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Abstract: Adaptive AI for context and activity recognition remains a relatively unexplored field due
to difficulty in collecting sufficient information to develop supervised models. Additionally, building
a dataset for human context activities “in the wild” demands time and human resources, which
explains the lack of public datasets available. Some of the available datasets for activity recognition
were collected using wearable sensors, since they are less invasive than images and precisely capture a
user’s movements in time series. However, frequency series contain more information about sensors’
signals. In this paper, we investigate the use of feature engineering to improve the performance
of a Deep Learning model. Thus, we propose using Fast Fourier Transform algorithms to extract
features from frequency series instead of time series. We evaluated our approach on the ExtraSensory
and WISDM datasets. The results show that using Fast Fourier Transform algorithms to extract
features performed better than using statistics measures to extract features from temporal series.
Additionally, we examined the impact of individual sensors on identifying specific labels and proved
that incorporating more sensors enhances the model’s effectiveness. On the ExtraSensory dataset, the
use of frequency features outperformed that of time-domain features by 8.9 p.p., 0.2 p.p., 39.5 p.p.,
and 0.4 p.p. in Standing, Sitting, Lying Down, and Walking activities, respectively, and on the WISDM
dataset, the model performance improved by 1.7 p.p., just by using feature engineering.

Keywords: adaptive AI; context recognition; sensor fusion

1. Introduction

Frequent physical activity can prevent diseases in the long term, such as heart failure,
diabetes, cholelithiasis, and chronic bronchitis [1]. Researchers and healthcare professionals
usually measure patients’ physical activity with self-report questionnaires, which heavily
rely on patients’ memory, making it a burdensome and not reliable task [2,3].

A technology that automatically monitors a patient’s daily routine and provides
information to supervise their lifestyle using wearable devices can help people to achieve
lifestyle changes. Smartwatches are adequate for this goal, as they do not need to be held
or carried; they can comfortably stay with the user for much time.

In the early 1980s, Seiko launched the first smartwatch, which had a keyboard for data
entry and could be plugged into computers to transfer data [4]. Since then, smartwatches
have evolved and encapsulated many sensors. Those sensors measure motion, temperature,
heart rate, electrocardiogram, and so forth [5].
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Motion information can usually be acquired using three sensors: accelerometers,
gyroscopes, and magnetometers. Accelerometers measure linear acceleration in space; gy-
roscopes provide the rotation angles; and magnetometers provide the north direction
relative to the device’s local reference [6]. Understanding the movement of a person is
helpful in Human Activity Recognition (HAR), so recent approaches use smartphone and
smartwatch accelerometers [7,8].

Besides motion sensing, there are sensors that can provide context information, such as
geographical location, microphone, and phone state. Therefore, sensor fusion approaches
have been used in activity recognition to include context information. Some sensors can
perform better in recognizing a specific activity than others [9]. Thus, analyzing sensor data to
determine the best combination of features is vital in terms of context prediction.

Each activity has ideal duration, frequency, and intensity. Therefore, identifying the
activity is essential to providing accurate recommendations such as speeding, adjusting
breathing, or controlling maximum heart rate to keep the exercise rhythm moderate [10].

Complex activities are interrelated, so we can use contextual information to precisely
understand a person’s lifestyle, e.g., lying on the couch is completely different from lying
on a bed to sleep. For instance, if we recognize when the activity is sleeping, we can count
how many hours the person sleeps daily to verify if they are sleeping enough.

Machine Learning (ML) algorithms are used to classify activities and their contexts,
using as input trivial features extracted from sensor time series, such as mean, variance,
and standard deviation [11]. However, although those features are easy to calculate, they
may lack important information about sensors’ signals.

On the other hand, Fast Fourier Transform (FFT) algorithms may have more relevant
information about sensors’ signals when they carry undesirable components such as move-
ment artifacts and electromagnetic noise. When a signal is expressed in the frequency
domain, we can pre-process the signal. Pre-processing might include filtering and feature
extraction before training a model for Context Human Activity Recognition (CHAR) [12,13].

This work is a comparative study on features directly extracted from time series using
trivial statistics features and features extracted using the signal Fourier Transform. We
used a model proposed by [14], which hierarchically classifies complex activities. The
experiments were performed on two CHAR datasets: ExtraSensory and WISDM. We also
conducted a complete study of the number and type of sensors to evaluate performance in
recognizing specific activities.

The results show that features extracted from the FFT series outperform the features
extracted using trivial statistics. In addition, we determined that some sensors contribute
more to a specific activity than others. Finally, we proved that using the sensor fusion
approach can improve the model’s performance in the CHAR task.

