
Citation: Geng, H.; Ge, X.; Xie, B.;

Min, J.; Zhuang, X. LSTMAtU-Net: A

Precipitation Nowcasting Model

Based on ECSA Module. Sensors 2023,

23, 5785. https://doi.org/10.3390/

s23135785

Academic Editor: Ram M.

Narayanan

Received: 6 May 2023

Revised: 12 June 2023

Accepted: 15 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

LSTMAtU-Net: A Precipitation Nowcasting Model Based on
ECSA Module
Huantong Geng 1,2, Xiaoyan Ge 1,* , Boyang Xie 1, Jinzhong Min 3 and Xiaoran Zhuang 4

1 School of Computer, Nanjing University of Information Science and Technology, Nanjing 210044, China;
htgeng@nuist.edu.cn (H.G.); 20211221043@nuist.edu.cn (B.X.)

2 Jiangsu Open University, Nanjing 210036, China
3 School of Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China;

jzmin@nuist.edu.cn
4 Jiangsu Meteorological Observatory, Nanjing 210008, China; zxrxz3212009@163.com
* Correspondence: 20211249485@nuist.edu.cn

Abstract: Precipitation nowcasting refers to the use of specific meteorological elements to predict
precipitation in the next 0–2 h. Existing methods use radar echo maps and the Z–R relationship
to directly predict future rainfall rates through deep learning methods, which are not physically
constrained, but suffer from severe loss of predicted image details. This paper proposes a new
model framework to effectively solve this problem, namely LSTMAtU-Net. It is based on the U-Net
architecture, equipped with a Convolutional LSTM (ConvLSTM) unit with the vertical flow direction
and depthwise-separable convolution, and we propose a new component, the Efficient Channel and
Space Attention (ECSA) module. The ConvLSTM unit with the vertical flow direction memorizes
temporal changes by extracting features from different levels of the convolutional layers, while the
ECSA module innovatively integrates different structural information of each layer of U-Net into
the channelwise attention mechanism to learn channel and spatial information, thereby enhancing
attention to the details of precipitation images. The experimental results showed that the performance
of the model on the test dataset was better than other examined models and improved the accuracy
of medium- and high-intensity precipitation nowcasting.

Keywords: precipitation nowcasting; U-Net architecture; Convolutional LSTM (ConvLSTM); Efficient
Channel and Space Attention (ECSA)

1. Introduction

Severe convective weather occurs frequently in China, and short-term heavy precip-
itation causes other disaster chain reactions, which cause serious economic losses and
casualties. Precipitation nowcasting can make an early warning plan for this weather and
reserve a time window for disaster prevention and mitigation [1,2]. It can also ensure the
correct operation of emergency services, energy management, maritime services, and other
industries. Numerical Weather Prediction (NWP) [3] is a commonly used precipitation
forecasting method that uses numerical calculations to solve physical equations to predict
precipitation in a certain period of time in the future. However, the nowcasting performance
of NWP is poor because the forecast period of nowcasting is less than the time required
for the model to reach steady-state simulation [4]. It relies on many computational data,
which requires high-performance computers. In order to solve these problems, radar-based
precipitation nowcasting has become an important development direction.

Since Ligda [5] proposed the precipitation nowcasting based on radar elements, this
method has been widely recognized and deeply studied [6–11], so it has become the
mainstream forecasting technology for heavy precipitation nowcasting. It first uses the
radar echo extrapolation model to predict the future radar echo and then uses the Z–R
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relationship [12] to obtain precipitation data. However, predicting in these two steps will
lead to cumulative error, while precipitation nowcasting based on precipitation elements or
fusion elements [13–19] will reduce this error. It directly uses several precipitation frames
or fusion feature frames to predict future precipitation maps. However, the precipitation
data used in this method have the following problems: First, due to the very few to no
rain samples in the precipitation data, there is the problem of an uneven distribution of
data samples and a deviation of the data grade distribution in the precipitation dataset,
as shown in Figure 1. Second, precipitation data have the characteristics of high-order
nonlinearity and an extremely complex spatial and temporal distribution [20]. This makes
it difficult to model with a specific inflexible target.
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Figure 1. Precipitation data distribution statistics. The data were derived from several random
sequences of the precipitation dataset in the 2022 Jiangsu Meteorological AI Algorithm Challenge.
The spatial resolution of the single-time data is 480 × 560; the time period is 6 min; the total sample
number is 101.

Deep learning methods based on precipitation features’ or fusion features’ extrapo-
lation include Recurrent Neural Networks (RNNs) and Convolutional Neural Networks
(CNNs). RNN-based models have strong modeling capabilities for time series data, which
can be used to mine the spatiotemporal evolution of precipitation sequences [13,14], but
they cannot solve the problem through parallel computing, prolong the prediction time, and
have the problem of gradient explosion. CNN-based models not only have a strong feature
extraction ability, but also can shorten prediction time by parallel computing. Among them,
the authors in [21] introduced the famous U-Net model, which was originally used for
medical image segmentation, but also has had success in precipitation nowcasting [15–19].
However, it has limited long-term dependency capabilities due to the inherent local nature
of the convolutional operation. In addition, the models based on the RNN and CNN
frameworks both have the problem of gradually inaccurate details in a long delivery cycle.

