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Abstract: A high-gain low-profile reflector antenna with dual-band radiation ability is presented in
this paper. The antenna achieves a relative 2 dB gain bandwidth of 10% around fl, and a relative
2 dB gain bandwidth of 20%, around fh, where fl and fh are the center operating frequencies of the
frequency bands of 29.4~32.4 GHz and 142~174 GHz, respectively. To achieve the dual-band radiation
ability, a composite dual-band feed with an fh/fl ratio of around 5 is proposed as the feed for the
reflector antenna, which includes a higher-band circular waveguide and a lower-band coaxial horn.
The metallic elliptical surface serves as the subreflector (SR) in the higher band, while the SR is
the planar reflectarray in the lower band. Due to the design of the dual reflector, the dual-band
reflector antenna features a low focal-to-diameter (F/D) ratio of approximately 0.2. According to
the simulated results, the proposed reflector antenna achieves efficiencies of 59.0% and 42.9% at fl
and fh, respectively. For verification purposes, a Ku/E-band scaled prototype is manufactured. The
measured VSWRs, radiation patterns, and gains are in reasonable agreement with the simulated ones,
proving the correctness of the proposed design method.

Keywords: dual band; reflector antenna; low profile; reflectarray; high gain; low cost

1. Introduction

The millimeter wave (MMW) and terahertz (THz) bands are widely used in wireless
communications due to their high data rate, wide transmission bandwidth, and high secu-
rity. Owing to the massive increase in application scenarios, spectrum resources in different
frequency bands have been explored and utilized, e.g., the 220 GHz antenna for sensing [1]
and 0.3 THz and 0.5 THz antennas for high-speed wireless data transmission [2–4]. With
the increasing exploitation of spectrum resources, the number of required antennas is also
increasing, leading to higher costs. Therefore, a single antenna that can work in different
frequency bands can reduce the number of antennas and save on costs. Moreover, in order
to guarantee the wireless link budget, it is important to enhance the antenna directivity.

With the development of wireless communication systems, characteristics such as high
gain, high efficiency, low profile, and low cost are required for MMW/THz communication
systems. In recent decades, researchers have developed various types of antennas to accom-
modate these requirements. For instance, substrate-integrated waveguides (SIWs) [5–7]
are employed to achieve high gain. However, these array antennas exhibit low-efficiency
performance due to dielectric loss when the array scale increases to 32 × 32. In addition,
waveguide slot array antennas in [8,9] are among the solutions for MMW/THz antennas.
However, the processing cost is increased due to their intricate structure. To accommo-
date high-gain and high-efficiency requirements, reflector antennas have been extensively
investigated in communication systems.

In recent decades, various methods of designing dual-band reflector antennas have
been proposed [10–28]. Ultra-wideband feed antennas, capable of covering two different
bands, have been proposed, e.g., quadridge horn [14], sinuous feed antenna [15], and
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Eleven feed antenna [16]. However, these antennas have some shortcomings. For example,
the phase center of the quadridge horn and the polarization direction of the sinuous feed
change based on frequency, which can cause deterioration in the dual-band performance
of the reflector antenna. Similarly, the radiation patterns of Eleven feed antenna change
significantly based on frequency. Therefore, it cannot be guaranteed that the efficiency
of the reflector antenna will maintain an acceptable level throughout the entire operating
bandwidth [17].

Additionally, a dual-band feed antenna can be used to illuminate the main reflec-
tor antenna to achieve dual-band functionality [18–22]. However, when this approach
is applied in MMW/THz bands, dual-band feeds may confront processing challenges
due to the complicated structures of the feed antenna [18,19]. To obtain a high aperture
efficiency of the reflector antenna, a high focal-to-diameter (F/D) [20–22] ratio is required.
Generally, the profile of the reflector antenna is relatively high, which contradicts the
low-profile requirement.

Essentially, the two methods, i.e., utilizing ultra-wideband feed antennas and us-
ing dual-band feed antennas for dual-band operation, focus on the designs of feed an-
tennas. To obtain dual-band capability through the subreflector (SR) of the antenna, a
frequency-selective SR (FSSR), which can separate the higher- and lower-band feeds, is
introduced [23–27]. Generally, the FSSR is designed to reflect signals in one frequency band
and propagate signals in the other frequency band. However, the unavoidable deterioration
of radiation occurs due to the imperfect reflection and transmission of the FSSR [26,27], and
the use of the FSSR also leads to a high profile.