The contributions of the present work are as follows:

1 Generation of a set of features using the frequency domain and the analysis of the
most relevant features for the CHAR task;

2 Quantitative comparison of the results using time-domain and frequency-domain
features for context recognition;

3 Study on the contribution of every sensor and combination of sensors to recognizing
specific activities and contexts.

2. Related Works

Neural Networks and Deep Learning algorithms are used in many different appli-
cations in the healthcare area, such as gene classification [15], novel image diagnostic
methods [16], and in support of medical decisions [17]. The CHAR system can be consid-
ered a long-term-effect healthcare system, as it aims to change a person’s routine by making
suggestions of new activities to the user.

HAR and CHAR have become the subject of study of many works. While HAR
concentrates on the activity itself, CHAR tries to infer the context in which an action is
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performed. In addition, many different sensors and devices are used for both tasks, such as
smartphones and smartwatches.

For HAR using context dependency, many approaches have been proposed. For exam-
ple, Garcia et al. [18] combined individual and community data to train a more personalized
model to recognize context. This combination was used to compensate for peculiar char-
acteristics that may cause miss-inference due to people’s different ways of performing an
ordinary activity.

Wearable sensors are the most common inputs utilized for HAR because they con-
stantly monitor a person’s behavior. For example, Vaizman et al. [9,19] created a mobile
application for HAR using wearable sensors such as accelerometers, gyroscopes, and mag-
netometers. Then, they collected data from 60 participants to compile the ExtraSensory
dataset. In addition, they used a Neural Network for the HAR task.

Ge and Agu [20] developed QCRUFT (Quarternation Recognition under Uncertainty
using Fusion and Temporal Learning). This end-to-end framework aims to recognize hu-
man activity “in the wild” and corrects noisy context labels, phone placement, and sensors’
variability. Fazli et al. [14] used a hierarchical ensemble of Multilayer Perceptrons (MLPs)
to classify activities into two more general hierarchy classes.

Asim et al. [11] used the accelerometer data from ExtraSensory and feature selection
techniques to propose a model for CHAR focusing on 6 primary labels and 15 secondary
labels. They evaluated model performance using six ML algorithms: Random Forest,
Decision Tree, Bagging, K-Nearest Neighbor, Support Vector Machine, and Naive Bayes.
The same approach was also used in [7,21,22].

Another approach to CHAR is to use a multimodal platform of sensors in combination
with more complex classifiers, as in [23–25]. Newek et al. [26] used a Random Forest
classifier and the fusion of multi-sensor platforms for mobile and wearable sensors for
CHAR, obtaining the accuracy of 94.23%.

Others utilized more complex classifiers to evaluate sensor fusion arrangements.
A Convolutional Neural Network (CNN) was used for the CHAR task in [27]. In [28],
the authors proposed a novel network model to work with highly dimensional data and
compared this model against a classical Neural Network (NN).

The most critical steps in modeling a system that uses NN or ML algorithms are data
analysis and feature extraction, since they can lead to miss-inference or even make the
training of the model difficult due to the complexity of the problem. In [29], a Genetic
Algorithm was developed with the objective of deep feature extraction to improve classifier
performance in CHAR.

Thus, in this research, in contrast to previous works that focused on developing novel
and more complex network architectures, we evaluated the process of feature engineering
in the performance of a known model. We evaluated the performance of a Deep Neural
Network (DNN) using time-domain and frequency-domain features extracted from two
datasets, ExtraSensory and WISDM. In addition, a study on the influence of the number
and type of sensors was performed to determine a relationship between activities and
sensor response.

This work presented balanced accuracy rates of 79.5%, 91.6%, 90.0%, and 82.9% for
standing, sitting, lying down, and walking activities, respectively, on the ExtraSensory
dataset. This represents improvements of 5 p.p., 4.6 p.p., 11.7 p.p., and 1.3 p.p., respectively,
in these context activities compared with ExtraSensory App [19]. Moreover, our feature
engineering process also improved the results obtained by Fazli et al. [14] by 8.9 p.p. and
39.5 p.p. considering the Standing and Lying Down labels, respectively, and on WISDM, it
provided an improvement of 1.7 p.p. in overall balanced accuracy.

This work also demonstrates that the model’s performance increases as the number of
sensors increases, showing a direct correlation between the number of sensors and model
performance. Additionally, we show that smartphone-specific sensors, such as location and
phone state sensors, improve activity recognition.
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3. Materials and Methods

This section describes the approach and experiments performed using the DNN to
study the contribution of feature engineering and feature selection to improving classifier
performance. In addition, a comparison is made between ExtraSensory App [9] and our
model approach to corroborate the results.