Motivated by this, this paper proposes LSTMAtU-Net, a deep learning network
based on precipitation features’ or fusion features’ extrapolation. It is based on the U-
Net architecture, equipped with a ConvLSTM [10] unit with the vertical flow direction,
the ECSA module, and DSC [22]. The framework significantly improves the accuracy of
precipitation nowcasting. Here, we used the dataset of the 2022 Jiangsu Meteorological
AI Algorithm Challenge to evaluate the framework, which predicts the structured data of
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precipitation elements in the next two hours based on the weather radar images and the
structured data of meteorological elements that have occurred in the past.

In summary, the main contributions of this paper are as follows:

1. The LSTMAtU-Net model combines the advantages of RNNs and CNNs. We propose
a model that combines the RNN and CNN structures, namely the LSTMAtU-Net
model. It has a strong feature extraction capability and improved long-term depen-
dency capabilities, and the core convolutional structure greatly reduces the risk of
gradient explosion.

2. A new component, the ECSA module, is proposed, which uses mean pooling at differ-
ent scales as a way to achieve the weighting of the channel and spatial information
of convolutional features based on the ECA module [23]; thus, focusing on image
details alleviates, to a certain extent, the problem of the RNN’s and CNN’s predictions
showing the gradual inaccuracy of the image details.

3. We propose a completely new loss function. It first optimizes multiple prediction
objectives and then designs the corresponding weighted loss function to solve the
serious imbalance of precipitation data.

The rest of the paper is organized as follows: Section 2 briefly introduces the related
work on nowcasting. Section 3 describes our proposed model. Comprehensive experiments
that verified the effectiveness of our model are given in Section 4. The conclusion is given
in Section 5.

2. Related Works

In this section, we will introduce deep learning models for nowcasting. Since our
model also includes an attention mechanism, we also introduce the related research work
on attention mechanisms.

2.1. Nowcasting Models Based on ConvRNN

ConvLSTM [10] was the first precipitation nowcasting model based on the ConvRNN,
which adds convolutional layers to FC-LSTM, giving the network the ability to extract
spatial information on top of being able to extract temporal information very well. The
authors of [24] considered [10] the uneven extraction of temporal and spatial information
and proposed the PredRNN model, which adds a unit storing propagation spatial informa-
tion in each LSTM module to enable the model to propagate longitudinally. Continuing
the study of [24], the authors of [25] proposed the PredRNN++, which adds the Gradient
Highway Unit (GHU) to the PredRNN to deal with the gradient disappearance problem. To
solve the difficulty of predicting higher-order nonsmooth information in radar echo maps,
the authors of [26] proposed the MIM mechanism, which can effectively extract nonsmooth
information. RN-Net [14], which fuses the spatiotemporal characteristics of rainfall data
and radar data, provides a more adequate basis for forecasting. Based on the research
of [14], the same team [13] proposed the MFSP-Net model, which uses meteorological data
with different spatiotemporal resolutions as the input and combines spatiotemporal predic-
tion and multi-model fusion in depth with a multi-task learning strategy. GAN-rcLSTM [11]
introduced the Generative Adversarial Network (GAN) technology. The discriminator con-
sists of several 3D convolutions and a fully connected layer. The generator is the proposed
residual LSTM module, which can reduce the gradient disappearance problem and avoid
the weakness problem of deep LSTM extrapolation to a certain extent. In addition, it makes
the extrapolation sequence clearer through the generator and discriminator.

2.2. Nowcasting Models Based on U-Net

U-Net [21] is a classical fully convolutional network, which consists of a contracting
path and a symmetric expanding path. The contracting path is used to obtain context
information, and the expanding path is used for accurate positioning. ResU-Net [19]
introduced the attention mechanism to the ResNetof [21], where the attention mechanism
module was incorporated to learn temporal information. Broad-U-Net [18] has asymmetric
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parallel convolutions and an Atrous Spatial Pyramid Pooling (ASPP) module by which it
combines multiscale features to learn more complex patterns. SmaAt-U-Net [15] reduces
the network size significantly, but the prediction performance is comparable to other
models. Based on [15], the authors of [16] proposed AA-TransU-Net, which introduces
the Transformer mechanism into precipitation nowcasting with some improvement in
forecast accuracy.

2.3. Attention Mechanism

The core idea of the attention mechanism is to find correlations among the original
data and then highlight some of their important features, and some studies in precipitation
nowcasting have introduced the attention mechanism to precipitation nowcasting. The
Squeeze-And-Extraction Network (SENet) [27], which belongs to the family of channel
attention mechanisms, is very simple to construct and does not require the introduction
of new functions or layers. Besides, it has good properties in terms of model and compu-
tational complexity. The Convolutional Block Attention Module (CBAM) [28] is a fusion
of spatial and channel attention mechanisms, which can learn the importance of the chan-
nel and space separately and also can be easily embedded into any known framework.
The Efficient Channel Attention (ECA) module [23] solves the side effects caused by the
dimensionality reduction in SENet and achieves good results using only a few parameters.