To achieve a lower profile, dual reflectors are employed in the design, instead of a
single reflector. For example, a subreflectarray (SRA) is employed in [28] as the SR which
can work in two different frequency bands. To achieve dual-band radiation capability, the
elements of the SRA must function well in both of the bands. However, due to limitations
on the operating frequency bandwidth of the elements, the application of the SRA is limited,
especially when the dual-band reflector antennas operate with a large frequency ratio.

In this paper, a high-gain low-profile reflector antenna with dual-band radiation
capability is proposed. A composite dual-band feed with an fh/fl of around 5 is utilized as
the feed for the reflector antenna, where fl and fh are 30.9 GHz and 158 GHz, respectively.
Two SRs are designed separately, one is the SRA, employed for lower-band operation, and
the other is the metal SR, employed for higher-band operation. Compared to conventional
dual-band reflector antennas, the proposed dual-band reflector antenna features a lower
profile. Furthermore, the proposed reflector antenna is fabricated, and the measured results
verify the simulated dual-band performance in the two bands.

2. Antenna Configuration and Design
2.1. Main Reflector, SRA, and Higher-Band SR

The configuration of the low-profile dual-band reflector antenna is shown in Figure 1.
It consists of a main reflector, a composite feed, an SRA, and a higher-band SR. In detail,
the main reflector, which is a ring-focus reflector, is shaped by rotating the curve along the
ring-focus curve. The diameter of the main reflector is 78.5λh, where λh is the free-space
wavelength at the higher frequency fh. Additionally, the composite feed, with the fh/fl ratio
around 5, consists of a higher-band coaxial horn and a lower-band ring focus. Furthermore,
the lower-band ring-focus SRA is a small reflectarray and designed by employing the
rules mentioned in [28], while the higher-band SR is a metallic curving SR and formed by
rotating the ellipse curve along the Z axis. Moreover, a metal clad layer serves as the SR in
the higher band, which is attached to the top surface of the higher-band subreflector. The
material of the substrates in the antenna is employed with a relative permittivity of 2.2 and
a dielectric loss tangent of 0.01.
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Figure 1. Configuration of the low-profile dual-band reflector antenna. 

The cross section of the geometry is illustrated in Figure 2. The point F1 under SR is 
not only the phase center of the ring-focus main reflector but also one of the focal points 
for both lower-band and higher-band rays. The point F2 is the phase center of the lower-
band feed and the other focal point for lower-band rays. The phase center of the higher-
band feed coincides with the other focus of the SR, as represented by the point F3, which 
is located on the symmetry axis of the SR. Figure 2 shows the sketch of ray paths in both 
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construction, and the distance between the center of the SRA and F2 is 6.02λh. The distance 
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15.7λh, which is a compromise between the smaller blockage of the SRA and the reduced 
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diameter of the SR. θm is the semi-flare angle of the dielectric guide and F is the focal 
length of the main reflector. According to these three parameters and D, the curve 
equations of the main reflector and SR are uniquely determined. 

Figure 1. Configuration of the low-profile dual-band reflector antenna.

The cross section of the geometry is illustrated in Figure 2. The point F1 under SR is
not only the phase center of the ring-focus main reflector but also one of the focal points for
both lower-band and higher-band rays. The point F2 is the phase center of the lower-band
feed and the other focal point for lower-band rays. The phase center of the higher-band
feed coincides with the other focus of the SR, as represented by the point F3, which is
located on the symmetry axis of the SR. Figure 2 shows the sketch of ray paths in both
bands. Different SRs are designed separately to achieve dual-band operation ability and
the SR designs, for both bands, are demonstrated as follows:

(1) According to the geometric optics (GO) theory, lower-band rays emerging from the
point F2 are first reflected by the SRA. Then, the rays reach the main reflector. Finally,
the rays are reflected into the airspace along the Z axis. The dashed line in Figure 2
represents the virtual ray path from the SRA to the focal point F1, which the ray does
not actually pass through. The SR can provide the compensation phase for lower-band
rays and, as a result, the virtual rays arriving at focal point F1 are in phase. Based
on the different lengths of lower-band ray paths, the desired compensation phase for
SRA elements in various locations can be calculated.