3.1. The Datasets

To perform the experiments on feature engineering, we used the ExtraSensory and
WISDM datasets, which are employed in many context classifiers and approaches.

3.1.1. ExtraSensory Dataset

The ExtraSensory dataset is public and has raw data available, which makes it suitable
for further signal processing, such as FFT, to extract features from signals. Therefore, we
combined the signal of different sensors extracted from ExtraSensory raw data to perform
feature selection.

ExtraSensory is formed by data collected from 60 people in the wild, or else, data that
were acquired while people were doing an activity, with no strategy control. In addition,
the subjects used Android and IOS systems to collect data, and the participants were of
different ages, sex, and ethnicity [19].

This dataset provides data from sensors such as accelerometers, gyroscopes, mag-
netometers, gravity sensors, compasses, luminosity sensors, audio (microphone) sensors,
and battery state sensors. Accelerometer, gyroscope, and magnetometer signals were
sampled at 40 Hz each [9].

These sensors may work differently based on the device that is being used. A variety of
smartphones were used in this dataset, including iPhones of the 4th generation containing a
3D accelerometer (LIS331DLH) [30] and a 3D gyroscope (L3G200D) [31], both manufactured
by ST-Microelectronics based in Geneva, Switzerland.

However, the 3D magnetometer (AKM8975) [32] was manufactured by Asahi Kasei
Microdevices based in Nobeoka, Japan. In the 5th- and 6th-generation devices, the 3D
magnetometer was updated to a newer model (AK8963) [33] by the same company.

Although the 3D gyroscope stayed the same as that of devices of the previous generation,
the 3D accelerometer was completely changed to the BMA220 model by Bosch Sensortec,
Gerlingen, Germany [34]. Many different models of Android-based smartphones were used in
this dataset, such as Samsung, Nexus, HTC, Moto G, LG, Motorola, One Plus One, and Sony.

Most notably, Samsung Galaxy Nexus is equipped with the same 3D accelerometer
used in the latter phone models. However, it includes a 3D gyroscope (MPU-3050) [35] by
InvenSens (San Jose, CA, USA) and a 3D magnetometer (YAS530) [36] manufactured by
Yamaha in Shizuoka, Japan [37].

All sensors mentioned in this work are in agreement with the IEEE standards of
measurements and operation modes [38].

All data are available in short time series, 20 s windows, which resulted in more than
300 K labeled samples in two formats: processed and raw data [9]. The dataset labels
encompass a set of 116 labels divided into two groups: primary and secondary labels. The
primary set contains posture-related activities and seven multiple exclusive instances. The
secondary labels comprise 109 context activities that are not mutually exclusive, i.e., more
than one label can coexist [19].

3.1.2. WISDM

We also evaluated our approach on another dataset, WISDM [39]. This dataset only
has 2 sensors, an accelerometer and a gyroscope, and 18 activities: walking, jogging, stairs,
sitting, standing, kicking (soccer ball), dribbling (basketball), playing catch (tennis ball),
typing, writing, clapping, brushing teeth, folding clothes, eating pasta, eating soup, eating
a sandwich, eating chips, and drinking.
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The data were collected from 51 subjects, who were asked to perform the activities for
3 min. The sensors were sampled at a rate of 20 Hz. We extracted the same features as from
ExtraSensory in both time and frequency domains.

3.2. Feature Extraction

Intending to perform feature engineering, we selected only raw data from the ac-
celerometer, gyroscope, magnetometer, gravity sensors, and compass sensors. These
sensors were chosen because after exploratory analysis and data cleaning, they had more
remaining samples to train the models.

Additionally, the data are time-series data, which are more related to the main goal
of our paper, i.e., comparing time-series features and frequency-series features. We also
performed experiments by adding location (Loc) and phone state (PS) for completeness, as
reported in Section 4.2. Table 1 briefly describes the sensors, and the scheme is illustrated
in Figure 1.

Table 1. Description of sensors used and measurements.

Sensor Description

Accelerometer Tri-axial direction and magnitude
of acceleration.

Gyroscope Rate of rotation around phone’s three axes.

Magnetometer Tri-axial direction and magnitude
of the magnetic field.

Smartwatch compass Watch heading (degrees).

Gravity Estimated gravity.

Loc Latitude, longitude, altitude, speed,
accuracies, and quick location variability.

PS App state, battery state, WiFi availability,
on the phone, time of day.

Discrete Fourier Transform

The Discrete Fourier Transform is used to change data’s actual space to data’s fre-
quency space. The Fourier Transform is used in data and signal processing applications.
This approach is used to take advantage of computational efficiency in some applications
and because of all the preserved signal information.