The ConvRNN-based nowcasting model, developed from ConvLSTM and GAN-
rcLSTM, is dedicated to solving the effective transmission of spatiotemporal information,
the problem of gradient disappearance, and the ambiguity of prediction. Although the
accuracy of precipitation was improved to a certain extent, it still has the problem that it
cannot be parallelized, which will prolong the prediction time and produce low-quality
prediction results due to the stochastic dynamic environment of precipitation [29,30]. The U-
Net-based nowcasting models developed from U-Net and AA-TransU-Net are all devoted
to solving the problem of the limited ability of the convolutional model to model long-
range dependencies [29]. Although the ability to learn the time factor gradually becomes
stronger, the effect is still not good in a long delivery cycle. Therefore, we combined these
two structures to improve the long-term dependence capability, shorten the prediction
time, and capture the complex spatial information to produce better prediction results. In
addition, in order to better focus on image details, we introduced an attention mechanism,
using the ECSA module. This is an improved version of the ECA module [23]. The existing
ECA module has the problem of losing much of the spatial structure information, because
it contains a Global Average Pooling (GAP) module function and the feature map size is
generally 7 × 7 [31], while the U-Net architecture contains feature maps of different sizes.
Therefore, based on this motivation and the idea of [31], the ECSA module adapted to
different scales was established.

3. Methodology
3.1. Problem Definition

The problem of precipitation nowcasting based on precipitation features or fusion
features can be approximated as a sequence prediction problem. The input and predicted
data in this task are both structured data sequences of precipitation elements. Consider X
as the input data, which is a series of three-dimensional tensors in time period M, and Ŷ
as the predicted outcome, which is a sequence of data in time period N. X ∈ RH×W×Cin ,
Ŷ ∈ RH×W×Cout , where H, W is the spatial resolution of the image, Cin is the number of
input data channels multiplied by the time period M, and Cout is the number of predicted
data channels multiplied by the time period N. This is due to the need to map the time
dimension to the channel dimension. F is the proposed model LSTMAtU-Net, then the
whole prediction process is defined as:

Ŷ = F(X) (1)
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3.2. LSTMAtU-Net

The model proposed in this paper is based on the U-Net architecture. The model
first replaces the convolutional part of U-Net with DSC. Next, the ECSA module and
the ConvLSTM unit with the vertical flow direction are placed in the skip-connection
of the encoder and decoder. The importance weights of each feature of the generated
image are derived by the former, and the latter extracts and memorizes the spatiotemporal
representations to learn the importance of the temporal factor. Finally, the functions of
the model’s encoder and decoder are consistent with those of U-Net, with the encoder
responsible for feature extraction and the decoder responsible for restoring the image to its
original size, resulting in a pixel-by-pixel prediction. The model framework is shown in
Figure 2. The settings of the DSC and ECSA modules reduce the number of parameters
in order to have better performance. In Table 1, we compare the LSTMAtU-Net model
with the ECSA module and SENet regarding the number of parameters of our model. Our
model reduces the model parameters by about 41.86 % compared to the model without
these two modules.

Table 1. Number of parameters of the compared models.

Model Parameters

LSTMAtU-Net with SENet 32,023,892
LSTMAtU-Net with ECSA 31,948,797

LSTMAtU-Net with ECSA and DSC 18,619,421

Encoder: As seen in the left half of Figure 2, this starts with two convolutional layers
to process the input image into a feature map suitable for the encoder. This is followed by
four consecutive modules, which contain a Max pooling layer (red arrow in Figure 2) and a
double convolutional layer (each convolutional layer includes a 3 × 3 DSC, Batch-Norm
(BN) [32] layer, and Rectified Linear Unit (ReLU) [33]) (brown arrow in Figure 2). The
featured image obtains a larger field of view and more essential features as the network
layers go deeper.

Decoder: As seen in the right half of Figure 2, this starts with the output of the
ConvLSTM unit, followed by 4 consecutive modules, differing from the encoder’s module
in that it contains a bilinear upsampling layer (green arrow in Figure 2) and connects the
upsampled feature mapping of doubled the size to the feature mapping output from the
previous ECSA module. Finally, the predicted image is output with a 1 × 1 convolutional
layer (purple arrow in Figure 2).

Skip-connection section: This includes the ECSA module and ConvLSTM unit with
the vertical flow direction.

The channel attention mechanism generally uses GAP to aggregate global information
in each channel, while the U-Net architecture outputs different sizes of feature maps in
each layer, which leads to a large amount of lost spatial information. To solve this problem,
we propose the ECSA module, which is a local cross-channel interaction module without
dimensionality reduction, with the structure shown in Figure 3, where the convolutional
kernel size is experimentally shown to be the best with a size of 3.

