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Abstract: This paper presents an efficient underwater image enhancement method, named ECO-
GAN, to address the challenges of color distortion, low contrast, and motion blur in underwater robot
photography. The proposed method is built upon a preprocessing framework using a generative
adversarial network. ECO-GAN incorporates a convolutional neural network that specifically targets
three underwater issues: motion blur, low brightness, and color deviation. To optimize computation
and inference speed, an encoder is employed to extract features, whereas different enhancement
tasks are handled by dedicated decoders. Moreover, ECO-GAN employs cross-stage fusion modules
between the decoders to strengthen the connection and enhance the quality of output images. The
model is trained using supervised learning with paired datasets, enabling blind image enhancement
without additional physical knowledge or prior information. Experimental results demonstrate that
ECO-GAN effectively achieves denoising, deblurring, and color deviation removal simultaneously.
Compared with methods relying on individual modules or simple combinations of multiple modules,
our proposed method achieves superior underwater image enhancement and offers the flexibility for
expansion into multiple underwater image enhancement functions.

Keywords: underwater image enhancement; convolutional neural network (CNN); generative
adversarial networks (GANs); feature extraction; cross-stage fusion

1. Introduction

Underwater vision has emerged as a vital tool for exploring the marine environment,
offering non-invasive access and rich information content. High-quality underwater images
play a crucial role in providing valuable information for underwater robots engaged in
various missions, such as underwater exploration, marine archaeology, underwater rescue,
and underwater imaging. However, underwater images are prone to color distortion, low
contrast, and motion blur due to the absorption and scattering of light [1–5]. Consequently,
enhancing the quality of underwater optical imaging has become a significant research
focus in the field of ocean engineering and computer vision [6–10].

Over the past few decades, researchers and experts have devoted substantial efforts to
underwater image enhancement. Various methods can be categorized as physical model-
based [1–5], non-physical model-based [6–9], and data-driven approaches [10–22]. Physical
model-based methods treat underwater image enhancement as an inverse problem and
rely on estimating the parameters of the image formation model to obtain clear underwater
images. One of the most widely used methods is the dark channel prior (DCP) model,
including underwater dark channel prior (UDCP) [1] and generalized dark channel prior
(GDCP) [2]. Another approach considers the optical characteristics of underwater images,
such as forecasting scene transmission using the attenuation differences of RGB color
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channels [3], underwater image enhancement based on minimum information loss and
histogram prior distribution considering the relationship between background color and
optical properties of the medium [4,5], and underwater image color correction methods [6].
However, physical model-based methods suffer from two main drawbacks. First, they
often require prior knowledge due to the complex underwater environment, limiting their
effectiveness. Second, these methods rely on simplified image formation models that as-
sume uniform decay coefficients across color channels, resulting in unstable enhancements
and suboptimal visual effects.

In contrast to physical model-based methods, non-physical model-based approaches
directly manipulate pixel values to enhance underwater images. These methods include
white balance [7], grayscale world theory [8], and histogram equalization [9]. For instance,
a white balance method presented in [7] enhances underwater images through gamma
correction and sharpening, whereas a variational Retinex method proposed in [8] involves
color correction, layer decomposition, and late enhancement. Furthermore, a two-step
approach combining color correction and contrast enhancement was introduced in [9].
However, these methods often overlook the unique optical properties of underwater
images, leading to color biases and oversaturation or undersaturation in different regions.
They also fail to fully consider the degradation mechanisms, resulting in red artifacts and
potential introduction of pseudo-targets.

As deep learning methods are widely used in image processing and computer vision,
enhanced methods for underwater images have been developed rapidly. Chang et al. [23]
systematically discussed the application of generative adversarial networks (GANs) in
scene graphs. Zhang et al. [24] highlighted the transferability aspect of the proposed
method. In zero-shot learning [25] and unsupervised methods [26], GANs demonstrate
their flexibility in application. By designing end-to-end networks, complex underwater
image degradation models can be avoided. Typical underwater image enhancement meth-
ods include GAN-based and convolutional neural network-based (CNN-based) models.
Fabbri et al. [10] employed conditional GAN (cGAN) to tackle underwater image enhance-
ment as an image-to-image conversion problem. Building upon this work, Yu et al. [11]
incorporated perceived loss into the cGAN framework for underwater image color correc-
tion. Subsequent studies explored multi-scale dense GANs for underwater image enhance-
ment [12,13]. Liu et al. proposed a deep multiscale feature fusion network for underwater
image color correction. However, GAN-based underwater image enhancement methods
heavily rely on aligned underwater image pairs, which are often challenging to obtain. Ad-
ditionally, most of these methods primarily focus on color correction and overlook overall
detail enhancement, leading to suboptimal visual effects. To address these issues, unsuper-
vised underwater image enhancement methods have been proposed [12,15,16]. Li et al. [15]
introduced WaterGAN, a GAN-based algorithm that generates realistic underwater images
from aerial images and their corresponding depth maps, providing unsupervised color
correction. Islam et al. [16] proposed a rapid underwater image enhancement method for
real-time preprocessing in an autonomous pipeline using a CycleGAN-based visual-guided
underwater robot. Furthermore, Hong et al. [20] proposed a weakly-supervised underwater
image enhancement (WSUIE) method to reduce reliance on raw/enhanced underwater
image alignment. However, the practical application of these algorithms is significantly
limited due to the difficulty in obtaining corresponding depth maps.