According to the GO theory analysis, the desired compensation phase for each element
on the SRA aperture can be calculated by

phasedesired
mn = kR1mn + kR2mn (1)

where k is the wavenumber in free space, and the spatial distance between the point F2
and the mnth element of SRA is represented by R1mn. Moreover, the distance between the
point F1 and the mnth element of SRA is represented by R2mn. The SRA is a symmetric
construction, and the distance between the center of the SRA and F2 is 6.02λh. The distance
between F1 and the surface of the SRA is 1.57λh. Moreover, the diameter of the SRA is
15.7λh, which is a compromise between the smaller blockage of the SRA and the reduced
spillover loss of the lower-band feed.

(2) Based on the GO theory, higher-band rays that emerge at point F3 are first reflected
by the SR. Then, these higher-band rays pass through point F1 and reach the main
reflector. Finally, the higher-band rays are reflected into the airspace. Here, DS is the
diameter of the SR. θm is the semi-flare angle of the dielectric guide and F is the focal
length of the main reflector. According to these three parameters and D, the curve
equations of the main reflector and SR are uniquely determined.
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feed is a circular waveguide, while the lower-band feed is composed of a dielectric, a con-
ical coaxial horn, and a waveguide connector. The dielectric serves as a supporting struc-
ture that maintains the relative position of the conical coaxial horn and the circular wave-
guide stable. Due to its small size, the dielectric has minimal influence on the lower-band 
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Figure 2. Sketch of ray paths in the lower and higher bands.

Because the DS is much smaller than the D, the shadow influence of the higher-band
subreflector can be ignored and the lower-band SR can be designed without considering
the influence of the higher-band subreflector and support dielectric.

2.2. Composite Feed

A composite feed operating in MMW/THz bands is proposed. As shown in Figure 3,
the composite feed consists of a higher-band feed and a lower-band feed. The higher-band
feed is a circular waveguide, while the lower-band feed is composed of a dielectric, a conical
coaxial horn, and a waveguide connector. The dielectric serves as a supporting structure
that maintains the relative position of the conical coaxial horn and the circular waveguide
stable. Due to its small size, the dielectric has minimal influence on the lower-band feeding.
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Figure 3. Geometries of (a) split view, (b) 3D view, and (c) cross section of composite feed in YOZ
plane. Key parameters: r1 = 0.88λh, r2 = 4.71λh, r3 = 0.68λh, r4 = 3.22λh, d1 = 4.06λh, d2 = 1.68λh,
d3 = 1.31λh, h1 = 2.88λh, h2 = 4.97λh, h3 = 15.47λh, D = 78.5λh, Ds = 2.62λh, θm = 45◦, F = 14.92λh.
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The diameters of circular waveguides are important for the working band. Therefore,
it is crucial to determine the dimensions of the waveguides first. Firstly, the diameter of the
circular waveguide for the higher-band feed is chosen to be r3 = 0.68λh, ensuring that the
TE11-mode electromagnetic waves propagate within the frequency range of 0.90~1.10 fh, as
shown in Figure 4b. Secondly, the diameter of the coaxial waveguide for the lower-band
feed is chosen to be r4 = 3.22λh, which can sustain the propagation of the first higher-order
TE11 mode within the frequency range of 0.91~1.10 fl. Figure 4a shows the transmission
coefficients of the first and second higher-order modes of electromagnetic waves in the
lower band, propagating in the coaxial waveguide. As a result, the desired first higher-
order TE11 mode of electromagnetic waves can be propagated in the coaxial waveguide.
Thirdly, the waveguide connector is chosen as the mode converter. The first higher-order
TE11 mode of the coaxial waveguide can be excited by the TE11-mode transmission mode
of the waveguide connector, as the electric field distribution of the TE11-mode is similar
between rectangular waveguides and coaxial waveguides. Finally, port 1 of the coaxial
waveguide is connected to the rectangular waveguide, as shown in Figure 4b. The figure
displays the TE11-mode transmission coefficients of the circular waveguide and the coaxial
waveguide within the higher and lower bands separately. Therefore, the TE11 mode of a
coaxial waveguide can be excited by a rectangular waveguide with low loss in the lower
band. The TE11-mode transmission coefficients of the coaxial waveguide in the lower
band can be optimized by the parameters of the rectangular waveguide connector, as
shown in Figure 3a. The parameters of the dielectric can be adjusted properly to achieve
an acceptable matching impedance in the lower band, and the diameters of the stepped
cylinders located at the bottom of the dielectric can be adjusted properly to reduce the feed
mismatch loss in the higher band. The simulated reflection coefficients of the composite
feed are shown in Figure 5, suggesting that the simulated reflection coefficients are below
−15 dB in both bands.
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The simulated gain and aperture efficiency in the higher band are shown in Figure 6,
based on the full-wave simulations. As a result, the reflector antenna achieves a gain
higher than 43 dBi and an aperture efficiency higher than 39% over the entire higher band.
Meanwhile, a relative 2 dB gain bandwidth of the higher operating band is approximately
20%, around fh. Furthermore, the simulated normalized co-polarization (Co-pol) and cross-
polarization (Cr-pol) radiation patterns at fh are shown in Figure 6b. The simulated Cr-pol
patterns are −50 dB lower than the maximum direction in both E- and H-planes.
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Table 1 summarizes the estimated aperture efficiency and gain loss reduction attributed
to fh. The calculated total losses at fh are 3.7 dB, with taper loss, spillover loss, and dielectric
loss being the main contributing factors. Additionally, the shade loss results from the
shielding of the lower-band SR at fh. Furthermore, the simulated gain closely matches the
calculated gain.
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Table 1. Loss budgets and aperture efficiency at fh.