Given a feature map X ∈ RC×H×W and denoting the adaptive average pooling layer as
P(·, ·), C1D3(·) as a 1 × 3 one-dimensional convolution, and σ(·) as the Sigmoid activation
function, then the output X̃ of the ECSA module can be represented as shown in (2).

X̃ = σ(C1D3(P(X, R)))⊗ X (2)
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Figure 2. LSTMAtU-Net model framework. It contains the encoder–decoder structure. Each bar
in the figure represents a multi-channel feature map, and the number represents the number of
channels. The input is an example of precipitation, and the output is the corresponding prediction
map generated by the LSTMAtU-Net model. On the right side of the diagram is the description of
each arrow.

W
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C

R×R×C 1×1×C

W
H

AAP(R)
k=3

Conv

σ C

Figure 3. ECSA module architecture diagram. R denotes for each layer different feature map sizes
adapted to the output of different scales; for example, R in the first layer of the ECSA module is taken
as 16. AAP is the Adaptive Average Pooling layer.

It first adaptively outputs features of different scales R (16× 16 for the first layer, 8× 8
for the second layer, 4× 4 for the third layer, 2× 2 for the fourth layer, and 1× 1 for the fifth
layer) according to the different feature map dimensions of each layer to obtain the spatial
structure information of R × R × C. Then, the feature compression is performed along the
spatial dimension, and each feature channel is transformed into R × R real numbers; then,
this information is convolved to learn the importance of different channel features, and
at this time, a feature map of dimension 1 × 1 × C is output. Finally, the output feature
map is multiplied by the original input feature map channel, so that the spatial structure
information and channel information can be integrated simultaneously to improve the
attention to the precipitation area.

The detailed structure of the ConvLSTM unit with the vertical flow direction is shown
in Figure 4. It is built with convolution to combine the CNN layer with the LSTM cell in
order to grasp both the spatial and temporal information. This structure is equivalent to
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rotating the original ConvLSTM unit 90 degrees clockwise so that the information flow is
delivered in the vertical direction, so as to realize the combination with the U-Net structure.
Its input is the output X̃ of the ECSA attention module, and Ml is the spatial–temporal
memory described. It passes vertically from the l − 1th layer to the current node in the
same time step, and the final hidden state Hl also depends on the spatial memory at this
time. Its forgetting gate f , memory gates i and g, and output gate o are consistent with the
gate structure of the ConvLSTM unit. It has the following update formula, where ∗ is the
convolution operation and ⊗ denotes the Hadamard product.

g = tanh(Wxg ∗ X̃ + Whg ∗ Hl−1 + Wmg ∗Ml−1 + bg)

f = σ(Wx f ∗ X̃ + Wh f ∗ Hl−1 + Wm f ∗Ml−1 + b f )

i = σ(Wxi ∗ X̃ + Whi ∗ Hl−1 + Wmi ∗Ml−1 + bi)

Ml = f ⊗Ml−1 + i⊗ g

o = σ(Wxo ∗ X̃ + Who ∗ Hl−1 + Wmo ∗Ml + bo)

Hl = o⊗ tanh(Ml)

(3)

All states of the ConvLSTM were initialized to 0 before the first spatiotemporal
state appeared.

g

i

M
l-1

H
l-1

f

o

×

× +

tanh

×

M
l

H
l

X

Figure 4. The structure of the ConvLSTM unit with the vertical flow direction, where f is the forgetting
gate, i and g are the memory gates, and o is the output gate.

3.3. Loss Function

The previous loss function of precipitation nowcasting was the Mean-Squared Error
(MSE), and it can accelerate the regression of forecast data; however, it is obviously not
suitable for optimizing a single measurement criterion because precipitation is a strong
random and chaotic event. Therefore, we made several improvements on the basis of
the MSE.

Firstly, the weighted MSE loss function in [19] was used because of the imbalance of
the precipitation data samples (the first formula in (5)).

Secondly, the Critical Success Index (CSI) [34] is generally used to evaluate precip-
itation in the meteorological field. The case where all precipitation was greater than
the set threshold was considered as 1, and the others were set as 0. Setting the TPs
(prediction = 1, truth = 1), FPs (prediction = 1, truth = 0), TNs (prediction = 0, truth = 0),
and FNs (prediction = 0, truth = 1), the CSI score was calculated as shown in (4)). This



Sensors 2023, 23, 5785 8 of 17

shows that the CSI score is a categorical indicator and the MSE is a regression loss function,
so optimizing the MSE does not result in a significant improvement in the CSI score. There-
fore, the binary cross-entropy loss function [35] was introduced and slightly modified into
a loss function suitable for regression problems. A target value yi greater than the threshold
was set to 1 and for the rest of the cases to 0 to obtain yi

′, and the difference between the
predicted value and the threshold was passed through the Sigmoid function to obtain the
probability of whether the predicted value is greater than the threshold to calculate the loss
function value.