In order to extract the frequency characteristics of the sensors’ signals, we used the
Discrete FFT (DFFT). The sample rate was calculated using a 20 s window and the number
of samples obtained for every sensor, as Equation (1) shows:

sampleRate =
nsamples

20
. (1)

The DFT results in an array corresponding to the Fourier frequency coefficients of
the referred time-domain signal window. The features were extracted using statistical
measures of the Fourier coefficients. Table 2 illustrates the description of every extracted
feature and the equations to calculate them.
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Figure 1. Feature extraction process. The DFT was used on the sensors’ signals, and the frequency
coefficients were used to extract the features.

Table 2. Equations used for feature extraction.

Feature Description Equation

AV Coefficient average AV = 1
N ∑N

k=1 F[k]

F[0] Signal DC value F[0]

SD Standard deviation SD =

√
∑N

k=1(F[k]−µ)2

N−1

MIN Minimum value MIN = minN F[k]

MAX Maximum value MAX = maxN F[k]

RG Range RG = max− µ

FQ First quartile FQ = F[ N+1
4 ] term

SQ Second quartile SQ = F[ N+1
2 ]

RMS RMS value RMS =
√

∑N
k=1 ||F[k]||2

N

MED Median med = F[ N+1
2 ] for N even

med =
F[ N+1

2 ]+F[ N−1
2 ]

2 for N odd

3.3. Model Description and Training

The model used was based on the approach by Fazli et al. (2020) [14], which uses a
hierarchical classifier that recognizes an activity at a higher level, i.e., whether it is stationary
or non-stationary. Afterwards, at a lower level, if the high-level activity is classified as
stationary, the lower-level activity may be subclassified as Standing, Sitting, or Lying Down;
the same as applies to non-stationary classification, whereby activities are subclassified as
Running, Bicycling, or Walking.

In our approach, we train five models. The first classifier is used to classify the
higher-level labels, called primary labels, and the other four classifiers correspond to the
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lower-label classifiers. We used the labels Sitting, Standing, Walking, Lying Down, Running,
and Bicycling for the primary model.

The secondary model used relies on the result of the primary model; for each label
at the primary level, a model is trained to predict second-level classification, e.g., for the
label Sitting (primary), a classifier is trained to predict the lower label Surfing the Internet,
Watching TV, In a Meeting, or In a Car. Specifically for the primary labels Running and
Bicycling, the model infers Exercise for the lower label just for convention. The architecture
can be viewed in Figure 2.

Figure 2. Model architecture. The first model infers the primary activity, and according to it, we use a
second model that infers the context related to that activity.

The training and evaluation strategy adopted was the stratified K-fold cross-validation
with 5 folds because of the imbalanced classes in the dataset. The entire dataset was split
into two subsets, one for training (80% of the total of instances) and the second for testing
(20% of the total of instances), and standard normalization was used on the data [40]. We
also separated 2% of the training set for validation during the training phase, and the best
model was saved and used for further evaluation using the remaining test data. Figure 3
illustrates the strategy used for training all models.

Every classifier was trained for 100 epochs with a batch size of 10, with one input layer,
one hidden layer, and one output layer. After the first layer, a dropout layer was added,
and all layers were fully connected. Table 3 indicates the parameters of the used model.
The input layer sizes were 130 for frequency-domain features and 92 for time-domain
features, while the output layer size varied according to the number of labels of each model.
The metric used for choosing the best model was accuracy.
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Figure 3. Strategy used on frequency-domain dataset to train the models. The data were partitioned
into training and test splits, and the model was evaluated using the test partition.

Table 3. Model parameters.

Parameter Value Activation Function

Max Input Layer 130 (frequency)
92 (time) ReLU

Hidden layer 1 64 neurons ReLU

Dropout layer 0.3

Hidden layer 2 128 neurons ReLU

Output layer No. of labels Softmax

Optimizer Adam

Learning rate 0.001

Loss function Sparce Categorical
Cross-Entropy

Batch size 10

3.4. Experiments

We conducted two types of experiments. The first aimed to assess how the number
and combination of sensors affected recognition performance. Furthermore, the second
type of experiment aimed to answer whether features extracted from the DFT could be
used for context evaluation.

3.4.1. Influence of Sensors

To evaluate the sensors’ impact, we separated the sensors into two groups. One group
comprised inertial sensors: accelerometer, gyroscope, magnetometer, compass, and gravity
sensor. The other group comprised context sensors, i.e., location and phone state sensors.
We chose the model proposed in [14] to achieve the objective and evaluated it by varying
the number of, combining, and mixing contextual and inertial sensors.