Factors Gain (Efficiency)

Maximum directivity (dB) 47.66 (100%)
Feed mismatch loss (dB) 0.066 (98.5%)

Dielectric loss (dB) 0.97 (78.8%)
Spillover loss (dB) 0.97 (63.0%)

Taper loss (dB) 1.10 (48.5%)
Shade loss (dB) 0.50 (43.2%)

Calculated gain (dB) 43.85 (43.2%)
Simulated gain (dB) 44.0 (42.9%)

2.3. Element of Lower-Band SRA

Due to the small diameter of the SRA, a subwavelength element is employed as
the element of the SRA. It can more accurately achieve phase compensation than a half-
wavelength element in such a small area. The SRA element consists of a cross patch and
a rectangular loop [28], as shown in Figure 7. In addition, the size length of the square
element is L = 0.23λl, where λl is the free-space wavelength at fl. The element is etched on
a 0.077λl thick dielectric substrate with a relative permittivity of 2.2, and a dielectric loss
tangent of 0.0009. The reflection phase curves consider different polarizations of the incident
wave. The infinite periodic element model is built to simulate the reflection phase at fl.
Moreover, another important consideration in the element analysis is the reflection phase
under oblique incidences, as shown in Figure 7. Based on the relative position between
the SRA and the lower-band feed, the maximum incident angle is about 50◦. Then, a max
phase range over of 430◦ is obtained under different incident angles. It can be seen that
the reflection phase of the SRA element varies with the incident angle, and the maximum
phase change within the oblique incidence range of 0◦ to 50◦ is approximately 80◦.
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The range of the desired compensation phase is from 0◦ to 950◦ according to Formula (1).
It is difficult for the SRA element to achieve such a wide compensation phase range from
0◦ to 950◦. Thus, a modified formula is proposed to calculate the desired compensation
phase for each element on the SRA aperture:

phasedesired
mn = mod(kR1mn + kR2mn + ∆Φ, 430) (2)
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To reduce the zones of sharp phase variation, the desired compensation phase is
divided by 430, as the maximum phase range over is over 430◦. Moreover, the ∆Φ is a
constant reference phase that can optimize the desired compensation phase in the SRA.
The desired compensation phase, as shown in Figure 8a and represented by Formula (2),
occurs when ∆Φ is 170◦. A large phase variation from 400◦ to 50◦ is observed in the middle
of the SRA, as illustrated in Figure 8a. This sharp phase variation, approximately 350◦

between adjacent elements in the middle of the SRA, results in a significant change in
the geometrical parameters between adjacent elements. Due to this abrupt variation in
the geometrical parameters of adjacent elements, the local periodicity assumption for the
elements is not satisfied, which in turn affects the phase shift performance of the elements
within the area of sharp variation. Even worse, the area of sharp variation is located in the
middle of the SRA, where the energy illuminated from the composite feed is at its strongest.
Most of the energy reflected by the SRA is not compensated for the desired phase. Thus, the
sharp phase variation arising in the middle of the SRA will lead to a degenerated radiation
performance. As shown in Figure 8b, the radiation patterns at fl show a gain lower than
26 dBi, corresponding to an antenna aperture efficiency lower than 17%. Additionally, the
degenerate radiation patterns exhibit high sidelobes.
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patterns at fl.