CSI =
TP

TP + FP + FN
(4)

Our final loss function, TLoss, is the last equation in (5), and it was experimentally
proven that the improved binary cross-entropy loss function with the weight value set to
0.5 achieved the best results.

WMSE =
1
n ∑n

i=1 (ŷi − yi)
2 ∗
(

eyi∗0.6 − 0.8
)

ŷp = σ(ŷ− p)

BCEp = − 1
n ∑n

i=1(yi
′) ∗ log ŷp +

(
1− yi

′) ∗ log
(
1− ŷp

)
TLoss = WMSE + 0.5 ∗ (BCEp1 + BCEp2 + BCEp3)

(5)

In this loss function, BCEp denotes the binary cross-entropy loss function for each
frame greater than p mm, p1 denotes light rainfall, p2 denotes moderate rainfall, and p3
denotes heavy rainfall.

4. Experiments
4.1. Dataset

In this paper, we used the dataset from the 2022 Jiangsu Meteorological AI Algorithm
Challenge. Selecting this dataset for the experiments can make our model more widely
applicable in other engineering applications.

The 2022 Jiangsu Weather AI Algorithm Challenge dataset, which has precipitation
feature maps produced by Jiangsu Meteorological Station, is elemental data for the period
of April–September 2019–2021. It is stored as a grayscale map, obtained by interpolating
data from automatic meteorological observation stations in Jiangsu and surrounding areas
to a uniform network. Interpolation objectively reflects the spatial distribution of meteo-
rological elements and matches other meteorological data. The precipitation element is
the cumulative 6 min precipitation at the automatic station, i.e., the cumulative value of
precipitation observations over a 6 min period up to the current moment. The resolution
of a frame is 480 × 560 pixels, ranging from 0–10 mm. In addition, the competition also
provides meteorological radar data; these data were obtained from the quality control and
mosaic of multiple S-band meteorological radars in Jiangsu Province. Quality control is the
premise of ensuring the correct and credible meteorological observation data entering the
application system such as weather forecast. The mosaic splices the fragmented regional
radar monitoring map into a complete regional radar map of Jiangsu Province. Radar echo
data cover the whole Jiangsu region with a horizontal resolution of 0.01° (about 1 km). It
has the same spatial and temporal resolution as the precipitation element. The data range
is 0–70 dBZ.

In terms of data preprocessing, first of all, because of the strong correlation between
radar echo elements and precipitation rainfall magnitude and distribution, it can be seen
from Table 2 that the performance of the fused data was usually stronger than that of a
single precipitation factor, so the two elements were stacked at the channel level to form
multi-source fused data for precipitation nowcasting. Secondly, in order to facilitate the
research and due to the limitation of computing power and training cost, we downsampled
the data again to 120 × 140 pixels by bilinear interpolation. Finally, in order to predict the
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precipitation in the next two hours, the multi-source fusion data of the past two hours were
used to predict the precipitation in the next two hours, a sequence of 40 times in total. The
data were divided into 27,625 groups and divided into training set and test sets with a ratio
of 8:2.

Table 2. The quantitative evaluation results of the single factor and the fusion features are the average
evaluation results of the 10-frame precipitation nowcasting in the previous 1 h. “r ≥ γ mm” refers to
the skill score under the γ mm rainfall threshold within 6 min. “↑” means the higher the score, the
better, while “↓” means the lower the score, the better. And the bold font indicates better performance.

Method r ≥ 0.05 mm r ≥ 0.2 mm r ≥ 0.5 mm
CSI ↑ CSI ↑ CSI ↑

U-Net (single factor) 0.3993 0.2432 0.0978
U-Net (fusion features) 0.3878 0.2565 0.1098

ConvLSTM (single factor) 0.4132 0.2660 0.1328
ConvLSTM (fusion features) 0.4204 0.2984 0.1487

4.2. Performance Metrics

The evaluation metrics used were the CSI [34], the Probability Of Detection (POD), and
the False Alarm Rate (FAR). The CSI is the World Meteorological Organization’s scoring
standard for the accuracy of quantitative precipitation forecast. The POD refers to the
proportion of the predicted actual precipitation area in all actual precipitation areas. The
FAR refers to the proportion of the actual non-precipitation area in the forecast precipitation
area in relation to the total forecast precipitation area. The calculation of the CSI is given in
Section 3. The POD and FAR scores were calculated as follows. We set the thresholds to
0.05 mm, 0.2 mm, and 0.5 mm to calculate these metrics, corresponding to light rain, light
to moderate rain, and moderate to heavy rain [13]. In addition, in order to show the impact
of the next 2 h rainfall nowcasting, we evaluated it in two time periods of 1 h and 2 h. The
TPs, FNs, FPs, and TNs are also given in Section 3.