We compared using one to five sensors and evaluated the model’s overall accuracy.
Furthermore, we measured the specific contribution of every sensor and the combination
of them using balanced accuracy.
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Table 4 shows the number of experiments performed concerning the number of sensors.
A description of the combinations, along with the number of labeled instances for every
combination, is provided in Tables 5–7.

Additionally, we also included context sensors to evaluate the model. We experi-
mented using the five inertial sensors along with the location and phone state sensors.

Furthermore, to maintain the experiment’s randomness, we used a constant seed to
maintain the pseudo-shuffling of the data.

Table 4. Total combination of experimental scenarios per model.

Number of Sensors Number of Experiments

1 5

2 10

3 10

4 5

5 1

Total 31

Table 5. Number of samples for experiments with 1 sensor for each primary label.

Sensor Samples Lying
Down Sitting Walking Running Bicycling Standing

Acc 51,159 18,174 19,353 3173 723 2421 7315

Gyr 48,936 17,597 18,407 2986 711 2374 6861

Mag 46,152 17,044 17,467 2592 635 2082 6332

Compass 24,104 4477 11,038 1448 405 1606 5130

Gra 48,936 17,597 18,407 2986 711 2374 6861

Table 6. Number of samples for experiments with 2 sensors for each primary label.

Sensors Samples Lying Down Sitting Walking Running Bicycling Standing

Acc + Gyr 48,936 17,597 18,407 2986 711 2374 6861

Acc + Mag 46,152 17,044 17,467 2592 635 2082 6332

Acc + Compass 24,104 4477 11,038 1448 405 1606 5130

Acc + Gra 48,936 17,597 18,407 2986 711 2374 6861

Mag + Gyr 46,152 17,044 17,467 2592 635 2082 6332

Mag + Gra 46,152 17,044 17,467 2592 635 2082 6332

Mag + Compass 21,724 4231 10,089 1190 370 1372 4472

Gyr + Gra 48,936 17,597 18,407 2986 711 2374 6861

Gyr + Compass 23,372 4413 10,661 1417 404 1601 4876

Gra + Compass 23,372 4413 10,661 1417 404 1601 4876

The difference in the number of samples in every experiment was due to the unbal-
anced measurements performed with every sensor. For instance, the accelerometer was the
sensor with the highest number of measures, while the compass had the lowest number
of samples. The number of samples differed because lines with empty values (NaN) were
dropped during data pre-processing.

ExtraSensory has imbalanced labels. For instance, while the number of samples for
the label “Running” is less than a thousand, "Sitting" has more than ten thousand samples.
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When a model sees more of one label, it may become biased and learn more about one
class than others. This is dangerous for CHAR, since it leads to applications making wrong
decisions or inadequate recommendations. Because of that, the stratified K-fold training
strategy was used to train our model.

The total number of models trained and evaluated was 5, 1 to classify five primary
labels and 4 to classify context situations as described in Figure 2, and their performances
were evaluated using accuracy, balanced accuracy, sensitivity, and specificity as evalua-
tion metrics.

Table 7. Number of samples for experiments with 3 to 5 sensors for each primary label.

Sensors Samples Lying Down Sitting Walking Running Bicycling Standing

Acc + Gyr + Mag 46,152 17,044 17,467 2592 635 2082 6332

Acc + Gyr + Compass 23,372 4413 10,661 1417 404 1601 4876

Acc + Gyr + Gra 48,936 17,597 18,407 2986 711 2374 6861

Acc + Mag + Compass 21,724 4231 10,089 1190 370 1372 4472

Acc + Gra + Compass 23,372 4413 10,661 1417 404 1601 4876

Acc + Mag + Gra 46,152 17,044 17,467 2592 635 2082 6332

Gyr + Mag + Compass 21,724 4231 10,089 1190 370 1372 4472

Gyr + Gra + Compass 23,372 4413 10,661 1417 404 1601 4876

Gyr + Mag + Gra 46,152 17,044 17,467 2592 635 2082 6332

Mag + Gra + Compass 21,724 4231 10,089 1190 370 1372 4472

Acc + Gyr + Mag + Compass 21,724 4231 10,089 1190 370 1372 4472

Acc + Gyr + Mag + Gra 46,152 17,044 17,467 2592 635 2082 6332

Acc + Gyr + Gra + Compass 23,372 4413 10,661 1417 404 1601 4876

Acc + Mag + Gra + Compass 21,724 4231 10,089 1190 370 1372 4472

Gyr + Mag + Gra + Compass 21,724 4231 10,089 1190 370 1372 4472

Acc + Gyr + Mag + Gra + Compass 21,724 4231 10089 1190 370 1372 4472

3.4.2. Time-Domain Features vs. Frequency-Domain Features

The hypothesis behind this experiment is that features directly extracted from time
series are prone to errors due to artifact movement and interference and carry less infor-
mation than features extracted from a signal transformed using the DFT. Thus, the same
model performs better using DFT-extracted features.