In order to decrease the influence of sharp phase variation in the SRA, the value of ∆Φ
is designed to be 90◦. It can be clearly seen from Figure 9a that no sharp phase variation
arises in the middle of the SRA. The area of unavoidable sharp phase variation is moved to
the edges of the SRA, not in the middle area, due to the designed ∆Φ. Consequently, the
best radiation performance of the reflector antenna is achieved, as shown in Figure 9b. The
gain of radiation patterns at fl is 31.4 dBi, corresponding to an antenna aperture efficiency
of 59%. Moreover, the optimized radiation patterns show that the high sidelobes are lower
than −13 dB. Table 2 summarizes the estimated aperture efficiency and gain loss reduction
attribution at fl. The calculated total losses at fl are 2.4 dB, with taper loss as the main loss
factor. Shade loss is the shielding of the lower-band SR at fl. Additionally, the simulated
gain is close to the calculated gain.
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Table 2. Loss budgets and aperture efficiency at fl.

Factors Gain (Efficiency)

Maximum directivity (dB) 33.70 (100%)
Feed mismatch loss (dB) 0.46 (90.5%)

Dielectric loss (dB) 0.066 (89.1%)
Spillover loss (dB) 0.46 (80.2%)

Taper loss (dB) 1.31 (59.3%)
Shade loss (dB) 0.09 (58.2%)

Calculated gain (dB) 31.4 (58.2%)
Simulated gain (dB) 31.4 (59.0%)

3. Measurement Verifications

To verify the dual-band antenna performance, a prototype was manufactured and
measured. Considering that the antenna is composed of metal and linear dielectric ma-
terials, excluding ferrites, it meets the fundamental scaling principles versus frequencies.
Meanwhile, since the anechoic chamber corresponding to the interesting frequency bands
in our university was unavailable, it was difficult to accurately measure the radiation
patterns at terahertz frequencies. Therefore, the dual-band MMW/THz antenna was scaled
to Ku/E-band, and Ku-band performance was accurately measured. The higher band
performance has not been experimentally verified, but the simulated results show that
the dual-band antenna in the higher band can achieve high gain and high radiation effi-
ciency. The scaled antenna has an aperture dimension of 300 × 300 × 93 mm3, as shown
in Figure 10a,b. Meanwhile, the composite feed and SRA are shown in Figure 10c,d. The
machining process was employed to fabricate all parts of the antenna except the SRA, and
the Printed Circuit Board (PCB) technique was utilized to manufacture the SRA. Because
the reflector was assembled from several parts using screws and glue, it was difficult to
precisely take account into the errors of assembly when the model was simulated.
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Figure 10. Photographs of the manufactured reflector antenna: (a) Top view and (b) 3D view of
dual-band reflector antenna. (c) The SRA. (d) The composite feed.

The simulated and measured reflection coefficients of the scaled feed in the Ku band
are shown in Figure 11. The Ku-band performance of the scaled prototype can represent
the low-band performance of the proposed antenna. There are slight differences between
the simulated and measured reflection coefficients, mainly due to fabrication tolerance and
assembly misalignment. The measured reflection coefficients are below −15 dB within the
desired frequency band of 14.7~16.2 GHz.
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ite feed.

The gain of the manufactured antenna is shown in Figure 12a. As can be seen, the
measured gains are higher than 29.9 dBi and the measured total efficiencies are better than
43% within the frequency band of 14.7~16.2 GHz. Meanwhile, the measured gain results
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show that the manufactured dual-band reflector antenna has a gain variation of less than
2 dB from 14.7 GHz to 16.2 GHz. The measured peak gain is 31.4 dBi, indicating an antenna
aperture efficiency of 60.2% at 15.2 GHz, as shown in Figure 12b. Thus, the proposed
dual-band reflector antenna can achieve high aperture efficiency and high gain with a low
F/D of about 0.2. Moreover, the difference between the measured and simulated gains is
less than 1 dB in the 14.7~16.2 GHz band.
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Figure 12. Simulated and measured (a) gains and (b) aperture efficiency of the reflector antenna
within the lower band.