In CNN-based underwater image enhancement, Anwar et al. [18] introduced UWCNN,
an end-to-end model trained on a synthetic underwater image dataset. Sun et al. [19]
proposed a deep model for underwater image enhancement using an encoder–decoder
framework with skip connections to preserve low-level features and expedite training.
Wu et al. [21] developed an underwater image CNN (UWCNN-SD) based on structure
decomposition to address color distortion, blurred details, and low contrast in underwa-
ter images. Li et al. [22] proposed an adaptive algorithm utilizing random wired neural
networks (RWNN) and co-evolution (SE) to perform color adjustment, contrast improve-
ment, luminance enhancement, and detail enhancement with edge retention techniques.
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However, despite the powerful feature extraction capabilities of CNNs, most CNN-based
underwater image enhancement algorithms operate in the RGB color space. Although
the RGB color space can address scattering issues and improve color deviation, it fails to
directly capture critical parameters related to quality degradation, such as low contrast,
saturation, and luminance.

Given the complex light propagation characteristics in the ocean, leading to severe
color distortion, low contrast, and motion blur in underwater robot photography, this
paper proposes an efficient image preprocessing framework called ECO-GAN based on a
generative adversarial network. The framework enables blind enhancement of individual
underwater images. ECO-GAN incorporates a CNN to tackle three underwater problems:
dynamic blur, low brightness, and color bias. Firstly, we utilize the U-Net structure to
sample the input underwater image and extract features of different scales through the
encoder. Subsequently, by analyzing the multi-scale features and under the constraint of
the objective function, we alleviate the quality issues while upsampling and recovering the
image to its original size, thereby achieving blind image denoising (removing unknown
noise from noisy images). The contributions of this article are as follows:

(1) We propose a generative adversarial network capable of efficiently addressing
various image enhancement tasks for underwater images with multiple defects.

(2) The designed image enhancement model enables simultaneous enhancement
of three distinct image enhancement tasks. By employing feature extraction through
repeated encoders and dedicated decoders for different enhancement tasks, computational
complexity is reduced and inference speed is improved.

(3) ECO-GAN incorporates cross-stage fusion modules between decoders for mul-
tiple enhancement tasks, thereby enhancing the interconnection between decoders and
improving the quality of output images.

2. Underwater Image Enhancement Network

Figure 1 presents the block diagram of the ECO-GAN structure for underwater image
enhancement. ECO-GAN consists of a generator and three discriminators. During the
training stage, original underwater images are input to the generator to learn the corre-
sponding multiscale residual map, recovering three potentially clear images at different
upsampling stages. These results are then passed to the corresponding discriminator,
which independently assesses their authenticity at different scales. In the inference stage,
the generator enables end-to-end underwater image enhancement for input underwater
images. Now, we will delve into the details of the generator and the discriminator.

2.1. Generator

The generator structure of ECO-GAN, as depicted in Figure 2, comprises three parts:
downsampled feature extraction, upsampled image recovery, and cross-stage fusion. The
main functions of the generator include luminance enhancement, blur removal, and
white balance.
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To reduce computational complexity, we reused the backbone feature extraction net-
work and extracted features only once. This design was motivated by Zhang et al. [27], who
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implemented three separate functions and combined them in series. However, repeatedly
extracting features three times can be computationally expensive. In our approach, we
employed a classical U-Net structure and proposed a cross-stage fusion module to establish
connections between the three branches. The U-Net structure resembles the letter “U” and
enables efficient feature extraction and image recovery. The cross-stage fusion module is to
combine the feature extracted by current-stage network and last-stage network.

As shown in Figure 2, our model is designed to realize three tasks and reuse backbone
for reducing calculations. To recover the raw input image Iin to the final image I f , we utilize
a function F(·) to extract features at different scales and a function G(·) to recover them.

