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Abstract: We present an adaptive method for fine-tuning hyperparameters in edge-preserving
regularization for PET image reconstruction. For edge-preserving regularization, in addition to the
smoothing parameter that balances data fidelity and regularization, one or more control parameters
are typically incorporated to adjust the sensitivity of edge preservation by modifying the shape of
the penalty function. Although there have been efforts to develop automated methods for tuning
the hyperparameters in regularized PET reconstruction, the majority of these methods primarily
focus on the smoothing parameter. However, it is challenging to obtain high-quality images without
appropriately selecting the control parameters that adjust the edge preservation sensitivity. In this
work, we propose a method to precisely tune the hyperparameters, which are initially set with a
fixed value for the entire image, either manually or using an automated approach. Our core strategy
involves adaptively adjusting the control parameter at each pixel, taking into account the degree
of patch similarities calculated from the previous iteration within the pixel’s neighborhood that is
being updated. This approach allows our new method to integrate with a wide range of existing
parameter-tuning techniques for edge-preserving regularization. Experimental results demonstrate
that our proposed method effectively enhances the overall reconstruction accuracy across multiple
image quality metrics, including peak signal-to-noise ratio, structural similarity, visual information
fidelity, mean absolute error, root-mean-square error, and mean percentage error.

Keywords: image reconstruction; penalized likelihood methods; regularization parameters; patch
similarity; positron emission tomography

1. Introduction

Positron emission tomography (PET) is a non-invasive imaging technique that enables
the visualization of biochemical processes in the patient body by using a radioactive
substance known as a radiotracer [1,2]. The patient undergoing the PET scan is injected
with the radiotracer, which travels through the body and gets absorbed by the targeted
organ or tissue. Once the radiotracer is injected into the body, it begins to emit positrons.
When a positron collides with an electron in the surrounding tissue, it annihilates and
produces two gamma rays in opposite directions. These gamma rays are detected by a
ring of detectors surrounding the patient. The aim of image reconstruction in this case is
to accurately map the distribution of the radioactive material in the patient’s body, which
can provide valuable information about various physiological and biochemical processes.
However, PET images are often characterized by low spatial resolution and high noise,
which can limit their diagnostic accuracy. To address these limitations, various image
reconstruction methods have been developed over the last decades, which aim to improve
the spatial resolution and signal-to-noise ratio of PET images and reduce the amount of
radiation exposure required for accurate imaging [3].

Among the various reconstruction methods, the penalized-likelihood (PL) approach,
which is also known as the model-based iterative reconstruction method, has been shown
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to offer remarkable advantages over the traditional filtered back-projection method by
providing improved spatial resolution, reduced imaging noise, and increased detection
sensitivity [3–6]. The PL approach is a statistical method that uses the measured data and a
mathematical model of the imaging process to estimate the distribution of radioactivity in
the patient’s body, while also applying a penalty function (or a regularizer) that promotes
spatial smoothness and noise reduction.

Recently, inspired by the rapid development of artificial intelligence in a variety of
research and industrial fields, efforts have been made to improve the quality of medical
images using deep learning techniques [7–13]. For tomographic image reconstruction, deep
learning methods have also been applied to the PL reconstruction methods [14,15]. How-
ever, the PL methods involve hard-to-find hyperparameters (also known as regularization
parameters) that significantly affect the quality of reconstructed images. The selection of
appropriate regularization parameters is a challenging task, as it involves balancing the
trade-off between noise reduction and preservation of important features in the underly-
ing image. Moreover, the optimal regularization parameters may vary depending on the
specific imaging task and the characteristics of the data being reconstructed.

Over the years, several methods for automatic parameter adjustment have been devel-
oped [16–20]. The representative early methods include the L-curve [16] and generalized
cross-validation (GCV) [17,18] methods. The L-curve method relies on the shape of the
L-curve indicating the trade-off between data fidelity and regularization so that the corner
point of the L-curve is chosen as the optimal regularization parameter. The GCV method
relies on the mean squared error and effective degrees of freedom to determine the op-
timal parameters. While the L-curve method typically requires multiple reconstructions
with different regularization parameters to obtain the L-curve, the GCV method is com-
putationally efficient since it avoids the need for repeated reconstructions with different
regularization parameters. It has also been reported that assessing image quality can guide
hyperparameter adjustment [19,20].

Recently, deep learning-based hyperparameter-tuning methods have been proposed
in the literature [21–23]. The method presented in [21] exhibits an intelligent approach
by utilizing deep reinforcement learning to determine the direction and magnitude of
parameter adjustment in a human-like manner. However, this method learns a hyperpa-
rameter tuning strategy based on feedback from intermediate image reconstruction results,
which necessitates running multiple iterations of an image reconstruction algorithm before
parameter adjustment. This process has the potential to significantly decrease the overall
workflow efficiency. In contrast, the methods proposed in [22,23] employ convolutional
neural network-based hyperparameter learning frameworks. These frameworks employ a
training pair consisting of the sinogram as the input and the desirable hyperparameter as
the output. Although these methods generate hyperparameters in a feedforward manner
once the network is trained, their applicability is limited to simple quadratic smoothing
regularization, rather than edge-preserving non-quadratic regularization.

Here, we note that, for edge-preserving regularization, in addition to the smoothing
parameter that balances data fidelity and regularization, one or more control parameters are
typically incorporated to adjust the sensitivity of edge preservation by modifying the shape
of the penalty function [24]. Without appropriately selecting these control parameters, it is
challenging to obtain high-quality images. Unfortunately, the parameter-tuning methods
discussed in [16–23] primarily focus on the smoothing parameter. In this work, to enhance
the efficacy of existing parameter-tuning methods, we propose a method to precisely tune
the hyperparameters, which are initially set with a fixed value for the entire image, either
manually or using an automated approach. The fundamental strategy involves adjusting
the initial value of the control parameter at each pixel, either increasing or decreasing it,
based on the degree of the patch similarities calculated from the previous iteration within
the pixel’s neighborhood that is being updated. This approach allows our new method to
integrate with a wide range of existing parameter-tuning techniques from prior research.
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Our work is inspired by the well-known non-local means approach [25], which has
been widely used for image denoising [25–29] and restoration/reconstruction [30–34] by
exploiting the measure of similarity between the image patches. The nonlocal means
approach is based on the idea that in an image, pixels that are similar to each other tend to
have similar values. Therefore, instead of averaging the values of neighboring pixels to
obtain an estimate of the value of a particular pixel, the nonlocal means approach takes
into account the similarity between the patches centered on each pixel in the image. The
weighted average of the patch values is then used to obtain an estimate of the value of the
pixel of interest. While our work is inspired by the non-local means approach, our method
for fine-tuning the control parameter differs from the non-local means denoising approach.
Instead of using the similarity measure between patches to calculate the weighted average
for edge-preserving smoothing, our approach applies the similarity measure to calculate
the optimal value for the control parameter for each pixel. The experimental results
demonstrate that our proposed method enables adaptive selection of the optimal control
parameter for each pixel, leading to enhanced image quality in the reconstruction process.