To prove this hypothesis, we used two datasets, Extrasensory and WISDM, to com-
pare the performance of the same architecture using time-extracted features and DFT-
extracted features. Time-based features were calculated as in Vaizman et al.’s [9] study on
both datasets.

The sensor signals used for the time- and frequency-domain features included ac-
celerometer, gyroscope, magnetometer, and compass signals. This experiment did not
include gravity because it lacks compiled features in the original ExtraSensory dataset.

To conduct experiments with WISDM, which only contains time-series data obtained
with sensors, we first had to split the 3 min activities into smaller records containing
20 s windows with an overlap between successive windows of 50%. After this process,
we calculated the trivial statistics and FFT to compare the same model using feature
engineering approaches.

The difference between the two approaches was evaluated using the following metrics:
accuracy, balanced accuracy, sensitivity, and specificity.
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4. Results

This section summarizes the most valuable results found in our experiments involving
feature engineering, feature selection, and our model’s final performance compared with
models by other authors. It also explains the metrics used in the experiments and their
importance. Moreover, this section also presents the results obtained in the exploratory
data analysis performed on the ExtraSensory dataset.

4.1. Metrics

Since ExtraSensory has imbalanced classes, we evaluated our approach using balanced
accuracy (BA) as the main metric. In addition, accuracy, sensitivity, and specificity were
also used. Accuracy, balanced accuracy, sensitivity, and specificity are calculated using
Equations (2), (3), (4), and (5), respectively.

A =
TP + TN

TP + TN + FP + FN
. (2)

BA =
sensitivity + speci f icity

2
. (3)

sensitivity =
TP

TP + FN
. (4)

speci f icity =
TN

TN + FP
. (5)

where the following apply:

• TP: number of true-positive cases;
• TN: number of true-negative cases;
• FP: number of false-positive cases;
• FN: number of false-negative cases.

4.2. Sensor Contribution Evaluation

To evaluate the sensors’ contributions to model performance, we evaluated the contri-
bution of the number of sensors, type (inertial or context), and the combinations of different
inertial sensors to the performance of our chosen model. Table 8 shows the results of
model performance obtained by varying the number and type of sensors.

In most cases, using five sensors led to better results than smaller sensor combinations,
except for the Walking and Lying context models. In addition, using context sensors
(location and phone state) also led to an increase in performance when compared with only
using inertial sensors.

In Table 8, it is also possible to see that there is a decrease in the balanced accuracy
of the secondary models in comparison with the primary model. This is a problem of
the architecture because of error propagation. A wrong prediction in the primary model
consequently leads to a wrong prediction in the secondary model. However, the effect
of the number of sensors and the context sensor is remarkable. We had improvements
of 11.8%, 5.9%, and 6.3% in the primary, secondary (Sitting), and secondary (Walking)
networks, respectively.
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Table 8. Overall BA combining the accelerometer, gyroscope, magnetometer, compass, and gravity
sensor. Additionally, we evaluated these 5 sensors with location and phone state. We summarize the
average results per quantity of sensors.

No. of
Sensors

Primary
Network

Secondary
(Sitting)

Secondary
(Standing)

Secondary
(Walking)

Secondary
(Lying)

1 sensor 73.0% 66.6% 51.2% 50.9% 50.0%

2 sensors 77.8% 73.2% 54.0% 51.9% 50.4%

3 sensors 83.4% 78.5% 54.0% 52.1% 51.9%

4 sensors 84.2% 78.9% 56.3% 51.8% 51.3%

5 sensors 84.6% 77.7% 57.9% 54.6% 58.2%

5 sensors +
Loc and PS 96.4% 83.6% 64.2% 54.1% 57.3%

We also compared the individual contributions of inertial sensors to classifying differ-
ent activities. We used the accelerometer, magnetometer, gyroscope, compass, and gravity
sensor to classify the six primary activities, Standing, Sitting, Lying Down, Running, Walk-
ing, and, Bicycling.

Figures 4 and 5 show the balanced accuracy response of individual sensors and all pos-
sible combinations of three sensors, respectively. It is possible to observe that a sensor can
contribute more to a specific activity, i.e., the magnetometer performed better in recognizing
Lying Down and Walking activities while performing poorly in recognizing Standing.

Comparing the overall performance shown in Figures 4 and 5, it is also possible to
observe that with more sensors, we can have better performance.

Figure 4. BA for each experiment and each label, and overall performance (the mean between label
results) of the primary model.