I f = G(F(Iin)) (1)

For the three specific tasks, we introduce three different functions, namely, G1, G2, and
G3, to recover extracted features. Our target tasks are specified by paired datasets.

output1 = G1(F(Iin)) (2)

output2 = G2(F(Iin)) (3)

output3 = G3(F(Iin)) (4)

where output1, output2, and output3 are outputs of G1, G2, and G3, respectively.
To integrate these tasks, we need Gt, which utilizes the features extracted by F and

recovered by G1, G2, and G3 at different scales. We can express the estimate of the final
enhanced image as follows:

Î f = Gt(F(Iin), G1(F(Iin)), G2(F(Iin)), G3(F(Iin)))

= Gt
′(F(Iin)) (5)

where Î f is the estimate of I f ; Gt is a function that can utilize features extracted by F and
recovered by G1, G2, and G3 at different scales; and Gt

′ is an alternate form of Gt.
To optimize the model and reduce computational costs, we leverage a backbone

feature extraction network to extract features at different scales in the downsampling
stage. The backbone feature extraction network adopts a modular design, incorporating
convolutional layers, batch normalization layers, and activation layers. The outputs of each
downsampling module are connected to the corresponding module in the upsampling
image recovery stage through skip connections. This approach effectively addresses the
issue of gradient disappearance. In the upsampling stage of image recovery, we employ
three upsampled image recovery branches that correspond to the three image enhancement
tasks: luminance enhancement, blur removal, and white balance. The image recovery
branch also adopts a modular design, where each module consists of deconvolution, batch
normalization layers, and activation layers.

Both the backbone feature extraction network and the image recovery branches follow
a U-Net structure. The downsampling module utilizes skip connections to propagate
extracted features to the subsequent upsampling recovery module, mitigating gradient
disappearance and guiding the direction of image repair. This is crucial because the
upsampling module outputs variations in the image rather than the image itself.

In the upsampling stage, an input image undergoes three separate image repair
branches to achieve blur removal, low-light enhancement, and color bias correction. To
improve the quality of image recovery, a cross-stage fusion module is incorporated to
integrate the recovery features from different enhancement tasks. The cross-stage fusion
module concatenates input features from different stages, adding two channels of ‘ch’
along the channel dimension to aid the recovery task at the current stage. This results
in a channel number of 2 × ch while maintaining the original width and height of the
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image. The number of channels is subsequently reduced to ‘ch’ through convolutional
layers, generating features that retain the original input feature size and contain multistage
information. Additionally, the cross-stage fusion module stacks the features of the previous
stage and the current stage. By introducing the features of the previous stage, it assists
with the recovery task of the current stage and further integrates the features through
convolution, maintaining the feature dimension. As a single model, the entire image
enhancement model can accomplish various enhancement tasks, striking a balance between
computational efficiency and performance.

2.2. Discriminator

The ECO-GAN discriminator distinguishes image blocks of size 70 × 70 to obtain
local-scale discrimination results and combines them with a standard global discriminator
to assess the entire image. This approach yields a two-scale least squares discriminator. In
this study, we adopt a two-scale least squares discriminator to determine the authenticity of
the image. The two-scale representation assesses the authenticity of the input image from
both a global semantic level and local detail level. This guides the generator to generate
real images at both scales, facilitating the production of realistic image details that improve
visual results. Since the ECO-GAN handles three image enhancement tasks, we utilize three
multilayer perceptrons as discriminant networks to evaluate the output of each generator
separately. The structure of the discriminator is illustrated in Figure 3, where ‘output i’
(i = 1, 2, 3) refers to the three images generated by the generator.
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2.3. Loss Function
2.3.1. Loss Function of the Generator

The loss function for the ECO-GAN generator is complex, encompassing multiple
components. It includes blur removal loss, low-light enhancement loss, and color bias
correction loss. From the neural network perspective, it comprises the generator loss LG
and the discriminator loss LD. The generator loss further consists of pixel detail loss,
abstract content loss, and adversarial loss.

LG = Ldb−G + Llt−G + Lwb−G (6)

LD = E
(

D
(
img′

))
− E

(
D
(
imggt))+ gp (7)
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gp = λE
[(∣∣∣∇imggt D

(
imggt)∣∣∣

2
− 1
)2
]

(8)

where the corresponding discriminator of each branch adopts the same loss function, and
LD, img, img′, and imggt represent the input original image, the generated image of the
generator output, and the label truth-value image, respectively. A gradient penalty term
proposed by Gulrajani et al., namely, Formula (3), is referred to here, and it is applicable
to multiple generator structures and requires little adjustment of hyperparameters, i.e.,
λ = 10 in this experiment.