The remainder of this paper is organized as follows: Section 2 first describes the PL ap-
proach to PET image reconstruction and illustrates the two representative edge-preserving
convex non-quadratic (CNQ) penalty functions, which involve the hyperparameters con-
trolling the sensitivity of edge preservation. The details about our main idea of using the
similarity-driven method for hyperparameter tuning are then described. The optimization
method for the PL reconstruction algorithm with the CNQ penalty functions is also de-
rived. Section 3 shows our experimental results using both digital and physical phantoms,
where our proposed method effectively enhances the overall reconstruction accuracy across
multiple image quality metrics. Finally, Section 4 draws a conclusion.

2. Methods
2.1. Penalized Likelihood Approach

The PL approach to PET image reconstruction is to seek the estimate f̂ of the underlying
source image f from the emission measurement g by using the following minimization:

f̂ = argmin
f

[−L(g|f) + λR(f)] (1)

where L(g|f) is the log-likelihood term represented by the log of a Poisson distribution, R(f)
is the regularization term to penalize the image roughness, λ is the smoothing parameter
that controls the balance between the two terms. The regularization term is usually defined
in such a way that it penalizes the roughness of the estimate by the intensity difference
between neighboring pixels, which is given by

R(f) = ∑
j

∑
j′∈Nj

ϕ( f j − f j′), (2)

where ϕ(·) is the penalty function, f j is the j-th pixel in an image, f j′ is the neighbor of f j,
and Nj is the neighborhood system of the pixel f j.

In this work, among many different convex non-quadratic (CNQ) penalty functions,
we consider the following two most popular CNQ functions proposed by Lange [35]
(denoted as LN hereafter) and Huber [36] (denoted as HB hereafter):

ϕLN(ξ) = δ2
[∣∣∣∣ ξδ

∣∣∣∣− log
(

1 +
∣∣∣∣ ξδ
∣∣∣∣)], (3)

ϕHB(ξ) =

{
ξ2,

2σ|ξ| − σ2,
|ξ| ≤ σ

|ξ| > σ
, (4)

where δ and σ are the positive hyperparameters that control the sensitivity of edge preser-
vation by modifying the shape of the penalty functions ϕLN(·) and ϕHB(·), respectively.
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The typical shapes of the LN and HB penalty functions are shown in Figure 1, where they
are compared with the quadratic (QD) penalty function ϕQD(ξ) = ξ2.
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Figure 1. Three representative penalty functions: (a) typical shapes of the three (QD, LN, and HB)
penalty functions; (b) first-order derivatives of the three penalty functions indicating the strength
of smoothing.

Based on the observation in Figure 1a, it can be seen that the CNQ penalty functions
exhibit lower penalization than the QD penalty for significant intensity differences between
the adjacent pixels. This characteristic enables the CNQ penalties to effectively preserve
edges. The first-order derivative of the penalty function in Figure 1b indicates the strength
of smoothing. Comparing it to the QD penalty function, which shows a linear increase
in the magnitude of the derivative with increasing intensity difference, the LN penalty
demonstrates a slower increase beyond a large value of the intensity difference. Further-
more, the HB penalty remains constant once the intensity difference reaches a large value.
Therefore, both the LN and HB penalty functions satisfy the necessary condition for a CNQ
penalty function to preserve edges, which is summarized as lim

ξ→∞
|ϕ′(ξ)| = K, where ϕ′(ξ)

is the first-order derivative of the penalty function and K is a positive constant [37]. For
a given intensity difference between the adjacent pixels, as the hyperparameter δ (or σ)
decreases, K also decreases, which results in more edges, and vice versa. To effectively
preserve edges while suppressing noise, selecting an appropriate value for the hyperpa-
rameter is crucial. In this work, we assume that all hyperparameters (λ, δ, and σ) are
preselected for the entire image before the reconstruction process begins. We aim to refine
the value of δ (or σ) for each pixel during the reconstruction process by using the patch
similarities within the neighborhood of a pixel to be updated. This approach enables us to
fine-tune the hyperparameter value on a per-pixel basis, optimizing edge preservation in
the reconstructed image.

2.2. Similarity-Driven Hyperparameter Tuning

In this work, inspired by the well-known non-local mean (NLM) approach [25], which
has shown great potential in removing noise while preserving image details such as edges
and textures by exploiting the redundancy and self-similarity of the image structure, we
propose a new method of fine-tuning the hyperparameter δ (or σ) by using the self-similarity
of the underlying image structure. The NLM approach is based on the idea that in an
image, pixels that are similar to each other tend to have similar values. Therefore, instead of
averaging the values of neighboring pixels to obtain an estimate of the value of a particular
pixel, the NLM approach takes into account the similarity between the patches centered on
each pixel in the image and computes a weighted average of patches centered around each
pixel in the image.
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In the NLM approach, the similarity between the two patches is defined by [25]

Wjj′ = exp
(
−
4ρjj′

h2

)
, (5)

where4ρjj′ is the patch difference and h is a positive parameter. The patch difference4ρjj′

is defined as

4ρjj′ ,
∥∥∥ρ(Nj)− ρ(Nj′)

∥∥∥2
=

P

∑
p=1

(
f j(p) − f j′(p)

)2
, (6)

where ρ(Nj) and ρ(Nj′) are the patches centered at the pixel j and j′, respectively, P is the
total number of pixels in a patch, and f j(p) and f j′(p) are the p-th pixels in the patches ρ(Nj)
and ρ(Nj′), respectively. For a 3 × 3 patch window,4ρjj′ defined in (6) can be calculated
by visiting each of the 9 pixels (p = 1, 2, . . . , 9). Figure 2 shows how the similarity matrix
Wj is calculated when the neighborhood system Nj consists of four neighbors (north, south,
east, and west) and one (Wjj = 1) in the center.
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Figure 2. Calculating the patch similarity matrix Wj using a 3 × 3 patch window. The similarity
matrix Wj consists of the four elements in the neighbors and one (Wjj = 1) in the center.