Since in our hierarchical model we infer the primary label before inferring the sec-
ondary one, our model’s accuracy in retrieving each primary label is the most important.
Therefore, we calculated the BA and sensitivity for each primary label. Sensitivity is rel-
evant because it is focused on measuring how many of the positive samples have been
correctly classified. The results are presented in Table 9.
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Figure 5. BA for experiments with 3 sensors for each primary label and overall performance (the
mean between label results).

The sensitivity for the labels Standing and Walking was considerably lower than
that for other labels. Therefore, the inference of the secondary labels derived from them
was impaired compared with the primary model, leading to 76.3% and 84.5% of failures,
respectively, being caused by this.

However, while the label Lying Down had high BA and sensitivity, the secondary labels
had poor results. The overall BA of the second model was 50.7 ± 2%, and the sensitivity
was 1.7 ± 4%, but only 33.1% of errors came from the primary model. This means that our
model has difficulty in distinguishing whether a person lying down is surfing the internet,
watching TV, or sleeping, given the five sensors (accelerometer, gyroscope, magnetometer,
compass, and gravity sensor).

Table 9. BA and sensitivity for each primary label.

Label BA (Mean ± SD) Sensitivity (Mean ± SD)

Standing 72.8 ± 5% 51.3 ± 13%

Sitting 81.2 ± 6% 85.4 ± 12%

Lying Down 91.1 ± 5% 89.0 ± 4%

Running 86.1 ± 7% 72.3 ± 16%

Walking 71.7 ± 7% 45.7 ± 11%

Bicycling 85.1 ± 6% 71.3 ± 12%

On the other hand, the secondary model that inferred additional labels for Sitting
had 74.9 ± 7% BA and 57.5 ± 13% sensitivity. Therefore, these sensors are enough to help
our model learn if a person sitting is surfing the internet, watching TV, in the middle of a
meeting, or inside a car. Interestingly, the labels Surfing the Internet and Watching TV were
used for Lying Down and Sitting, but the inference of the latter was much better. It may
have been because Sitting had more positive samples than Lying Down.

Although the BA rates from the experiments on Standing, Walking, and Lying Down
were 54 ± 2%, 51.6 ± 6%, and 50.7 ± 2%, this was primarily due to the high specificity.
The sensibility was very low, ranging from 0% to 13%. While, in part, this is because our
dataset was imbalanced and lacked positive samples, the fact that we discarded samples
that were incorrectly classified in the primary model significantly impacted the decrease
in sensibility.
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Hence, using the primary label to infer the secondary one without relying entirely on
its accuracy is desirable. For instance, the primary label may be used as an attribute of the
sample. During training, we can augment the data by including samples of the secondary
label with an incorrect primary label to help the model correctly predict a secondary label,
even if the primary one is incorrect.

Context Recognition

Besides the mentioned primary labels, the ExtraSensory dataset has many contextual
labels. We selected eight context labels based on the available data: Talking, Sleeping,
Eating, Watching TV, Surfing the Internet, With Friends, Computer Work, and With Co-
Workers. The inference results using five sensors are in Table 10. Overall, the BA was 88.9%.
Thus, the model can infer details about users’ routines.

Table 10. BA of context labels recognition in ExtraSensory dataset.

Label BA

Talking 97.0%

Sleeping 95.1%

Eating 79.8%

Watching TV 91.8%

Surfing the Internet 92.6%

With Friends 73.4%

Computer Work 96.6%

With Co-Workers 84.7%

OVERALL 88.9%

4.3. Comparison between Time Features and DFT-Transformed Features

The authors of the ExtraSensory dataset published the results of a technique using
only one NN to predict 51 labels. Thus, we used it as a baseline to compare our results. We
used the same samples from the experiments with our technique and the trained model
es5sensors, which is available at the repository of ExtraSensory App (https://github.com/
cal-ucsd/ExtraSensoryAndroid, accessed on 8 June 2023) [41].

Since the NN is already trained, the inputs are fixed. Hence, we used the same
sensors they used: accelerometer, gyroscope, location, quick location features, audio naive,
and discrete sensors. In addition, the sensors obtained from a temporal series were in the
time domain. Table 11 presents the results.

The primary model HHAR for both time and frequency domains obtained a better
result than ExtraSensory App. Since ExtraSensory App was trained to classify samples into
more classes (51) and the HHAR model only classifies our 6 primary labels, it was easier
for them to learn how to distinguish the samples of these labels.

Table 11. Comparison of BA between our technique and ExtraSensory App inferring primary and
secondary labels.

