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Abstract: Defect inspection is important to ensure consistent quality and efficiency in industrial
manufacturing. Recently, machine vision systems integrating artificial intelligence (AI)-based in-
spection algorithms have exhibited promising performance in various applications, but practically,
they often suffer from data imbalance. This paper proposes a defect inspection method using a
one-class classification (OCC) model to deal with imbalanced datasets. A two-stream network archi-
tecture consisting of global and local feature extractor networks is presented, which can alleviate the
representation collapse problem of OCC. By combining an object-oriented invariant feature vector
with a training-data-oriented local feature vector, the proposed two-stream network model prevents
the decision boundary from collapsing to the training dataset and obtains an appropriate decision
boundary. The performance of the proposed model is demonstrated in the practical application
of automotive-airbag bracket-welding defect inspection. The effects of the classification layer and
two-stream network architecture on the overall inspection accuracy were clarified by using image
samples collected in a controlled laboratory environment and from a production site. The results are
compared with those of a previous classification model, demonstrating that the proposed model can
improve the accuracy, precision, and F1 score by up to 8.19%, 10.74%, and 4.02%, respectively.

Keywords: defect inspection; machine vision; one-class classification; two-stream network

1. Introduction

Defect inspection is important in the manufacturing industry and is required to ensure
consistent product quality and improve the costs and efficiency of the entire manufacturing
process. Human visual inspection, however, is time-consuming, labor-intensive, and
prone to human errors. In contrast, machine vision inspection using cameras, optics, and
inspection software enables fast and robust low-cost inspection. Therefore, it has been
increasingly adopted in various manufacturing industries [1–5]. For decades, numerous
studies on machine vision inspection have been conducted [6–10], but traditional inspection
techniques still face challenges in dealing with variations in environmental conditions and
part appearance.

Recently, inspection algorithms integrating artificial intelligence (AI) techniques have
shown promise and improved the accuracy and robustness of defect inspection. These
algorithms have been employed in various manufacturing industries, including textile [11],
fabric [8–10], and steel surface [4,12]. Defect inspection using deep learning algorithms
achieved enhanced accuracy and robustness by learning features from the large training
dataset. A number of prominent architectures and pre-trained models, such as AlexNet [13],
VGGNet [14], ResNet [15], and MobileNet [16], have emerged, and these are accompanied
by various techniques to enhance inspection performance. Wei et al. achieved an inspection
accuracy of 98.5% using convolutional neural network (CNN)-based algorithms with
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image preprocessing, such as noise reduction and binarization, to detect defective products
in the textile industry [17]. Yang et al. used the you only look once (YOLO) v5 object
detection algorithm to detect and identify welding defects on steel pipes. The proposed
model achieved an accuracy of 97.8%, demonstrating its potential for real-time welding
defect detection [18]. Kim et al. presented a skip-connected convolutional autoencoder for
advanced printed circuit board (PCB) inspection. The proposed unsupervised autoencoder
model delivered promising performance, with a detection rate of up to 98% in 3900 defect
and non-defect images [19]. Tang et al. proposed a skip autoencoder to improve the
accuracy of anomaly detection and address labeling issues. Leveraging a pre-trained feature
extractor and skip connections, the proposed method achieved better performance, showing
a maximum area under the curve (AUC) of 0.98 [20]. Upadhyay et al. developed a U-Net-
based deep learning framework to detect engine defects. They applied a hybrid motion
deblurring method for image sharpening and denoising, combined with a customized
generative adversarial network (GAN) model, to remove the blur effect based on classic
computer vision techniques. The deep learning framework achieved precisions and recalls
of over 90% [21]. Yoon Jong-Pil et al. presented a defect classification approach based
on a convolutional variational autoencoder (CVAE) and deep CNN for metal surface
defect inspection. The proposed conditional CVAE achieved a maximum completion
of 0.9969 [22].