Note that the NLM approach in image denoising uses the similarity between the two
patches defined by (5) for weighted smoothing, which can be expressed as

R(f) = ∑
j

∑
j′∈Nj

ωjj′ϕ( f j − f j′), where ωjj′ = Wjj′/ ∑
j′∈Nj

Wjj′ . (7)

In contrast, our method uses the similarity in (5) to adjust the initially tuned value of δ
(or σ). The basic strategy to refine the initially tuned parameter δ = δ0 is that the value of δ
at a pixel may be increased or decreased depending on the degree of the patch similarity. To
incorporate the patch similarity Wjj′ into the adjustment of δ, we use the following formula:

δjj′ = δ0
[
1 +

(
Wjj′ + αjw

)]
, (8)

where δjj′ is the fine-tuned value of δ using the patch similarity between the two patches
centered at the pixels j and j′, w is the mean of Wjj′ evaluated for all pixels in the estimated
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image obtained from the previous iteration of the PL reconstruction process, and αj is in
[−1,1] which is also determined from the previous iteration by measuring the degree of
roughness within the neighborhood of the pixel j. (The value of αj approaches −1 when the
pixel roughness is very low, whereas it approaches 1 when the roughness is very high.) In
(8), a negative value of αj decreases δjj′ , whereas a positive value of αj increases δjj′ . In an
extreme case, where αj = −1 due to the irregular edges with relatively low similarities, the
value of δjj′ can be smaller than δ0. On the other hand, when αj = −1 due to the regular
edges with high similarities, δjj′ can be close to δ0. When αj = 1 in a flat region, δjj′ is larger
than δ0. In summary, δjj′ adaptively varies around δ0 depending on the patch similarities
in the neighborhood of the pixel j.

To avoid a sudden change of the sign of δjj′ , we define αj using the following modified
Butterworth polynomial:

α
(
zj
)
=

2

1 +
(
t/zj

)2r − 1, α ∈ [−1, 1], (9)

where t is the turning point of the r-th order polynomial, zj is the j-th pixel in the image z
standing for the pixel-wise roughness in the estimated image obtained from the previous
iteration of the reconstruction process. Various pixel-wise roughness measures may be
used for z. In this work, we compare the three different roughness measures: gradient (GR),
standard deviation (SD), and mean of patch similarity (PS). The GR of an image is a vector
field that represents the magnitude and direction of the change in intensity at each pixel
in the image. To measure the pixel-wise roughness only, the magnitude of the GR is used.
The pixel-wise SD image is calculated as follows:

sj =

√√√√√ 1
L− 1 ∑

k∈Nj

 fk −

 1
L ∑

j′∈Nj

f j′

2

, ∀j, , (10)

where sj is the j-th pixel in the SD image calculated within the 3× 3 neighborhood system
Nj of the pixel f j and L = 9 in this case. The mean of patch similarity for the j-th pixel is
defined by Wj = ∑

j′∈Nj

Wjj′ . Figure 3 shows shapes of α
(
zj
)

in (9) for several different values

of r. (In our experiments, the value of t was set to the mean of z and r = 0.1λ.)
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2.3. Derivation of PL Reconstruction Algorithm

To derive a PL reconstruction algorithm that employs the similarity-driven fine-
tuning method for hyperparameter optimization, we first use an accelerated version
of the maximum likelihood (ML) algorithm, namely, the complete data ordered sub-
sets expectation–maximization (COSEM) [38] algorithm and extend it to a PL algorithm
to include the regularization term. While the well-known ordered subsets expectation–
maximization (OSEM) [39] algorithm accelerates the original expectation maximization
(EM) algorithm [40] by subdividing the projection data into several subsets (or blocks) and
then progressively processing each subset by performing projection and back-projection
operations in each iteration, it is not provably convergent due to the lack of its objec-
tive function. On the other hand, the COSEM algorithm is fast and convergent with an
objective function.

The COSEM algorithm applies the idea of ordered subsets used in the OSEM algorithm
on the “complete data” C rather than on the projection data g. The complete data C, whose
elements are denoted as Cij, represents the number of coincidence events that originated
at the j-th pixel in the underlying source and recorded by the i-th detector pair so that the
following relationship holds: ∑j Cij = gi.

The COSEM-ML algorithm can be expanded to the COSEM-PL algorithm by including
the regularization term. For our COSEM-PL algorithm, if C is fixed to C = C(n) at the
n-th iteration in an alternative updating procedure, the overall energy function with the
regularizer in (2) can be expressed as:

E
(

f; C(n)
)
= −

Q

∑
q=1

∑
i∈Sq

∑
j

C(n,q)
ij log f j + ∑

ij
Hij f j + λR(f), (11)

where Sq, q = 1, . . . , Q, is the q-th subset of the detector pairs, and C(n,q)
ij denotes the

update of Cij at outer iteration n and subset iteration q. When the regularization term in
(11) takes a CNQ form as described by (3) or (4), it is not possible to obtain a closed-form
solution. Therefore, we employ the method of optimization transfer using paraboloidal
surrogates [41–43] that can efficiently find a global minimum of a convex function by using
the following surrogate function for the penalty term [42]:

φ̂(ξ) = φ(ξn−1) + φ′(ξn−1)(ξ − ξn−1) +
1
2

ψ(ξn−1)(ξ − ξn−1)
2 ≥ φ(ξ), (12)

where the ϕ′(ξ) is the first-order derivative, ξn−1 denotes the value of ξ at the (n − 1)-th
iteration, and ψ(ξ) = ϕ′(ξ)/ξ. By dropping the terms that are independent of the variable
ξ, (12) can be written as

ϕ̂(ξ) =
1
2

ψ
(

ξn−1
)

ξ2. (13)

To avoid the coupling problem of f j and f j′ when ξ is substituted with f j − f j′ in
the quadratic term in (13), the regularization term is modified by using the separable
paraboloidal surrogate (SPS) function [44,45] as follows:

R̂
(

f; fn−1
)
= ∑

j
∑

j′∈Nj

ψ
(

f j
n−1 − f j′

n−1
)(

2 f j − f j
n−1 − f j′

n−1
)2

(14)

By replacing the regularization term in (11) with R̂
(

f j; fn−1
)

, the overall energy
function for each f j is expressed as

E
(

f j; f(n,q−1), C(n,q)
)
= −∑

i
C(n,q)

ij log f j + ∑
i

Hij f j

+λ ∑
j′∈Nj

ψ
(

f j
(n,q−1) − f j′

(n,q−1)
)(

2 f j − f j
(n,q−1) − f j′

(n,q−1)
)2

,
(15)
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where f (n,q)
j denotes the update of f j at outer iteration n and subset iteration q. Note that

after the completion of the subset iteration at the n-th iteration, f(n,Q) is assigned to f(n+1).
By setting the derivative of (15) to zero and solving for the positive root of the quadratic
equation, the final update equation is given by

f (n,q)
j =

−b +
√

b2 − 4ac
2a

, (16)

where a, b, and c are given by

a = 8λ ∑
j′∈Nj

ψ
(

f j
(n,q−1) − f j′

(n,q−1)
)

,

b = ∑
i

Hij − 4λ ∑
j′∈Nj

ψ
(

f j
(n,q−1) − f j′

(n,q−1)
)(

f j
(n,q−1) + f j′

(n,q−1)
)

,

c = −∑
j

Cij
(n,q).