The loss function of the generator for the blur removal branch is as follows:

Ldb−G = ∑pixels
pix

∣∣∣ img′ − imggt∣∣2 + LX−db + LossRaLSGAN
db

(
img, imggt) (9)

The loss function of the generator for the low-light enhancement branch is as follows:

Llt−G = ∑pixels
pix

∣∣∣ img′ − imggt∣∣2 + LX−lt + LossRaLSGAN
lt

(
img, imggt) (10)

The loss function of the generator for the color bias correction branch is as follows:

Lwb−G = ∑pixels
pix

∣∣∣ img′ − imggt∣∣1 + LX−wb + LossRaLSGAN
wb

(
img, imggt) (11)

LX =
1

Wi,j Hi,j
∑

Wi,j
x=1 ∑

Hi,j
y=1
(

Mi,j
(
img′

)
−Mi,j

(
imggt))2 (12)

where Mi,j represents the feature map between the convolutional layer i and convolutional
layer j of the convolutional neural network VGG19, and Wi,j Hi,j is the height and width
between the convolutional layer i and convolutional layer j.

2.3.2. The Loss Function of the Discriminator

To make the discriminator training faster and the network more stable, we use the
RaGAN-LS loss function proposed by Tetiana Martyniuk et al. in [28]:

LossRaLSGAN(x, z) = Ex∼Pdata(x)

[(
D(x)− Ez∼Pz(z)[D(G(z))]− 1

)2
]
+

Ez∼pz(z)

[(
D(G(z))− Ex∼Pdata(x)[D(x)] + 1

)2
]

(13)

where x represents the input data, which follows the distribution Pdata(x) and represents
the data generated by the generator,

∼
x = G(z); z represents a sample from the noise

distribution, which follows the distribution Pz(z); G and D represent the generator model
and the discriminator model, respectively; and E indicates the expectation.

3. Experiment
3.1. Evaluation Indicator

In this paper, we utilized PSNR as an evaluation index to measure the enhancement
effect of ECO-GAN. The width and height of a given image are h and w, respectively.
The enhanced image is recorded as Ic, whereas the original noise image is recorded as
In. The mean square error (MSE) of the enhanced and original images is defined as
MSE = 1

hw ∑h−1
i=0 ∑w−1

j=0 [Ic(i, j)− In(i, j)]2, and the PSRN (dB) is defined as:

PSNR = 10·log10

(
MAXI
MSE

)
(14)
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where MAXI is the maximum pixel value of the image. If each pixel is represented by a
B-bit binary number, then MAXI = 2B − 1. In this paper, if each pixel is represented by
an 8-bit binary number, then the MAXI is 255. In this paper, we accumulated PSNR of the
three channels of RGB.

In addition, we used structural similarity SSIM to measure the luminance, contrast,
and structure (structure) between samples x and y.

l(x, y) =
2µxµy + c1

µ2
x + µ2

y + c1
(15)

c(x, y) =
2σxσy + c2

σ2
x + σ2

y + c2
(16)

s(x, y) =
σxy + c3

σxσy + c3
(17)

where µx and µy are the mean of x and y, respectively; σ2
x and σ2

y are the variance of x and

y, respectively; σxy is the covariance of x and y; and c1 = (k1MAXI)
2 and c2 = (k2MAXI)

2

are the two constants. Take c3 = c2/2 and avoid dividing by zero. MAXI represents the
maximum value of pixels in the B-bit image, which is 255 in this paper.

Take k1 = 0.01, k2 = 0.03 as the default value, then

SSIM(x, y) =
[
l(x, y)α·c(x, y)β·s(x, y)γ

]
(18)

Set α, β, γ to 1, then

SSIM(x, y) =

(
2µxµy + c1

)(
2σxy + c2

)(
µ2

x + µ2
y + c1

)(
σ2

x + σ2
y + c2

) (19)

3.2. Experimental Results

The data used in this experiment were provided by the Underwater Robot Picking
Competition (URPC) organized by the National Natural Science Foundation of China.
The dataset used in this paper was URPC2019, which consists of images captured by an
underwater robot with a camera and primarily exhibits quality issues such as blur, low
light, and color distortion. We used Adobe’s LightRoom Classic software (version 10.0) for
batch processing of the images. The dataset included 5543 images, which were divided into
a training set and a test set in a 7:3 proportion. The training set comprised 3880 deblurred
truth-value images, 3880 enhanced truth-value images, and 3880 dedistorted truth-value
images. The test set consisted of 1663 deblurred truth-value images, 1663 enhanced truth-
value images, and 1663 dedistorted truth-value images. The proposed ECO-GAN and the
comparison model were executed on a single NVIDIA GeForce RTX 2080Ti video card.