Although AI-based inspection provides superior performance compared to traditional
methods, several limitations remain in applying this approach to practical situations. One
major challenge is the performance degradation caused by data imbalance. AI-based in-
spection requires a large training dataset. However, practically, the collected data often
suffer from class imbalance, where certain classes have considerably fewer samples than
others. In defect inspection, collecting sufficient defective samples is difficult because
the defect rate is quite low (usually under 1–5%) in general manufacturing processes.
To address this issue, various methods have been proposed, including data augmenta-
tion [23–25], synthetization [19,26], and an adjustment of the weight or loss function of the
network [27]. Wang et al. proposed a novel loss function called ‘mean false error’ together
with its improved version called ‘mean squared false error’ for deep network training using
imbalanced datasets [28]. Mao et al. improved data imbalance by extending the training
dataset using a GAN model and achieved up to 86.8% accuracy [29].

One-class classification (OCC), which identifies objects belonging to a specific class
given only positive samples of that class, is attracting attention as a solution to this prob-
lem [30–40]. Unlike general machine-learning-based classification algorithms, the OCC
model aims to learn a classification boundary that separates the target class from other
classes in the input space. OCC can thus be utilized effectively to solve data imbalance
problems, as it does not require negative samples and can be trained only using positive
samples. Shin et al. proposed a one-class support vector machine (SVM) model to detect
mechanical defects in electronic devices, achieving up to 93.9% accuracy compared to
the multilayer perceptron method [31]. Ruff et al. proposed a deep support vector data
description that extracts the similarity between patterns of general categories and new data.
The proposed method achieved up to 99.7% average AUCs on MNIST and CIFAR-10 [34].
Lee et al. proposed a one-class deep-learning-based fault-detection module for imbal-
anced industrial time-series data. Using four different networks, i.e., MLP, ResNet, LSTM,
and ResNet-LSTM, for prediction, they achieved an excellent fault prediction accuracy of
96% [36]. Goyal et al. developed a deep robust one-class classification (DROCC) to help
address the representation collapse problem. The DROCC achieved an average accuracy of
74.2% using the CIFAR-10 dataset [37].

The representation collapse problem is a major issue in OCC, and it can arise when
the diversity of the training data is insufficient, or the data follow a repetitive pattern. In
such cases, the decision boundary is fitted too tightly to the training dataset, leading to
a decrease in the generalization performance for new data. In practical applications, the
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environmental conditions for collecting training and test samples may not be the same,
which can lead to false positive errors, resulting in overall performance degradation.

In this paper, we propose a two-stream network OCC model for defect detection that
attempts to address the representation collapse problem, which has been a critical issue
when applying the OCC model to practical applications. The proposed two-stream network
model alleviates the representation collapse problem by introducing two feature extractor
networks, i.e., global and local feature extractor networks. The global feature extractor
network, which is designed to learn a general feature of the target class, can extract a
feature vector that is not affected by variations in environmental conditions. The local
feature extractor network is designed to capture features specific to the training dataset,
and it extracts the target class-oriented feature vectors. Two feature vectors output from
each network are merged and passed through the following classification layer for the final
decision. Three types of classification layers, i.e., a one-dimensional (1D) convolution layer,
a fully connected layer, and an SVM layer, were tested for the target class classification
to determine the optimal classification layer. The proposed two-stream OCC model was
verified by using an image dataset obtained from the practical application of automotive
airbag bracket inspection. The main contributions of this paper are as follows:

• A two-stream network architecture composed of global and local feature extractor net-
works is proposed to resolve the representation collapse problem of the OCC model.

• The classification performances of three types of classification layers, i.e., 1D convolu-
tion, fully connected, and SVM layers, are described to elucidate the type that yields
the optimal classification performance.

• The performance of the proposed OCC model is verified using the practical application
of automotive airbag bracket inspection.