In the COSEM-PL algorithm, the C-update is the same as the C-update in the COSEM-
ML algorithm. Therefore, the COSEM-PL algorithm is performed by alternately updating
Cij

(n,q) and f (n,q)
j at outer iteration n and subset iteration q.

Figure 4 shows the schematic diagram of the COSEM-PL algorithm, where our pa-
rameter fine-tuning method is applied. Note that the control parameter δ (or σ) is updated
using one of the three roughness measures (GR, SD, and PS) calculated from the image
reconstructed in the previous iteration, and the initial values of the hyperparameters (λ, δ
or σ) are preset either manually or using an automated method before the COSEM-PL
iteration begins.
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Figure 4. Schematic diagram of the COSEM-PL algorithm with adaptive parameter tuning.

3. Results
3.1. Numerical Studies Using Digital Phantom

To test our idea, we first performed numerical studies using a 128 × 128 digital
Hoffman brain phantom slice shown in Figure 5a. The activity ratio of the phantom is 4:1:0
in gray matter, white matter, and cerebrospinal fluid (CSF), respectively. For projection data,
we used 128 projection angles over 180◦ with 128 detector pairs. To generate projection
data with noise, we first scaled the phantom so that the total counts of its projection
data could be approximately 500,000, and then added independent Poisson noise to the
noiseless projection data obtained from the scaled phantom. Figure 5b provides a qualitative
representation of the typical noise level observed in the 40th iteration of the EM-ML (or the
COSEM-ML with a single subset) reconstruction from a noisy sinogram with approximately
500,000 photon counts.

For PL reconstruction, we compared two different methods: the standard PL method,
which uses fixed hyperparameter values for all pixels in the entire image, and the similarity-
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driven PL (SDPL) method, which employs our proposed method of parameter fine-tuning
on a per-pixel basis. To ensure convergence, we used 4 subsets and 80 iterations, which
effectively corresponds to 320 iterations for a single subset. To assess the effectiveness
of the SDPL algorithm across diverse hyperparameter configurations, we employed two
distinct (high and low) levels of initial parameter values for both the smoothing parameter
λ and the control parameter δ (or σ). Note that our approach can seamlessly integrate with
a wide range of existing parameter-tuning methods, thereby eliminating the need for a
specific criterion in selecting the initial parameter values.
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Figure 5. Digital phantom used in simulations and typical 500,000-count noise level for EM-ML
reconstruction: (a) 128× 128 digital Hoffman brain phantom; (b) EM-ML reconstruction (40 iterations)
from noisy projection data with 500,000 photon counts.

Figure 6 shows the anecdotal PL and SDPL reconstructions using the LN penalty
function. The figure comprises four groups of results, each corresponding to a different
parameter setting. Specifically, Figure 6a–d shows the results obtained with high λ and high
δ, Figure 6e–h with high λ and low δ, Figure 6i–l with low λ and high δ, and Figure 6m–p
with low λ and low δ. Within each row, the reconstruction methods are displayed from left
to right as PL-LN and SDPL-LN (GR, SD, and PS), respectively. A qualitative comparison
of the results in Figure 6 clearly reveals that the SDPL method better preserves fine details
than the standard PL method.

To elaborate further, when both λ and δ are excessively large (Figure 6a–d), the PL
result in Figure 6a appears over-smoothed, whereas the SDPL results in Figure 6b–d exhibit
enhanced detail. By reducing the value of δ while keeping λ fixed, the SDPL result in
Figure 6e becomes sharper than its PL counterpart in Figure 6a. Similarly, the SDPL results
in Figure 6f–h, like those in Figure 6b–d, demonstrate superior preservation of fine details
compared to the result in Figure 6e. Based on the observations from Figure 6a–h, we
tentatively conclude that the SDPL method effectively mitigates the over-smoothing issue
of the PL method for relatively high λ values. As expected, when the smoothing parameter
λ is decreased, the results become sharper and exhibit more details. However, even in this
case, the SDPL method further enhances reconstruction accuracy by better preserving fine
details, as evident in Figure 6i–p. In an extreme case, where the values of both λ and δ are
very small, the results become noisy, a phenomenon that is not specific to the SDPL method
but holds true for any regularization method. In conclusion, the SDPL method surpasses
the standard PL method in effectively preserving fine details when the hyperparameters
are chosen to be sufficiently large, ensuring effective noise suppression.

To evaluate and compare, in an ensemble sense, the quantitative performance of the
reconstruction algorithms with the parameter settings used for Figure 6, we generated
50 independent noise realizations of projection data for the phantom shown in Figure 5a.



Sensors 2023, 23, 5783 10 of 19

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

6m–p with low λ and low δ. Within each row, the reconstruction methods are displayed 

from left to right as PL-LN and SDPL-LN (GR, SD, and PS), respectively. A qualitative 

comparison of the results in Figure 6 clearly reveals that the SDPL method better preserves 

fine details than the standard PL method. 

 

Figure 6. Anecdotal reconstructions using PL-LN and SDPL-LN with two different (high and low) 

levels of λ and two different (high and low) levels of δ for each λ. (The results in the first column 

(a,e,i,m) are PL-LN reconstructions, whereas the rest of the results are SDPL-LN reconstructions). 

(a–h) λ = 40 (i–p) λ = 20 (a–d) δ = 0.1; (e–h) δ = 0.03; (i–l) δ = 0.15; (m–p) δ = 0.05. 