Figure 13 shows the comparison of simulated and measured normalized Co-pol and
Cr-pol gain patterns at 15.4 GHz. As shown in Figure 13, the measured first sidelobe
levels (SLLs) are below −10 dB in both the E-/H-planes. In terms of Co-pol, the measured
main beam and first SLLs show good agreement with the simulated results in both the
E-/H-planes. Additionally, the Cr-pol level of the measured results is below −25 dB, which
is higher than the simulated results. The performance of the fabricated dual-band reflector
antenna is sensitive to the distance between SRA and the conical coaxial horn. The copper
clad is attached to the surface of the support substrate, serving as the higher-band SR,
and an air gap appears between the surface of the support dielectric and the dielectric in
the E-band feed. The difference between the measured and simulated results is probably
caused by the air gap. Nevertheless, the agreement of the measurement and the simulation
indicates that the proposed dual-band reflector antenna is designed properly.
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Figure 13. Simulated and measured radiation patterns at 15.4 GHz in normalized (a) H-plane and
(b) E-plane.
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To clearly demonstrate the good radiation performance of the designed reflector
antenna, Table 3 presents a comparison between the proposed dual-band reflector antenna
and several reported works on dual-band MMW/THz reflector antennas. Compared to
other dual-band MMW/THz antennas, the proposed antenna achieves high gain and high
aperture efficiency at a low cost. Meanwhile, the proposed dual-band reflector antenna
features a lower profile than that of most reported dual-band reflector antennas.

Table 3. Comparison between references and our work.

Ref F/D Frequency Range
(GHz)

Peak Gain
(Lower/Higher

Band)

Efficiency
(Higher/Lower

Band)
Type *

[28] 0.45 21~25.5/31.5~35.5 34.6 dBi/38.1 dBi 52.6%/54.6% Horn + SRA
[29] 0.32 3.4~3.8/24.9~36 13.0 dBi/32.1 dBi 42%/47% Dual-band horn + SR
[30] 0.3 35/94 43.6 dBi/51.3 dBi 26.6%/21.8% Dual-band horn
[31] 0.5 65~80/115~125 20.3 dBi/21.9 dBi 4.8%/2.7% Dual-band horn
[32] 1 35.5/94 44.1 dBi/49.6 dBi 40.6%/20.5% Dual-band horn
[33] 1.95 20~28/65~75 23.2 dBi/30.7 dBi 43.8%/33.7% Dual-band horn

This work 0.2 29.4~32.4/142~174 ** 31.4 dBi/45.0 dBi 59.0%/44.0% Composite horn + SRA

* Type represents the form of feed and SR. ** The frequency range is the simulated frequency range.

4. Conclusions

In this paper, a dual-band MMW/THz high-gain low-profile reflector is proposed. The
composite feed, with an fh/fl ratio of around 5, consists of a lower-band coaxial horn and
a higher-band ring-focus feed. The lower-band SRA is a small planar reflectarray, while
the higher-band SR is an elliptical SR. Due to the SRs, the dual-band reflector antenna can
achieve a low F/D (F/D = 0.2) in both bands. To validate the proposed design method,
a scaled dual-band reflector antenna is manufactured, assembled, and its lower-band
radiation performance is measured. In the lower band, the proposed antenna achieves a
31.4 dBi peak gain, and the aperture efficiency is about 60.2%. Meanwhile, the proposed
antenna achieves a 45.0 dBi peak gain in the higher band, and the aperture efficiency is
above 44%. When operating in the lower band, the proposed antenna achieves a relative
2 dB gain bandwidth of about 10%, around fl, while the proposed antenna, when operating
in the higher band, achieves a relative 2 dB gain bandwidth of approximately 20%, around
fh. The measured results, including the radiation patterns, gain, and reflection coefficient
results, all agree well with the simulations. Hence, the effectiveness of the proposed method
in designing a high-gain low-profile reflector antenna with dual-band radiation capability
is demonstrated. The antenna has the characteristics of low cost and high gain, providing a
solution for commercial applications in dual-band communication.
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