2. Materials and Methods
2.1. Two-Stream Network OCC Model

OCC involves training a model using data from a single class and capturing its feature
vectors. Although OCC is effective in capturing the distribution of given target data, its
ability to recognize new data with different characteristic distributions may be diminished.
To address this limitation, which is called representation collapse, this paper proposes a
two-stream network OCC model. The main idea is to introduce a global feature extractor
network to alleviate the issue of decision boundary collapse relative to the training data.
By merging a global feature vector representing object-oriented general characteristics with
a class-oriented local feature vector, the two-stream network model prevents the decision
boundary from being overfitted to the training data and balances both features to identify
an appropriate decision boundary.

Figure 1 shows the two-stream network OCC model proposed in this paper. It consists
of two types of feature extractor networks, i.e., global and local feature extractor networks.
The global feature extractor network is designed to capture all characteristics of the in-
spection objects, such as geometrical and topological characteristics. Generally, the global
feature is an object-oriented characteristic, and it can be consistently extracted regardless
of variations in environmental conditions. The local feature extractor is responsible for
extracting the target class-oriented characteristics from the training datasets. The local
feature describes the surface characteristics of inspection objects, such as colors and textures.
Unlike the global feature, the local feature presented in the image can be influenced by
environmental conditions. The two feature vectors obtained from each feature extractor
network are merged as a single feature vector and passed through the classification layer.



Sensors 2023, 23, 5768 4 of 15Sensors 2023, 23, x FOR PEER REVIEW 4 of 15 
 

 

 
Figure 1. Two-stream network consisting of global and local feature extractor networks followed by 
a classification layer. 

The global feature extractor network is implemented using an Inception V3 network 
model that consists of a deep neural network architecture including 94 convolution layers 
and 20,861,480 parameters. It includes three inception modules, which are composed of 
multiple parallel paths with different filter sizes, to create a rich set of features that capture 
different aspects of the input image. The inception modules and auxiliary classifiers in the 
global feature extractor network alleviate the overfitting problem and improve the con-
sistency of feature extraction. The details of the global feature extractor network are pre-
sented in Table 1. The global feature extractor network is pre-trained using an ImageNet 
dataset separately from the other parts of the entire two-stream network. In the entire 
model training process, the weights of the global feature extractor network are fixed as 
the pre-trained value to prevent the feature vector from being biased relative to the train-
ing dataset. The global feature vector, 𝑭𝑭𝑔𝑔, extracted from the global feature extractor net-
work can be expressed as 

𝑭𝑭𝑔𝑔 = 𝑲𝑲𝑔𝑔 ∗ 𝑰𝑰, 𝑭𝑭𝑔𝑔  ∈ ℝ𝐷𝐷 , (1) 

where 𝑰𝑰 represents the image, 𝑲𝑲𝑔𝑔 denotes the global feature extractor network, and 𝐷𝐷 
is the dimension of the global feature vector. 

The local feature extractor network is composed of four convolution layers and three 
max-pooling layers including 3,796,480 parameters as presented in Table 2. A simple CNN 
structure is used for the local feature extractor network to capture the features specific to 
the target dataset. The local feature extractor network captures the target data-oriented 
local feature vector 𝑭𝑭𝑙𝑙, which can be determined by applying 

𝑭𝑭𝑙𝑙 = 𝑲𝑲𝑙𝑙 ∗ 𝑰𝑰, 𝑭𝑭𝑙𝑙  ∈ ℝ𝐷𝐷 , (2) 

where 𝑰𝑰 represents the image, and 𝑲𝑲𝑔𝑔 denotes the local feature extractor network. The 
dimension of the local feature vector is identical to that of the global feature vector. The 
global and local feature vectors are merged as a single feature vector, 𝑭𝑭𝑢𝑢, as follows and 
passed through the classification layer: 

𝑭𝑭𝑢𝑢 = 𝑭𝑭𝑔𝑔 ⊕ 𝑭𝑭𝑙𝑙 , 𝑭𝑭𝑢𝑢  ∈ ℝ2𝐷𝐷, (3) 

where 𝑭𝑭𝑢𝑢 is the unified feature vector. 𝑭𝑭𝑢𝑢 is passed through the classification layer to 
determine the final decision of the defect inspection. Three types of classification layers, 
including a 1D convolution layer, a fully connected layer, and an SVM layer, were imple-
mented to validate the effect of the classification layer on the overall inspection perfor-
mance and to identify the optimal classification layer. The details of each classification 
layer are presented in Table 3. 