To elaborate further, when both λ and δ are excessively large (Figure 6a–d), the PL 

result in Figure 6a appears over-smoothed, whereas the SDPL results in Figure 6b–d ex-

hibit enhanced detail. By reducing the value of δ while keeping λ fixed, the SDPL result 

in Figure 6e becomes sharper than its PL counterpart in Figure 6a. Similarly, the SDPL 

results in Figure 6f–h, like those in Figure 6b–d, demonstrate superior preservation of fine 

details compared to the result in Figure 6e. Based on the observations from Figure 6a–h, 

we tentatively conclude that the SDPL method effectively mitigates the over-smoothing 

issue of the PL method for relatively high λ values. As expected, when the smoothing 

parameter λ is decreased, the results become sharper and exhibit more details. However, 

even in this case, the SDPL method further enhances reconstruction accuracy by better 

preserving fine details, as evident in Figure 6i–p. In an extreme case, where the values of 

both λ and δ are very small, the results become noisy, a phenomenon that is not specific 

to the SDPL method but holds true for any regularization method. In conclusion, the SDPL 

method surpasses the standard PL method in effectively preserving fine details when the 

hyperparameters are chosen to be sufficiently large, ensuring effective noise suppression. 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

PL-LN SDPL-LN

GR SD PS


=

4
0


=

2
0


=

0
.1


=

0
.0

3

=

0
.1

5

=

0
.0

5

Figure 6. Anecdotal reconstructions using PL-LN and SDPL-LN with two different (high and low)
levels of λ and two different (high and low) levels of δ for each λ. (The results in the first column
(a,e,i,m) are PL-LN reconstructions, whereas the rest of the results are SDPL-LN reconstructions).
(a–h) λ = 40 (i–p) λ = 20 (a–d) δ = 0.1; (e–h) δ = 0.03; (i–l) δ = 0.15; (m–p) δ = 0.05.

Table 1 presents a quantitative performance comparison between the PL-LN and
SDPL-LN in terms of six different image quality assessments (IQAs): peak signal-to-noise
ratio (PSNR); structural similarity (SSIM); visual information fidelity (VIF); mean absolute
error (MAE); root-mean-square error (RMSE); and mean percentage error (MPE). All IQA
metrics used in this work were evaluated from 50 independent Poisson noise trials. For
example, the MPE is defined as

MPE =
1
K

K

∑
k=1

√
∑
(

f̂ k
j − f j

)2
/∑ f j

2 × 100%, (17)

where f̂ k
j is the j-th pixel value of the reconstructed image for the k-th noise trial, f j is the

j-th pixel value of the noiseless phantom, and K = 50 is the total number of noise trials.
The PSNR [46] measures the ratio between the maximum possible peak of the signal and
the noise. The SSIM [46,47] measures the similarity between the reconstructed image and
the phantom. The VIF [48] evaluates the image quality based on the natural scene statistics
and the image notion extracted by the human visual system. The MAE [49] calculates the
mean absolute error between the reconstructed image and the phantom. In Table 1, the
best results, obtained from the SDPL-LN method using the SD roughness measure, are
highlighted in bold.
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Table 1. Quantitative performance comparison of PL-LN and SDPL-LN.

IQA Metrics PL-LN
SDPL-LN

GR SD PS

λ = 40
δ = 0.1

PSNR(dB) 13.943 15.569 15.621 14.999
SSIM 0.821 0.872 0.874 0.854
VIF 0.404 0.540 0.547 0.531

MAE 0.090 0.068 0.068 0.071
RMSE 0.201 0.167 0.166 0.178
MPE 36.651 30.396 30.216 32.459

λ = 40
δ = 0.03

PSNR(dB) 15.475 17.133 17.232 16.856
SSIM 0.869 0.910 0.912 0.905
VIF 0.539 0.675 0.688 0.672

MAE 0.069 0.051 0.050 0.052
RMSE 0.168 0.139 0.138 0.144
MPE 30.728 25.387 25.101 26.210

λ = 20
δ = 0.15

PSNR(dB) 14.659 16.186 16.222 15.756
SSIM 0.843 0.887 0.887 0.876
VIF 0.474 0.593 0.598 0.590

MAE 0.079 0.061 0.061 0.063
RMSE 0.185 0.155 0.155 0.163
MPE 33.754 28.311 28.194 29.748

λ = 20
δ = 0.05

PSNR(dB) 16.001 17.543 17.601 17.151
SSIM 0.882 0.919 0.920 0.913
VIF 0.587 0.720 0.730 0.706

MAE 0.063 0.047 0.046 0.050
RMSE 0.159 0.133 0.132 0.139
MPE 28.922 24.217 24.056 25.335

Figure 7 visualizes the quantitative results for the six IQAs presented in Table 1 through
bar graphs, with each IQA depicted individually. The abscissa indexes the group number
(1 to 4) for parameter settings (two distinct levels of initial parameter values for both λ and
δ) used in Table 1. It is evident that the SDPL-LN methods clearly outperform the PL-LN
method in all IQAs.
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Figure 7. Performance comparison of PL-LN and SDPL-LN in terms of six image quality assessments:
(a) PSNR; (b) SSIM; (c) VIF; (d) MAE; (e) RMSE; (f) MPE.
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Figure 8 presents the anecdotal reconstructions using the HB penalty function, fol-
lowing the same layout as Figure 6 for the LN penalty function. Similar to the findings
in Figure 6, the SDPL reconstructions consistently exhibit superior preservation of details
compared to the standard PL reconstructions across all hyperparameter settings.
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Figure 8. Anecdotal reconstructions using PL-HB and SDPL-HB with two different (high and low)
levels of λ and two different (high and low) levels of σ for each λ. (The results in the first column
(a,e,i,m) are PL-HB reconstructions, whereas the rest of the results are SDPL-HB reconstructions).
(a–h) λ =20 (i–p) λ =10 (a–d) σ = 0.06; (e–h) σ = 0.03; (i–l) σ = 0.1; (m–p) σ = 0.05.

Table 2 presents a performance comparison between the PL-HB and SDPL-HB methods
based on six different IQAs. Again, the SDPL methods demonstrate the best outcomes.
Although the best results are distributed across three different roughness measures, the
differences among them are practically negligible. Figure 9 presents bar graphs visualizing
the quantitative results in Table 2. The results clearly demonstrate that the SDPL-HB
methods outperform the PL-HB method across all IQAs.

To evaluate the regional performance of our method, we first selected regions of
interest (ROIs) as shown in Figure 10, and performed regional studies using the PL-LN and
SDPL-LN reconstructions obtained with the same initial values of λ and δ, respectively.
Figure 11 shows the five zoomed-in rectangular regions R1-R5 in Figure 10a, where the
images in Figure 11a are zoomed-in regions of the phantom, Figure 11b zoomed-in regions
of PL-LN reconstructions, Figure 11c zoomed-in regions of SDPL-LN-GR reconstructions
(with the GR roughness measure), Figure 11d zoomed-in regions of SDPL-LN-SD, and
Figure 11e zoomed-in regions of SDPL-LN-PS. As already seen in Figure 6, the SPDL-based
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methods clearly outperform the standard PL method, which is also verified in terms of the
regional MPEs represented by the bar graphs shown in Figure 12a.

