated learning model because
the participation of follower UAVs in communication is not fixed for each round. However,
after 50 rounds, all five models with different β values reached convergence, and their
accuracies were similar to each other. Therefore, it can be concluded that the proposed
method in this paper reduces the scale of communication while ensuring the training results.

However, it should be noted that the research focus of this paper is the communication
in the federated learning framework, and the model structure and optimization algorithm
have not been studied too much. Therefore, the reasons behind the overfitting problems
and other problems in the experiment in this paper and their solutions do not belong
to the scope of this paper. Similarly, experimental indexes such as accuracy are only for
the purpose of comparing the performance of various methods, rather than evaluating
the merits and demerits of the model. Moreover, because the comparative experiment of
different methods adopts the same configuration, it can be said that the indexes in the
experiment have the value of comparison.

Because of the EAFLM strategy, after performing gradient calculation, UAV i makes
an additional local check to see if it meets the conditions of skipping the round. If so,
this UAV i skips this round of communication. It can be clearly seen from the results
in Figure 5 that when β is within the range of 0.1 to 0.3, the communication times have
a very obvious change. When β is greater than 0.3, the slope of the curve decreases
gradually. In other words, when β is below 0.3, the communication times of the UAVs-FL
model will be significantly compressed compared to the case without communication
compression (β = 1).
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Figure 3. Convergence of accuracy.

Figure 6 illustrates the average energy consumption of each follower UAV over 50 it-
erations of completing a federated learning task. Specifically, Figure 6a shows the total
energy consumption, whereas Figure 6b–d represent the maneuvering energy consumption,
communication energy consumption, and computation energy consumption, respectively.
Because our optimization objective primarily aims to minimize the latency of federated
learning, which directly affects the flight duration of the UAV fleet, the maneuvering energy
consumption fluctuates due to different values of β. With the introduction of our EAFLM
strategy, which compresses communication times among UAVs, the communication energy
consumption becomes proportionate to the average communication times, as the energy
consumption per unit time for communication is constrained to a similar level. Conse-
quently, the average communication energy consumption decreases due to the significant
compression of communication times. Regarding computation energy consumption, each
UAV is required to perform the local gradient computation and update steps in each
iteration, resulting in a consistent level of computation energy regardless of changes in
β. However, it should be noted that this energy consumption variation can not infer the
conclusion that this method is energy efficient.
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Figure 4. Convergence of loss function.
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Figure 5. Communication times between the different values of β.

We also compared our proposed method with a similar existing study in Table 2. The
NOMA (non-orthogonal multiple access) is an FL framework designed for UAVs. The
optimization goal of this method is also to achieve the minimum delay for each FL round,
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while using uplink transmission durations, downlink broadcasting duration, and CPU
frequency as controllable variables however. Under the same environmental parameters,
our method achieved a 48.9% improvement in reducing latency compared to NOMA.
This indicates that our optimization problem, which uses UAVs’ CPU frequency and
communication power as optimization variables, holds promise for further investigation.
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                           (c)                                               (d) 

Figure 6. Average energy consumption of follower UAVs between the different values of β. (a) Total
energy consumption. (b) Maneuvering energy consumption. (c) Communication energy consumption.
(d) Computation energy consumption.

Table 2. Performance comparison.

Method Minimum Latency for a FL Round

EAFLM-ACO 0.27693 1

EAFLM-PSO 0.36232
NOMA 0.54267 [25]

Baseline scheme 0.57168 2

1 When pi takes 0.02072 w, fi takes 0.27462 GHz, pL takes 0.196902 w and fL takes 0.399971 GHz, the optimal
solution is obtained. 2 In baseline scheme, pi takes 0.01 w, fi takes 0.3 GHz, pL takes 0.15 w and fL takes 0.35 GHz.

Finally, we analyze the total time latency required for the FL model to reach con-
vergence, as shown in Figure 7. We can see that in the case without communication
compression (β = 1), the total time consumption is much lower than the case when times
of communication are greatly compressed (β < 0.3). This is because the highly compressed
communication times are likely to lead to a situation in which there is no follower UAV
in a certain round that meets the conditions to participate in the communication. The
UAVs will waste δT waiting for the leader UAV to check if it is an extreme case, where the
leader UAV will then randomly select a follower UAV to receive its upload parameters,
which thus undoubtedly becomes a waste of time. It is also worth mentioning that the
total communication time is significantly reduced when β is around 0.6. This implies that
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an appropriate degree of communication compression holds substantial significance for
latency control.

In summary, this method effectively lowers the latency of an individual round of FL
by compressing communication times and reallocating transmit power and CPU frequency.
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Figure 7. Total time consumption of 50 iteration rounds with different values of β.

5. Conclusions

In this paper, a leader–follower architecture UAVs-FL model is constructed. On this
basis, an optimization problem is established for latency-sensitive tasks in UAVs. The
EAFLM-ACO method is proposed with the main goal of achieving the shortest commu-
nication latency possible. Our method significantly compresses communication times
among UAVs, ensures low latency in FL iterations, and optimizes the allocation of UAV
communication resources. The model accuracy is also taken into account.

EAFLM-ACO significantly reduces communication times between UAVs while main-
taining a relatively low impact on accuracy. After the follower UAVs train the local model,
they check whether they meet the conditions for participating in this round of communica-
tion according to the self-inspection conditions. If they meet the conditions, the gradient
will be uploaded to the leader UAV. This selective gradient exchange approach also miti-
gates the risk of disclosing private data. At the same time, the allocation of the transmit
power and CPU frequency is adjusted locally to achieve the shortest latency.

The effectiveness of this method is additionally verified by experiments. As the degree
of communication compression increases, the number of rounds required from FL model
to achieve convergence are nearly the same and the accuracy and loss function of machine
learning tasks are not significantly different from those without compression. In order to
minimize the latency, the transmit power and CPU frequency are reallocated. The latency
of each FL iteration is reduced by 48.9% compared to other similar methods.

As for the further work, considering that the UAVs perform computationally heavier
tasks or the amount of local data increases further, then at the end of each round of calcula-
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tion, the additional gradient check will further increase the calculation time consumption,
which may affect the energy allocation of the whole UAVs group. In order to reduce the
pressure of local computation, a “check-free” mechanism can be invented, which may help
to reduce the computation work caused by gradient checking. In future work, we will
conduct further research on the “inspection exemption” strategy.
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