  

Figure 1. Two-stream network consisting of global and local feature extractor networks followed by
a classification layer.

The global feature extractor network is implemented using an Inception V3 network
model that consists of a deep neural network architecture including 94 convolution layers
and 20,861,480 parameters. It includes three inception modules, which are composed of
multiple parallel paths with different filter sizes, to create a rich set of features that capture
different aspects of the input image. The inception modules and auxiliary classifiers in
the global feature extractor network alleviate the overfitting problem and improve the
consistency of feature extraction. The details of the global feature extractor network are
presented in Table 1. The global feature extractor network is pre-trained using an ImageNet
dataset separately from the other parts of the entire two-stream network. In the entire
model training process, the weights of the global feature extractor network are fixed as the
pre-trained value to prevent the feature vector from being biased relative to the training
dataset. The global feature vector, Fg, extracted from the global feature extractor network
can be expressed as

Fg = Kg ∗ I, Fg ∈ RD, (1)

where I represents the image, Kg denotes the global feature extractor network, and D is the
dimension of the global feature vector.

Table 1. Detailed configuration of the global feature extractor network.

Type Stride Filter Size Input Size

Conv2d 2 3 × 3, 32 111 × 111 × 32
Conv2d 2 3 × 3, 32 109 × 109 × 32
Conv2d 2 3 × 3, 64 109 × 109 × 64

MaxPooling2d 2 3 × 3, x 54 × 54 × 64
Conv2d 2 3 × 3, 1 52 × 52 × 80
Conv2d 2 3 × 3, 2 26 × 26 × 192
Conv2d 2 3 × 3, 1 26 × 26 × 288

3× Inception inception module structure [41] 13 × 13 × 768
5× Inception inception module structure [41] 6 × 6 × 1280
2× Inception inception module structure [41] 6 × 6 × 2048

MaxPooling2d 2 1 5 × 5 × 2048

The local feature extractor network is composed of four convolution layers and three
max-pooling layers including 3,796,480 parameters as presented in Table 2. A simple CNN
structure is used for the local feature extractor network to capture the features specific to
the target dataset. The local feature extractor network captures the target data-oriented
local feature vector Fl , which can be determined by applying

Fl = Kl ∗ I, Fl ∈ RD, (2)
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where I represents the image, and Kg denotes the local feature extractor network. The
dimension of the local feature vector is identical to that of the global feature vector. The
global and local feature vectors are merged as a single feature vector, Fu, as follows and
passed through the classification layer:

Fu = Fg ⊕ Fl , Fu ∈ R2D (3)

where Fu is the unified feature vector. Fu is passed through the classification layer to
determine the final decision of the defect inspection. Three types of classification layers,
including a 1D convolution layer, a fully connected layer, and an SVM layer, were imple-
mented to validate the effect of the classification layer on the overall inspection performance
and to identify the optimal classification layer. The details of each classification layer are
presented in Table 3.

Table 2. Detailed configuration of the local feature extractor network.

Type Stride Filter Size Output Size

Conv2d 2 7 × 7 112 × 112 × 512
MaxPooling2D 2 2 × 2 56 × 56 × 512

Conv2d 2 5 × 5 28 × 28 × 256
MaxPooling2D 2 2 × 2 14 × 14 × 256

Conv2d 1 3 × 3 12 × 12 × 128
Conv2d 1 3 × 3 10 × 10 × 128

MaxPooling2D 2 2 × 2 5 × 5 × 128

Table 3. Detailed configuration of three types of classification layers.