POD =
TP

TP + FN

FAR =
FP

TP + FP

(6)

4.3. Implementation Details

LSTMAtU-Net was implemented in Pytorch. We first normalized the precipitation
data M. The normalization procedure was as follows, and the logarithmic transformation
can make the precipitation data distribution as close to a Gaussian distribution as possible,
thus enhancing the model fitting effect with the MSE as the loss function. We set 0.001 as
the learning rate, used the Adam optimizer, and set the batch size to 20. The LSTMAtU-Net
model uses the TLoss as the verification loss function. In the loss function, p1 takes 0.05, p2
takes 0.5, and p3 takes 1. Other models use the MSE loss function. All experiments were
trained and tested on an NVIDIA Tesla A100 GPU.

M= log(1 + M) (7)

4.4. Quantitative Analysis on the 2022 Jiangsu Weather AI Algorithm Challenge Dataset

We compared the LSTMAtU-Net model with other models on the 2022 Jiangsu Meteo-
rological AI Algorithm Challenge dataset. We calculated 6 min of cumulative rainfall to
evaluate the performance of these models. The average evaluation results of the 10-frame
precipitation forecast in the previous hour are shown in Table 3, and the average evaluation
results of the 20-frame precipitation forecast in two hours are shown in Table 4. The best
performance is indicated by bolded font.
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The CSI is the main basis for comparing the performance of precipitation nowcasting
methods. From the results of Tables 3 and 4, the LSTMAtU-Net model achieved the best
results on the CSI evaluation metric, and the evaluation metrics of medium and high
intensity precipitation were at least 4% higher than other SOTA models. In addition, we
also provide a plot of the evaluation metrics for different prediction steps in Figure 5. The
red dotted lines show the prediction results of our model, and it can be seen from the figure
that this model had the best prediction results in most of the prediction intervals with
medium and high thresholds. This means that the LSTMAtU-Net model we propose not
only improved the accuracy of precipitation nowcasting to a certain extent, but also had
fair performance in long-term dependence. However, it did not achieve good performance
on the FAR index, and the false alarm rate needs to be reduced. Next, we compared the
evaluation results of different methods.

Comparison of the models based on the ConvRNN architecture and U-Net architecture:
From Tables 3 and 4, it can be seen that the overall CSI of the model based on the ConvRNN
architecture [10,11,24–26] was relatively high. Compared with the overall average score
of the model based on the U-Net architecture [15,16,21], the overall average CSI score of
the model based on the ConvRNN architecture increased by at least 2% in the evaluation
results within the first hour and second hour. The precipitation nowcasting accuracy
of [15,16,21] was low, and the FAR scores were high; however, their POD scores were
relatively high. The POD scores with thresholds of 0.05 mm, 0.2 mm, and 0.5 mm in
the evaluation results within 2 h were at least 0.68, 0.44, and 0.16, respectively, while
the POD scores in [10,11,24–26] were basically below these values. We believe that the
U-Net architecture model can capture complex spatial changes, so their POD scores were
higher. The information transmitted decayed faster with time than the model based on the
ConvRNN architecture. It can be clearly seen from the third picture in Figure 5 that the gray
line representing the SmaAt-U-Net model had a higher score than most of the models based
on the ConvRNN architecture in the first two time steps, but the latterscore decreased faster,
so their CSI scores were relatively low. The precipitation forecast accuracy of [10,11,24–26]
was higher, and the FAR scores were lower; however, their POD scores were relatively
low. This result was because the models based on the ConvRNN architecture have obvious
advantages in the processing time dimension, but their ability to capture features is not
strong, so their CSI scores were higher and POD scores relatively lower.

LSTMAtU-Net is a model architecture based on the U-Net architecture, so its POD
score was close to or even superior to that in [15,16,21]. In the evaluation results within
2 h, the POD scores of 0.2 mm and 0.5 mm reached greater than 0.5 and 0.3, respectively. It
is also equipped with a ConvLSTM unit with the vertical flow direction, which enhanced
the ability to process in the time dimension. It can be seen that the LSTMAtU-Net’s score
was the highest in most of the prediction intervals with medium and high thresholds in
Figure 5, so it achieved the best results in the CSI evaluation metric.

A visual example of random selection is provided in Figure 6 to further visualize
the predictive power of the model. The second behavior is the prediction results of our
model. Firstly, it can be seen that the image details predicted by the LSTMAtU-Net model
at three time nodes were more accurate than the other models, as it alleviated the problem
of the RNN and CNN prediction image details being gradually inaccurate. Secondly, our
model was superior to the other models in the area and intensity of medium and high
precipitation, which improved the prediction accuracy of medium and high precipitation
to a certain extent. However, neither our model nor the other models wereaccurate in
portraying larger value precipitation areas, and the images became more and more blurred
over time; these shortcomings need to be explored in future work.
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Table 3. Comparison of average evaluation results of 10 frames of precipitation nowcasting in the
first hour of different models. “r ≥ γ mm” refers to the skill score under the γ mm rainfall threshold
within 6 min. “↑” means the higher the score, the better, while “↓” means the lower the score, the
better. The best performance is indicated by bolded font.