Table 2. Quantitative performance comparison of PL-HB and SDPL-HB.

IQA Metrics PL-HB
SDPL-HB

GR SD PS

λ = 20
σ = 0.06

PSNR(dB) 13.857 15.798 16.239 15.421
MSSIM 0.823 0.880 0.889 0.868

VIF 0.401 0.574 0.611 0.567
MAE 0.091 0.064 0.059 0.065
RMSE 0.203 0.162 0.154 0.169
MPE 37.018 29.605 28.142 30.920

λ = 20
σ = 0.03

PSNR(dB) 15.838 17.277 17.353 17.134
SSIM 0.880 0.914 0.916 0.912
VIF 0.569 0.697 0.710 0.691

MAE 0.064 0.049 0.049 0.050
RMSE 0.162 0.137 0.136 0.139
MPE 29.469 24.971 24.755 25.386

λ = 10
σ = 0.1

PSNR(dB) 14.387 16.176 16.149 15.974
SSIM 0.837 0.888 0.887 0.883
VIF 0.450 0.606 0.607 0.615

MAE 0.083 0.059 0.059 0.059
RMSE 0.191 0.155 0.156 0.159
MPE 34.826 28.346 28.434 29.011

λ = 10
σ = 0.05

PSNR(dB) 15.564 17.086 17.086 16.938
SSIM 0.872 0.909 0.909 0.908
VIF 0.550 0.684 0.689 0.688

MAE 0.067 0.050 0.050 0.051
RMSE 0.167 0.140 0.140 0.142
MPE 30.412 25.526 25.527 25.963
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ˆ
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higher values closer to one indicating better performance. 
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Figure 9. Performance comparison of PL-HB and SDPL-HB in terms of six different image quality
assessments: (a) PSNR; (b) SSIM; (c) VIF; (d) MAE; (e) RMSE; (f) MPE.
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Figure 10. ROIs superimposed on the phantom image: (a) ROIs for regional percentage error; (b) ROIs
for contrast recovery coefficient.
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Figure 11. Zoomed-in images of PL-LN and SDPL-LN reconstructions using ROIs in Figure 8a.
(a) phantom; (b) PL-LN; (c) SDPL-LN-GR; (d) SDPL-LN-SD; (e) SDPL-LN-PS.

Figure 10b shows the three circular ROIs and one circular background region used
for calculating the contrast recovery coefficient (CRC). The CRC is a metric that evaluates
how well the algorithm restores the contrast of an ROI with respect to its background. The
regional CRC is defined as

CRCR = CRR/CRR0, (18)

where CRR =
∣∣ÂR − ÂBg

∣∣/ÂBg, ÂR = (1/T)∑j∈R f̂ j denotes the mean activity in each ROI,
ÂBg is the mean activity in the background region, and CRR0 is the true contrast in the
phantom. Note that the value of CRC indicates the performance of the algorithm, with
higher values closer to one indicating better performance.
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Figure 12. Regional performance comparison between the PL-LN and SDPL-LN methods: (a) regional
mean percentage error (MPE) for ROIs shown in Figure 10a; (b) mean contrast recovery coefficient
(MCRC) for ROIs shown in Figure 10b.

Figure 12b presents the regional mean CRC (MCRC) calculated over K = 50 indepen-
dent noise trials, which is defined as

MCRCR =
1
K

K

∑
k=1

CRCk
R, (19)

where CRCk
R stands for the regional CRC calculated from the k-th noise realization. It is

evident that the SDPL-based methods with GR and SD roughness measures remarkably
outperform the standard PL method in terms of the MCRC in all three ROIs.

3.2. Qualitative Validation Using Physically Acquired Data

To observe qualitatively the efficacies of our SDPL methods, we acquired physical
data using a GE Advance PET scanner, which contains 18 detector rings yielding 35 slices at
4.25 mm center-to-center slice separation. We acquired 2D data from the physical Hoffman
brain phantom using the scanner’s high sensitivity mode with septa in. The sinogram
dimension was 145 detector pairs and 168 angles. The projection data were acquired for
10 min from an 18FDG scan. The corresponding number of detected coincident counts was
approximately 1,000,000. Figure 13 shows the typical noise level observed in the EM-ML
reconstruction with 40 iterations, obtained from the physical PET data. Since there is no
ground-truth data available for this experiment, the efficacies of using the COSEM-PL and
COSEM-SPDL methods can be observed qualitatively by comparing their results with the
EM-ML reconstruction. It is important to note that, compared to the reconstructions shown
in Figures 6 and 8, which were obtained from the digital phantom, the resolution of the EM-
ML reconstruction for the real PET data is significantly low, which may limit our qualitative
observation of the efficacies of using the SPDL methods in the real data experiments.
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Figure 14 shows two groups of images, Figure 14a–f and Figure 14g–l, reconstructed
by COSEM-PL with the LN and HB penalty functions, respectively. For the LN penalty,
the smoothing parameter values were set to 40, 20, and 10 for Figure 14a,b, Figure 14c,d,
and Figure 14e,f, respectively. For the HB penalty, the smoothing parameter values were
set to 20, 10, and 5 for Figure 14g,h, Figure 14i,j, and Figure 14k,l, respectively. For each
value of λ, a value of δ (or σ) was chosen for the standard PL first, and it was used as
an initial value of δ (or σ) for the SDPL. For each value of λ, a close inspection reveals
that, as already observed in Figures 6 and 8 using the digital phantom, the SDPL method
further improves the reconstruction of fine details. In fact, the visual improvement from
the standard PL reconstruction to the SDPL reconstruction in Figure 14 is not as stunning
as that in Figures 6 and 8. This is presumably due to the fact that the physical factors that
affect the quality of reconstruction were not modeled in our reconstruction algorithms.
While the attenuation correction was done by a conventional method that uses the ratio
of the measurements in the blank and transmission scans, the factors to model scattered
and random coincidences were not included in our reconstruction algorithms. In this case,
the measurement is not strictly Poisson. (Our future work includes modeling the physical
factors in the likelihood term and expanding accordingly the overall energy function
described in (11)) .
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Figure 14. COSEM-PL reconstructions from physically acquired data: (a) PL-LN with λ = 40; (b) SDPL-
LN with λ = 40; (c) PL-LN with λ = 20; (d) SDPL-LN with λ = 20; (e) PL-LN with λ = 10; (f) SDPL-LN
with λ = 10; (g) PL-HB with λ = 20; (h) SDPL-HB with λ = 20; (i) PL-HB with λ = 10; (j) SDPL-HB
with λ = 10; (k) PL-HB with λ = 5; (l) SDPL-HB with λ = 5.