Classification Layers
Architecture

Type Stride Filter Size Output Size

1D Convolution Layer
Covn1d 1 1 × 1 5 × 5 × 128
Conv1d 1 1 × 1 5 × 5 × 64
Conv1d 1 1 × 1 5 × 5 × 1

Fully Connected Layer
Dense #of nodes: 128
Dense #of nodes: 128
Dense #of nodes: 1

SVM Layer
Dense #of nodes: 128
Dense #of nodes: 128
Dense #of nodes: 1

2.2. Model Verification

The two-stream network OCC model was verified using the image samples collected
by the practical vision inspection system of an automotive airbag bracket. The airbag
bracket was manufactured using projection welding, joining a nut on a bracket plate. Faults
may have occurred in the welding procedure, resulting in several types of defects such as
nut omissions, axial twisting, and surface abnormalities, as shown in Figure 2. These types
of defects should be detected by the vision inspection system, and this study verifies the
performance of the proposed two-stream network OCC model by evaluating the inspection
accuracy using positive and negative airbag bracket samples.
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Figure 2. Examples of welding defects in airbag bracket inspection. (a) Nut omission. (b–d) Surface
abnormalities.

2.2.1. Data Collection

The image datasets for training and performance evaluation were collected in
two different environments, i.e., a laboratory and a production site. The vision system,
including the camera, lens, lighting, and kinematic configuration, was set identically in
both environments, as shown in Figure 3a,b. An area scan monocamera (acA2440-20gm,
Basler, Ahrensburg, Germany) with a resolution of 2448 × 2048 (5 MP) and a 16 mm
lens (MVL-KF1628M, HIKROBOT, Zhejiang, China) was used as the vision system.
The working distance between the lens and the airbag bracket was set to 10.0 cm. A
total of 870 images of airbag bracket samples, including 696 positive and 174 negative
images, were collected in the laboratory setup, and 136 images, including 122 positive
and 14 negative images, were captured in the production site setup. Subsequently, 80%
of the images collected in the laboratory were used to train the two-stream network
model, and the remaining 20% were used for model verification. The images collected
on the production site were used only for model verification. Figures 4 and 5 show
the airbag bracket image samples collected in the laboratory and on the production
site, respectively.
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2.2.2. Training

The region of interest (ROI) for the airbag bracket’s inspection can be defined as the
rectangle centered at the bracket’s center that tightly encloses the nut region. The ROI was
cropped in raw image samples and resized to 750× 750 for model training and verification.
To enlarge the training dataset, several variations were applied to the raw images: The
center of the cropped region was randomly set within 100 pixels at the center of the bracket
to reflect possible variations in the bracket position, and each image was rotated by 90◦,
180◦, and 270◦ and flipped. A total of 3470 image samples were used for training. Figure 6
shows the dataset enlargement procedure applied for model training. The Adam optimizer
and Huber loss function were used for training, and the maximum number of epochs was
set to 100.
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2.2.3. Evaluation Metrics

The performance of the proposed two-stream network model was evaluated by four
metrics: accuracy, precision, recall, and F1 score. These evaluation metrics can be deter-
mined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, Precision =

TP
TP + FP

Recall =
TP

TP + FN
, F1score = 2· Precision·recall

Precision + recall
(4)

where TP, TN, FP, and FN represent the true positive, true negative, false positive, and false
negative, respectively.

3. Results

The performance of the proposed two-stream network model was evaluated from
three perspectives: the effect of the classification layer, the effect of the two-stream network
architecture, and performance in comparison with those of previous methods. In the
performance evaluation, the two-stream model was trained only with the datasets gathered
in the laboratory, and it was tested using two datasets gathered in the laboratory and on
the production site.