Model r ≥ 0.05 mm r ≥ 0.2 mm r ≥ 0.5 mm
CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓

U-Net [21] 0.3878 0.7607 0.5227 0.2565 0.6308 0.6313 0.1098 0.3155 0.6492
SmaAt-U-Net [15] 0.4019 0.7795 0.5183 0.2877 0.6042 0.5914 0.1360 0.2914 0.5214
AA-TransU-Net [16] 0.3364 0.7351 0.5741 0.2464 0.5752 0.6104 0.1152 0.3006 0.6123
ConvLSTM [10] 0.4204 0.7139 0.5059 0.2984 0.4837 0.5198 0.1487 0.2270 0.4204
PredRNN [24] 0.4427 0.6353 0.4244 0.2972 0.4297 0.4977 0.1454 0.2109 0.4834
PredRNN++ [25] 0.4021 0.6591 0.5059 0.2872 0.4502 0.4819 0.1515 0.2400 0.3993
MIM [26] 0.4094 0.6290 0.4722 0.2716 0.3925 0.4385 0.1377 0.2034 0.3788
GAN-rcLSTM [11] 0.4286 0.5917 0.4216 0.2886 0.4035 0.4648 0.1314 0.1840 0.4536
LSTMAtU-Net 0.4455 0.7766 0.4876 0.3267 0.6662 0.5859 0.1908 0.4318 0.6419

Table 4. Comparison of the average evaluation results of 20 frames of precipitation nowcasting in
two hours of different models. “r ≥ γ mm” refers to the skill score under the γ mm rainfall threshold
within 6 min. “↑” means the higher the score, the better, while “↓” means the lower the score, the
better. The best performance is indicated by bolded font.

Model r ≥ 0.05 mm r ≥ 0.2 mm r ≥ 0.5 mm
CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓

U-Net [21] 0.3285 0.7220 0.5950 0.1904 0.4783 0.6827 0.0601 0.1719 0.4659
SmaAt-UNe [15] 0.3459 0.7414 0.5814 0.2193 0.4711 0.6152 0.0802 0.1692 0.3704
AA-TransU-Net [16] 0.2994 0.6836 0.6144 0.1883 0.4459 0.6508 0.0700 0.1786 0.5105
ConvLSTM [10] 0.3696 0.6873 0.5652 0.2311 0.3932 0.5557 0.0986 0.1501 0.3662
PredRNN [24] 0.3749 0.5600 0.4933 0.2221 0.3298 0.5570 0.0985 0.1447 0.5037
PredRNN++ [25] 0.3570 0.6414 0.5670 0.2260 0.3801 0.5124 0.1067 0.1760 0.3846
MIM [26] 0.3579 0.5686 0.5234 0.2095 0.3131 0.4628 0.0963 0.1448 0.3708
GAN-rcLSTM [11] 0.3662 0.5334 0.4922 0.2162 0.3189 0.5449 0.0888 0.1265 0.4934
LSTMAtU-Net 0.3813 0.7249 0.5542 0.2564 0.5364 0.6425 0.1350 0.3025 0.6173
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Figure 5. Prediction comparison of different time steps in two hours; 1 time step is 6 min.
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Figure 6. Visualization comparison with other models.

4.5. Ablation Experiments and Analyses

In order to fully explore the performance of the model, we used ablation experiments
to explore the performance of the model architecture and the ECSA module and TLoss in
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the model. Since our model was based on the U-Net architecture, we used the U-Net model
as the baseline model.

Firstly, the precipitation forecast accuracy and visual images of the model with the
ECSA module and the model without the ECSA module were compared to evaluate the
influence of the ECSA module on the details of the forecast images. As shown in the third,
fourth, sixth, and seventh lines of Tables 5 and 6 and Figure 7, it can be seen that the ECSA
module improved the accuracy of the precipitation forecast to a certain extent, and the
average precipitation results for the CSI metric in 2 h were the best. In addition, in the
visual image, the model with the ECSA module was more accurate than the model without
the ECSA module to predict the details of the image. Therefore, it can be shown that the
ECSA module can alleviate the problem of the inaccurate prediction of image details to a
certain extent.

Secondly, we compared the same model using different loss functions to evaluate the
impact of the TLoss on the precipitation forecast accuracy. As shown in the fourth, fifth,
seventh, and eighth lines of Tables 5 and 6 and Figure 7, it can be seen that the model using
the TLoss was higher than the model using the MSE in the CSI metric, especially for the
medium and high precipitation. In addition, in the image, the area and intensity of the
prediction image using the TLoss function were more accurate at the medium and high
thresholds. Therefore, it can be shown that the TLoss function improved the prediction
accuracy of the medium and high precipitation to a certain extent.