4. Summary and Conclusions

We have presented similarity-driven hyperparameter fine-tuning methods for penalized-
likelihood image reconstruction in PET. Our proposed method aims to optimize the regu-
larization parameter by leveraging similarity information between neighboring patches,
leading to improved image quality and quantitative accuracy.

The experimental results obtained from the digital phantom studies demonstrated
the effectiveness of the proposed method in achieving superior image reconstruction
performance compared to the conventional PL method with fixed hyperparameters. By
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incorporating similarity information into the hyperparameter optimization process, the pro-
posed method effectively balanced the trade-off between noise reduction and preservation
of fine details, resulting in visually enhanced images with reduced noise. Our numerical
studies supported the visual comparison by showing better quantitative performance of the
proposed method across multiple image quality metrics. Finally, the additional results from
the physical experiments using the real PET data also supported the good performance of
the proposed method. However, to fully evaluate the clinical potential and generalizability
of the proposed method, more comprehensive investigations that incorporate the physi-
cal factors, such as attenuation, scattered, and random coincidences, into reconstruction
algorithms for real PET scans, are needed.

We acknowledge here that, besides the regularization approach employing CNQ
penalties discussed in this study, there exist several other types of regularization methods
used in PET reconstruction, which encompass total variation regularization [50–52], sparse
coding-based regularization [53–55], and low-rank/sparse decomposition-based regular-
ization [56]. These regularization methods also involve hyperparameters that significantly
impact the quality of the reconstructed image. Since our proposed method specifically
focuses on CNQ penalties, further investigation is required to determine the feasibility of
integrating it with these diverse regularization methods.

We also note that, as the proposed method requires initially tuned hyperparameters for
the entire image, it is not fully automated. For our future work, we would continue to seek
a more advanced approach to optimizing the regularization parameter to fully automate
the tuning process. One possible approach may be to use our method in conjunction
with machine learning-based parameter tuning methods [21–23] so that the parameters
initially tuned by machine learning for the entire image can be refined by our method for
further improvements in reconstruction accuracy. However, we acknowledge the inherent
challenge for machine learning methods to incorporate the additional control parameters
responsible for adjusting edge reservation sensitivity by modifying the shape of the penalty
function. Despite this challenge, we expect that our proposed method, in conjunction with
more advanced machine learning-based approaches that can handle the control parameters,
will substantially reduce the dependence on subjective trial-and-error hyperparameter
tuning in regularized PET reconstruction.

Author Contributions: Supervision, S.-J.L.; conceptualization, S.-J.L.; methodology, S.-J.L. and W.Z.;
article preparation, S.-J.L. and W.Z.; evaluation, W.Z.; writing—original draft preparation, S.-J.L. and
W.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Research Foundation (NRF) of Korea grant
funded by the Korean government under NRF-2022R1F1A1060484.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon request. Please
contact the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine; Saunders: Philadelphia, PA, USA, 2012.
2. Ollinger, J.H.; Fessler, J.A. Positron Emission Tomography. IEEE Signal Process. Mag. 1997, 14, 43–55. [CrossRef]
3. Lewitt, R.M.; Matej, S. Overview of methods for image reconstruction from projections in emission computed tomography. Proc.

IEEE 2003, 91, 1588–1611. [CrossRef]
4. Tong, S.; Alessio, A.M.; Kinahan, P. Image reconstruction for PET/CT scanners: Past achievements and future challenges. Imaging

Med. 2010, 2, 529–545. [CrossRef]
5. Reader, A.J.; Zaidi, H. Advances in PET image reconstruction. PET Clin. 2007, 2, 173–190. [CrossRef]

https://doi.org/10.1109/79.560323
https://doi.org/10.1109/JPROC.2003.817882
https://doi.org/10.2217/iim.10.49
https://doi.org/10.1016/j.cpet.2007.08.001


Sensors 2023, 23, 5783 18 of 19

6. Qi, J.; Leahy, R.M. Iterative reconstruction techniques in emission computed tomography. Phys. Med. Biol. 2006, 51, 541–578.
[CrossRef] [PubMed]

7. Gong, K.; Berg, E.; Cherry, S.R.; Qi, J. Machine learning in PET: From photon detection to quantitative image reconstruction. Proc.
IEEE 2019, 108, 51–68. [CrossRef]

8. Reader, A.J.; Corda, G.; Mehranian, A.; da Costa-Luis, C.; Ellis, S.; Schnabel, J.A. Deep Learning for PET image reconstruction.
IEEE Trans. Rad. Plasma Med. Sci. 2021, 5, 1–25. [CrossRef]

9. Hashimoto, F.; Ote, K.; Onishi, Y. PET image reconstruction incorporating deep image prior and a forward projection model.
IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 841–846. [CrossRef]

10. Kim, K.; Wu, D.; Gong, K.; Dutta, J.; Kim, J.H.; Son, Y.D.; Kim, H.K.; El Fakhri, G.; Li, Q. Penalized PET Reconstruction Using
Deep Learning Prior and Local Linear Fitting. IEEE Trans. Med. Imaging 2018, 37, 1478–1487. [CrossRef]

11. Hong, X.; Zan, Y.; Weng, F.; Tao, W.; Peng, Q.; Huang, Q. Enhancing the Image Quality via Transferred Deep Residual Learning of
Coarse PET Sinograms. IEEE Trans. Med. Imaging 2018, 37, 2322–2332. [CrossRef]

12. Kang, E.; Min, J.; Ye, J.C. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction.
Med. Phys. 2017, 44, e360–e375. [CrossRef] [PubMed]

13. Pain, C.D.; Egan, G.F.; Chen, Z. Deep learning-based image reconstruction and post-processing methods in positron emission
tomography for low-dose imaging and resolution enhancement. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 3098–3118. [CrossRef]
[PubMed]

14. Mehranian, A.; Reader, J. Model-based deep learning PET image reconstruction using forward-backward splitting expectation-
maximization. IEEE Trans. Rdiat. Plasma Med. Sci. 2020, 5, 54–64. [CrossRef]

15. Adler, J.; Öktem, O. Learned primal-dual reconstruction. IEEE Trans. Med. Imaging 2018, 37, 1322–1332. [CrossRef] [PubMed]
16. Hansen, P.C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev. 1992, 34, 561–580. [CrossRef]
17. Golub, G.H.; Heath, M.; Wahba, G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics

1979, 21, 215–223. [CrossRef]
18. Ramani, S.; Liu, Z.; Nielsen, J.-F.; Fessler, J.A. Regularization parameter selection for nonlinear iterative image restoration and

MRI reconstruction using GCV and sure-based methods. IEEE Trans. Image Process. 2012, 21, 3659–3672. [CrossRef]
19. Zhu, X.; Milanfar, P. Automatic parameter selection for denoising algorithms using a no-reference measure of image content.