3.1. Performance Evaluation in Terms of the Classification Layer

The proposed two-stream network OCC model was implemented with three types
of classification layers: 1D convolution, fully connected, and SVM layers. Figure 7 and
Table 4 present the experimental results of the two-stream network model according to the
selected classification layer, as evaluated using laboratory datasets. In total, 140 positive and
34 negative images collected in the laboratory were used in this experiment. The confusion
matrices in Figure 6 demonstrate that the SVM and 1D convolution layers achieved the best
performance in classifying the TP (136/140) and TN (23/34) labels, respectively. The 1D
convolution layer showed the best accuracy, precision, and F1 score of 0.8966, 0.9236, and
0.9366, respectively, whereas the SVM layer yielded the highest recall of 0.9714, as shown
in Table 4.
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Table 4. Results of performance evaluation according to the classification layer.

Model Accuracy Precision Recall F1 Score

Laboratory dataset
1D conv. 0.8966 0.9236 0.9500 0.9366

Fully conn. 0.8448 0.8792 0.9357 0.9066
SVM 0.8851 0.8947 0.9714 0.9315

Production site dataset
1D conv. 0.9706 1.0000 0.9672 0.9833

Fully conn. 0.9632 0.9835 0.9754 0.9794
SVM 0.8015 0.8926 0.8852 0.8889

Figure 8 shows the experimental results, as evaluated by using the production site
dataset. In total, 122 positive and 14 negative images collected on the production site were
used in this experiment. The confusion matrices in Figure 8 demonstrate that the fully
connected and 1D convolution layers achieved the best performance in classifying the TP
(119/122) and TN (14/14) labels, respectively. The 1D convolution layer showed the best
accuracy, precision, and F1 score of 0.9706, 1.0000, and 0.9833, respectively, whereas the
fully connected layer achieved the highest recall of 0.9754, as shown in Table 4.
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connected layer, and (c) SVM layer.
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3.2. Performance Evaluation of the Two-Stream Network Model

The performance of the two-stream network model was compared with those of
models without one of the global and local feature extractor networks in this experiment.
The 1D convolution layer was used for the classification layer in this experiment. Table 5
presents a comparison of the performance of the two-stream network model with those
of the single-stream network. The performance evaluation was conducted for both the
laboratory and production site datasets. The global feature extractor network model
exhibited the lowest performance for both datasets, with an accuracy of 0.8621, a precision
of 0.8580, and an F1 score of 0.9205 for the laboratory dataset; and an accuracy of 0.8971, a
precision of 0.9030, and an F1 score of 0.9453 for the production site dataset. The 2S-1DOC
model exhibited the highest performance for both datasets, with an accuracy, precision,
and F1 score of 0.8966, 0.9236, and 0.9366, respectively, for the laboratory dataset; and
an accuracy, precision, and F1 score of 0.9706, 1.0000, and 0.9833, respectively, for the
production site dataset. Figure 9 presents the t-distributed stochastic neighbor embedding (t-
SNE) plots of the feature vectors output from the local, global, and two-stream network. The
t-SNE plot visualizes the similarity between feature vectors by mapping high-dimensional
feature vectors to a lower-dimensional space (2D). The feature vectors of the two-stream
network, which combines the characteristics of the local and global feature extractor
networks, clearly distinguish the true and false samples with a single decision boundary.

Table 5. Comparison of the performances of the two-stream and single-stream network models.

Model Accuracy Precision Recall F1 Score

Laboratory dataset
Local 0.8736 0.8933 0.9571 0.9241

Global 0.8621 0.8580 0.9929 0.9205
Two-stream 0.8966 0.9236 0.9500 0.9366

Production sitedataset
Local 0.9310 0.9923 0.9214 0.9556

Global 0.8971 0.9030 0.9918 0.9453
Two-stream 0.9706 1.0000 0.9672 0.9833
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3.3. Performance Comparison with Previous Models

Table 6 compares the performance of the two-stream network model and previous
image classification models. Six representative classification models, InceptionV3 [41],
ResNet101V2 [14], Xception [42], MobileNetV2 [15], VGG-16 [13], and PaDiM [43], were
tested for the performance comparison. The two-stream network model presented the
highest accuracy and precision of 0.8966 and 0.9236, respectively. However, ResNet101V2,
Xception, MobileNetV2, and VGG-16 yielded the highest recall result of 1.000, and PaDiM
shows the highest F1 score result of 0.9388. The InceptionV3 model presented the lowest
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accuracy, precision, and F1 scores of 0.8621, 0.8580, and 0.9205, respectively. Figure 10
presents the t-SNE plots of the feature vectors of the two-stream network model and
previous models. As shown in the figure, the proposed two-stream network most clearly
distinguished the true and false samples compared to previous models.