Finally, the timing performance of the model architecture was compared. As shown in
the first and fourth lines of Tables 5 and 6 and Figure 7, it can be seen that the model with
the ConvLSTM unit achieved the best CSI metric. In addition, in the image, the two-hour
prediction image of the model with the ConvLSTM unit was more accurate than the U-Net
model. Therefore, it can be shown that the introduction of the ConvLSTM unit improved
the long-term dependence.

Table 5. The average evaluation results of 10 frames of precipitation nowcasting in the first hour.
“r ≥ γ mm” refers to the skill score under the γ mm rainfall threshold within 6 min. “↑” means the
higher the score, the better, while “↓” means the lower the score, the better. The best performance is
indicated by bolded font.

Model r ≥ 0.05 mm r ≥ 0.2 mm r ≥ 0.5 mm
CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓

U-Net+MSE 0.3878 0.7607 0.5227 0.2565 0.6308 0.6313 0.1098 0.3155 0.6492
U-Net+ECSA+MSE 0.3983 0.7598 0.5095 0.2708 0.6645 0.6298 0.1265 0.3690 0.6764
U-Net+ECSA+TLoss 0.4449 0.6867 0.4385 0.3188 0.5828 0.5480 0.1716 0.3402 0.5820
LSTMAtU-Net without ECSA+MSE 0.4204 0.6552 0.4184 0.3043 0.4675 0.5460 0.1515 0.2270 0.5478
LSTMAtU-Net+MSE 0.4368 0.7785 0.4913 0.2997 0.6951 0.6260 0.1673 0.4673 0.7170
LSTMAtU-Net+TLoss 0.4455 0.7766 0.4876 0.3267 0.6662 0.5859 0.1908 0.4318 0.6419

Table 6. The average evaluation results of 20 frames of precipitation nowcasting in two hours. “r ≥ γ

mm” refers to the skill score under the γ mm rainfall threshold within 6 min. “↑” means the higher
the score, the better, while “↓” means the lower the score, the better. The best performance is indicated
by bolded font.

Model r ≥ 0.05 mm r ≥ 0.2 mm r ≥ 0.5 mm
CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓ CSI ↑ POD ↑ FAR ↓

U-Net+MSE 0.3285 0.7220 0.5950 0.1904 0.4783 0.6827 0.0601 0.1719 0.4659
U-Net+ECSA+MSE 0.3429 0.7388 0.5806 0.2109 0.5308 0.6742 0.0759 0.2191 0.5479
U-Net+ECSA+TLoss 0.3750 0.6522 0.5128 0.2407 0.4535 0.5864 0.1105 0.2165 0.5180
LSTMAtU-Net without ECSA+MSE 0.3654 0.5560 0.5042 0.2163 0.3356 0.6418 0.0967 0.1471 0.6038
LSTMAtU-Net+MSE 0.3743 0.7315 0.5582 0.2394 0.5786 0.6805 0.1177 0.3224 0.7032
LSTMAtU-Net+TLoss 0.3813 0.7249 0.5542 0.2564 0.5364 0.6425 0.1350 0.3025 0.6173
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Figure 7. Comparison of the visualization results of the ablation experiments. The first behavior is the
true value of precipitation. The second line, U-Net + MSE, means that the conventional U-Net model
was used and the loss function was the MSE, and the other lines are similar. The first is the 6-minute
cumulative precipitation from T to T + 6 min, the second the 6-minute cumulative precipitation from
T + 60 min to T + 66 min, and the third the 6-minute cumulative precipitation from T + 114 min to T +
120 min.
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5. Conclusions

In this paper, we proposed a new precipitation nowcasting model, LSTMAtU-Net.
The model combines the CNN structure, the RNN structure, and an attention mechanism.
It first performs convolutional and downsampling operations on the input image sequence
to extract features from the images at various scales, followed by integrating the extracted
feature information with channel information and spatial structure information through
the ECSA module, grasping the temporal information through the ConvLSTM unit with
the vertical flow direction, then fusing the information with the previous ones at the same
scale for each upsampling, and finally, fusing them through a 1 × 1 convolution to output
the predicted image. Here, we validated the feasibility and correctness of the proposed
model using a competition dataset and a public dataset. It can be seen from the results that
our proposed model outperformed the state-of-the-art precipitation nowcasting models.

Although the proposed model showed some improvements, there were still some
shortcomings. First, the forecast accuracy of medium- to high-intensity precipitation was
improved, but was still low. Secondly, the accuracy of the forecast results and the clarity of
the forecast images decreased with the increase of the forecast time.

The first problem was caused by the small percentage of medium- to high-intensity
precipitation data and the averaging property of the convolutional operation; therefore, we
need to think deeply about the setting of the weighted loss function in future studies. For
the second problem, the Transformer architecture can be introduced and improved, which
can effectively capture the temporal coherence of long time series. References [20,36–40]
applied the Transformer architecture to time series forecasting with good results, while
References [29,41–43] also used this architecture in their work on precipitation nowcasting
to demonstrate the feasibility of this method. Therefore, our future research will focus on
the Transformer architecture and the weighted loss function to improve the precipitation
nowcasting accuracy.
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