IEEE Trans. Image Process. 2010, 19, 3116–3132.
20. Liang, H.; Weller, D.S. Comparison-based image quality assessment for selecting image restoration parameters. IEEE Trans Image

Process. 2016, 25, 5118–5130. [CrossRef]
21. Shen, C.; Gonzalez, Y.; Chen, L.; Jiang, S.B.; Jia, X. Intelligent parameter tuning in optimization-based iterative CT reconstruction

via deep reinforcement learning. IEEE Trans. Med. Imaging 2018, 37, 1430–1439. [CrossRef]
22. Xu, J.; Noo, F. Patient-specific hyperparameter learning for optimization-based CT image reconstruction. Phys. Med. Biol. 2021,

66, 19. [CrossRef] [PubMed]
23. Lee, J.; Lee, S.-J. Smoothing-parameter tuning for regularized PET image reconstruction using deep learning. In Proceedings of

the SPIE 12463, Medical Imaging 2023: Physics of Medical Imaging, San Diego, CA, USA, 19–23 February 2023.
24. Lee, S.-J. Performance comparison of convex-nonquadratic priors for Bayesian tomographic reconstruction. J. Electron. Imaging

2000, 9, 242–250. [CrossRef]
25. Buades, A.; Coll, B.; Morel, J.M. A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 2005, 4, 490–530.

[CrossRef]
26. Deledalle, C.-A.; Denis, L.; Tupin, F. Iterative weighted maximum likelihood denoising with probabilistic patch-based weights.

IEEE Trans. Image Process. 2009, 18, 2661–2672. [CrossRef] [PubMed]
27. Sharifymoghaddam, M.; Beheshti, S.; Elahi, P.; Hashemi, M. Similarity validation based nonlocal means image denoising. IEEE

Sig. Process. Lett. 2015, 22, 2185–2188. [CrossRef]
28. Zhang, X.; Feng, X.; Wang, W. Two-direction nonlocal model for image denoising. IEEE Trans. Image Process. 2013, 22, 408–412.

[CrossRef]
29. Leal, N.; Zurek, E.; Leal, E. Non-local SVD denoising of MRI based on sparse representations. Sensors 2020, 20, 1536. [CrossRef]
30. Nguyen, V.-G.; Lee, S.-J. Incorporating anatomical side information into PET reconstruction using nonlocal regularization. IEEE

Trans. Image Process. 2013, 22, 3961–3973. [CrossRef]
31. Wang, G.; Qi, J. Penalized likelihood PET image reconstruction using patch-based edge-preserving regularization. IEEE Trans.

Med. Imaging 2012, 31, 2194–2204. [CrossRef]
32. Tahaei, M.S.; Reader, A.J. Patch-based image reconstruction for PET using prior-image derived dictionaries. Phys. Med. Biol. 2016,

61, 6833–6855. [CrossRef]
33. Xie, N.; Chen, Y.; Liu, H. 3D tensor based nonlocal low rank approximation in dynamic PET reconstruction. Sensors 2019, 19, 5299.

[CrossRef] [PubMed]
34. Ren, X.; Lee, S.-J. Penalized-likelihood PET image reconstruction using similarity-driven median regularization. Tomography 2022,

8, 158–174. [CrossRef] [PubMed]
35. Lange, K. Convergence of EM image reconstruction algorithms with Gibbs smoothing. IEEE Trans. Med. Imaging 1990, 9, 439–446.

[CrossRef] [PubMed]
36. Huber, P.J. Robust Statistics; John Wiley & Sons: New York, NY, USA, 1981.

https://doi.org/10.1088/0031-9155/51/15/R01
https://www.ncbi.nlm.nih.gov/pubmed/16861768
https://doi.org/10.1109/JPROC.2019.2936809
https://doi.org/10.1109/TRPMS.2020.3014786
https://doi.org/10.1109/TRPMS.2022.3161569
https://doi.org/10.1109/TMI.2018.2832613
https://doi.org/10.1109/TMI.2018.2830381
https://doi.org/10.1002/mp.12344
https://www.ncbi.nlm.nih.gov/pubmed/29027238
https://doi.org/10.1007/s00259-022-05746-4
https://www.ncbi.nlm.nih.gov/pubmed/35312031
https://doi.org/10.1109/TRPMS.2020.3004408
https://doi.org/10.1109/TMI.2018.2799231
https://www.ncbi.nlm.nih.gov/pubmed/29870362
https://doi.org/10.1137/1034115
https://doi.org/10.1080/00401706.1979.10489751
https://doi.org/10.1109/TIP.2012.2195015
https://doi.org/10.1109/TIP.2016.2601783
https://doi.org/10.1109/TMI.2018.2823679
https://doi.org/10.1088/1361-6560/ac0f9a
https://www.ncbi.nlm.nih.gov/pubmed/34186530
https://doi.org/10.1117/1.482752
https://doi.org/10.1137/040616024
https://doi.org/10.1109/TIP.2009.2029593
https://www.ncbi.nlm.nih.gov/pubmed/19666338
https://doi.org/10.1109/LSP.2015.2465291
https://doi.org/10.1109/TIP.2012.2214043
https://doi.org/10.3390/s20051536
https://doi.org/10.1109/TIP.2013.2265881
https://doi.org/10.1109/TMI.2012.2211378
https://doi.org/10.1088/0031-9155/61/18/6833
https://doi.org/10.3390/s19235299
https://www.ncbi.nlm.nih.gov/pubmed/31805743
https://doi.org/10.3390/tomography8010013
https://www.ncbi.nlm.nih.gov/pubmed/35076630
https://doi.org/10.1109/42.61759
https://www.ncbi.nlm.nih.gov/pubmed/18222791


Sensors 2023, 23, 5783 19 of 19

37. Li, S.Z. Close-form solution and parameter selection for convex minimization-based edge-preserving smoothing. IEEE Trans.
Pattern Anal. Mach. Intell. 1998, 20, 916–932. [CrossRef]

38. Hsiao, I.-T.; Rangarajan, A.; Gindi, G. An accelerated convergent ordered subset algorithm for emission tomography. Phys. Med.
Biol. 2004, 49, 2145–2156. [CrossRef]

39. Hudson, H.M.; Larkin, R.S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging
1994, 13, 601–609. [CrossRef]

40. Vardi, A.; Shepp, L.A.; Kaufman, L. A statistical model for positron emission tomography. J. R. Stat. Soc. 1985, 80, 8–37. [CrossRef]
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