Table 6. Performance comparison with previous models using the laboratory dataset.

Model Accuracy Precision Recall F1 Score

InceptionV3 0.8621 0.8580 0.9929 0.9205
ResNet101V2 0.8736 0.8642 1.0000 0.9272

Xception 0.8678 0.8589 1.0000 0.9241
MobileNetV2 0.8736 0.8642 1.0000 0.9272

VGG-16 0.8678 0.8589 1.0000 0.9241
PaDiM 0.8966 0.8961 0.9857 0.9388

Proposed model 0.8966 0.9236 0.9500 0.9366
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Table 7 presents a comparison of the results obtained using the proposed and previous
models and the production site dataset. The two-stream network model presents the
highest accuracy, precision, and F1 scores of 0.9706, 1.0000, and 0.9833, respectively.
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Table 7. Performance comparison with previous models using the production site dataset.

Model Accuracy Precision Recall F1 Score

InceptionV3 0.8971 0.9030 0.9918 0.9453
ResNet101V2 0.9118 0.9104 1.0000 0.9531

Xception 0.9191 0.9173 1.0000 0.9569
MobileNetV2 0.9044 0.9037 1.0000 0.9494

VGG16 0.8971 0.9030 0.9918 0.9453
PaDiM 0.5882 1.0000 0.5410 0.7021

Proposed model 0.9706 1.0000 0.9672 0.9833

4. Discussion

In the manufacturing sector, defect inspection using AI technology has been exten-
sively studied to optimize labor costs and process automation. However, due to the
difficulty of collecting data in the field and data imbalances, OCC has recently attracted
attention for various applications. OCC is efficient in applications where data are unbal-
anced, but it has a critical limitation in that the features are compressed in the training data,
resulting in false-positive errors. To overcome this limitation, we developed a two-stream
network OCC model consisting of local and global feature extractor networks followed
by a classification layer. The performance of the proposed model was validated using
a practical example of automotive-airbag bracket-welding defect inspection. The image
datasets of the airbag bracket collected in two different environments, i.e., a laboratory and
a production site, were used for the training and validation of the proposed model. For the
dataset collected in the laboratory, our model achieved results of 0.8966, 0.9236, 0.9500, and
0.9366 for the accuracy, precision, recall, and F1 score, respectively. For the production site
dataset, the model achieved results of 0.9706, 1.0000, 0.9672, and 0.9833 for the accuracy,
precision, recall, and F1 score, respectively.

The inspection performance of the entire model could be affected by not only the
performance of the feature extraction layer but also that of the classification layer. Three
types of classification layers, 1D convolution, fully connected, and SVM layers, were tested
to investigate the effect of the classification layer and to identify the optimal classification
presenting the best inspection performance. The 1D convolution layer showed the best
accuracy, precision, and F1 score for both laboratory and production site datasets. The fully
connected layer yielded slightly better performances than the 1D convolution layer only
in terms of recall. In the performance comparison between the laboratory and production
site datasets, the SVM layer exhibited a decrease in the accuracy, precision, recall, and
F1 score by 9.44%, 0.24%, 8.87%, and 4.58%, respectively, for the production site dataset
compared with the laboratory dataset. By contrast, the 1D convolution layer showed an
increase of 8.37% in accuracy, 8.54% in precision, 1.77% in recall, and 5.01% in the F1 score
for the production site dataset compared to the laboratory dataset. These results indicate
that the classification by the 1D convolution layer is more appropriate for alleviating the
representation’s collapse than that by other layers.