To validate the effectiveness of the luminance enhancement, blur removal, and color
bias correction modules in the generator, separate experiments were conducted on each
module, and the three modules were also tested in combination to assess their individ-
ual and combined efficacy. The experimental results are presented in Table 1, which
demonstrates that the PSNR and SSIM indices for image enhancement using the proposed
ECO-GAN method outperformed both individual and combined enhancement modules.
In addition, we used UIQM and UCIQE, which are non-reference evaluation metrics. In
Table 1, GT serves as the ground truth for calculating reference evaluation indicators. Light,
Sharp, and WB represent modules for low-light enhancement, blur removal, and color bias
correction, respectively. “Light + Sharp” represents a combination of a low-light enhance-
ment module and a blur removal module. “Light + WB” represents a combination of a
low-light enhancement module and a bias correction module. “Sharp + WB” represents
a combination of a blur removal module and a bias correction module. “Light + Sharp +
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WB” represents a combination of a low-light enhancement module, a blur removal module,
and a color bias correction module. The combination method among three modules is
in series. In order to verify the superiority of the proposed ECO-GAN, we compared
ECO-GAN with the method proposed by Zhang et al. in [27] using a similar three-module
serial structure. Due to the enhanced intercorrelation between multiple modules achieved
through repeated feature extraction in the U-Net, the three enhancement modules collec-
tively performed better than their independent counterparts, thereby facilitating flexible
expansion of image enhancement capabilities. Moreover, Zhang et al. [24] highlighted the
transferability aspect, which aids in accelerating model stability. We observed that ECO-
GAN loaded with a pretrained model achieved faster stability compared with ECO-GAN
without pretrained weights.

Table 1. Comparison of experimental results.

Method PSNR SSIM UIQM UCIQE

GT / 1.0 0.2337 0.2524

Light 16.19 0.9075 0.1404 0.2166

Sharp 11.48 0.7224 0.1467 0.2094

WB 31.40 0.9613 0.1744 0.2191

Light Sharp 11.95 0.7609 0.1523 0.2125

Light WB 24.56 0.9587 0.1867 0.2214

Sharp WB 21.79 0.9487 0.1899 0.2170

Light Sharp WB 24.12 0.9521 0.1985 0.2263

Method proposed by Zhang et al. in [27] 17.29 0.7648 0.1556 0.1678

ECO-GAN 32.71 0.9783 0.1970 0.2016

The underwater image enhancement results obtained by different methods are pre-
sented in Figure 4. The raw image (Figure 4a) represents the original underwater image
and serves as the input of the algorithm. GT (Figure 4b) serves as the ground truth for
calculating reference evaluation indicators. Figure 4c–e show the enhanced results of GT
after being processed by three modules, namely, “Light,” “Sharp,” and “WB,” respectively.
Meanwhile, they were used to calculate the loss between corresponding image enhance-
ment results. Figure 4f–k show the results of the single module and pairwise combinations
of three modules on the raw image. Figure 4l–n show the results of the serial combination
of three modules, the method proposed in [27], and the proposed ECO-GAN applied to
the raw image, respectively. Due to the low quality of images in harsh underwater scenes,
the non-reference values of both truth and result images are generally low. For reference
indicators, the results demonstrate that ECO-GAN exhibited excellent performance in
underwater image enhancement tasks.
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4. Discussion

In this paper, we propose an underwater image enhancement method, ECO-GAN,
based on an image preprocessing framework for GANs. Our method addresses three key
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challenges in underwater images: dynamic blur, low-light conditions, and color bias. The
goal is to achieve blind enhancement of underwater images with multiple defects. To
reduce computational effort and enhance inference speed, we employ the U-Net network
structure and design decoders for different enhancement tasks by reusing the encoded
features. By analyzing multi-scale features, we aim to alleviate image-quality issues.
Additionally, a cross-stage fusion module is employed between the decoders for multiple
enhancement tasks, strengthening their connection and enabling the recovery of details and
improved image contrast. During the training process, the images are blindly enhanced
using supervised training on paired datasets, eliminating the need for additional physical
knowledge or prior information.

The proposed method significantly enhances the visualization of underwater images
and facilitates the implementation of vision-based underwater tasks such as segmentation
and tracking. In future work, we plan to explore the application of our method in related
areas such as image defogging and super-resolution reconstruction to evaluate its generality.
Additionally, we aim to apply the efficient model to unsupervised learning. These avenues
remain as potential directions for future research.
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