Compared with the single-stream network model, the two-stream network model
showed an increase of up to 7.35% in accuracy, 9.70% in precision, and 3.80% in F1 score,
proving that the two-stream model achieved a better performance than the existing single-
stream model. In addition, the proposed two-stream model exhibited performance improve-
ments in the production site dataset’s results compared with the laboratory dataset results,
with an increase in accuracy of 8.25%, precision of 8.27%, recall of 1.81%, and F1 score of
4.99%, demonstrating that the proposed model maintains the inspection performance for
the datasets gathered under different environmental conditions than the training datasets.
This finding proves that the two-stream network architecture contributes to reducing the
performance degradation caused by representation collapse.

The effect of the two-stream network on performance improvement is clearly presented
by the t-SNE plots shown in Figure 9. In Figure 9a, the feature vectors produced by the
global feature extractor network provide a rough classification of the true and false samples,
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and there is some overlap observed among certain portions of the samples. The lack of
a distinct decision boundary can be attributed to the global feature extractor network’s
emphasis on capturing general features. In contrast, the feature vector generated by the
local feature extractor network depicted in Figure 9b exhibits clear differentiation between
true and false samples. Nevertheless, determining a single decision boundary is challenging
as false samples are divided into two separate clusters. By combining the characteristics
of the global and local feature extractor networks, the feature vector generated by the
two-stream network depicted in Figure 9c effectively discriminates between true and false
samples using a single decision boundary.

The comparison between the proposed two-stream network model and the previous
model confirmed its enhanced classification performance. In the performance comparison
with the previous model, the proposed two-stream model showed the best performance for
most performance indices, including the accuracy, precision, and F1 score for production
site datasets. The improvements in accuracy, precision, and F1 score were up to 65.01%,
10.74%, and 40.05%, respectively. The PaDiM method demonstrated proficient classification
performance within the laboratory dataset. However, its performance significantly dete-
riorated when applied to the production site’s dataset, which has distinct environmental
conditions compared to the training dataset. To understand the rationale behind the perfor-
mance improvement in the proposed two-stream network model, we examined the t-SNE
plots presented in Figure 10. The feature vectors of the previous model did not exhibit
clear classification boundaries for true and false samples. In contrast, the feature vectors
generated by the proposed model provided the most distinct differentiation between true
and false samples. The significance of this enhancement in classification features lies in
its ability to alleviate the inherent bias toward true samples, which frequently possess
larger datasets in comparison to false samples. The biased predictions of previous models
toward true samples had a detrimental impact on precision performance, resulting in
its degradation.

The two-stream network OCC model proposed in this study exhibited high classifica-
tion performance with respect to both the laboratory and production site datasets. However,
the validation was not sufficient for verifying the classification performance of negative
samples because not enough defective samples were collected at the production site. In
future studies, sufficient negative samples must be collected, and the performance of the
proposed model should be further validated with those samples.

5. Conclusions

In this paper, we proposed a two-stream network OCC model to resolve the repre-
sentation collapse problem of OCC models. The performance of the proposed model was
validated in terms of the classification layer and network architecture, and comparisons
were carried out using previous methods that implement image samples collected in the
practical example of airbag bracket inspection. The performance results clearly indicated
that the proposed model effectively addressed the representation collapse problem, re-
sulting in enhanced inspection accuracy in comparison to existing classification models.
Moreover, the classification performance of the proposed two-stream model exhibited an
impressive improvement of up to 10% compared to previous classification models. This per-
formance improvement can be accomplished using the novel two-stream network, which
seamlessly integrates both general and data-specific features. The practical applications of
defect inspection can greatly benefit from the implementation of the two-stream network
model presented in this paper. Its incorporation is poised to make valuable contributions
toward enhancing performances in vision inspection tasks.
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