Technique Primary
Network

Secondary
(Standing)

Secondary
(Sitting)

Secondary
(Lying Down)

Secondary
(Walking)

ExtraSensory
App 76.0% 74.5% 87.0% 78.3% 81.6%

HHAR
(time) 87.1% 57.3% 80.6% 52.7% 55.5%

HHAR
(frequency) 85.1% 58.4% 72.8% 50.1% 50.8%

https://github.com/cal-ucsd/ExtraSensoryAndroid
https://github.com/cal-ucsd/ExtraSensoryAndroid
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However, the secondary models had poor results compared with ExtraSensory App.
It could have been due to samples failing at the primary model application and being con-
sidered FN. We also conducted experiments predicting samples directly on the secondary
models to verify this hypothesis. In this way, we assumed that the samples were correctly
classified at the primary level. The comparison is in Table 12.

Table 12. Comparison of secondary model’s BA between our technique without using primary model
prediction and ExtraSensory App.

Technique Secondary
(Standing)

Secondary
(Sitting)

Secondary
(Lying Down)

Secondary
(Walking)

ExtraSensory
App 74.5% 87.0% 78.3% 81.6%

HHAR
(time) 70.6% 91.4% 50.5% 82.5%

HHAR
(frequency) 79.5% 91.6% 90.0% 82.9%

Although all of the frequency models performed better than the experiment relying
on the inference of the primary model, the time model still had hindrances in some cases.
For instance, the overall BA of the Lying Down model using time features was low because
of the specificity of Sleeping, which was 4.2%, and the sensibility rates of Watching TV and
Surfing the Internet, which were 0.5% and 7.2%, respectively.

Furthermore, the frequency feature models had a higher BA than ExtraSensory App.
This was achieved using fewer sensors than ExtraSensory App, since we only used the five
sensors that can be extracted using the DFFT in our technique.

To investigate the generalization of our method, we applied the same feature engi-
neering method to WISDM. We compared it with the features extracted from the time
series of sensors using balanced accuracy. The average BA predicting all 18 labels is in
Table 13. It demonstrates that using frequency features performed better than using time
features on WISDM. Our technique also generalizes to diverse activities since it recognizes
all WISDM labels.

Table 13. Comparison of BA between time-domain and frequency-domain features in WISDM.

Technique BA

HHAR (time) 86.7%

HHAR (frequency) 88.4%

5. Discussion

This section presents a discussion about the main results and comparisons, presenting
the answers to the central questions of this work:

1 How can the number of sensors influence model performance in CHAR tasks?
2 Does a sensor contribute differently to different activities?
3 Are DFT-extracted features more suitable than trivial statistic features?

The results shown in Table 8 indicate that the increase in the number of sensors directly
impacted the increase in model performance in most cases. Moreover, using context-related
sensors is also essential in the task of CHAR, because they can improve performance with
no need to use more complex algorithms that demand more computational resources.

Another conclusion drawn from this study is that choosing suitable sensors is essential
for application, because different sensors contribute to different activities. Figures 4 and 5
show these differences with respect to six activities. This is important because it can be
used in applications with limited computational or hardware resources.

We used two datasets to apply feature engineering using DFT features. We compared
them with time-extracted features using the same Neural Network model to prove that DFT-
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extracted features are more suitable and can enhance model performance using different data.
This result can be seen in Tables 12 and 13. These results show an improvement of 1.7 p.p.
using the WISDM dataset and general improvements in the secondary models Standing,
Sitting, Lying Down, and Walking by 8.9 p.p., 0.2 p.p., 39.5 p.p., and 0.4 p.p., respectively.

Using sensor information instead of cameras for CHAR tasks is also good in terms of
privacy concerns, as data can be encrypted at the user level and at the application level, as
in [42]. Moreover, the device containing all necessary sensors can be carried by the user all
the time, unlike cameras.

Our tests employed a simple Neural Network design. However, we believe that
the feature engineering module has the capability to significantly improve cutting-edge
approaches such as Ge et al.’s [43].

Finally, although a more complex classifier can perform better, depending on the
application and system architecture, it costs more due to requiring more time in the training
and fine-tuning processes. This may lead to a longer time to market due to the prototyping
process. Moreover, the inference process can also be costly, requiring more hardware and
costing more money to the final user.

6. Conclusions

The process of feature engineering is very important in any ML modeling, as data
carry important information. In CHAR tasks, data come from sensors. These signals,
in most cases, are combined with noise, which can be caused by user movements and
electromagnetic interference in the device circuit.

Thus, choosing the right features is an important task. In this work, not only we
studied the difference between the two ways of feature extraction, but we also performed a
study on the influence of the number and type of sensors that can improve ML or Deep
Learning model performance based on the Extrasensory and WISDM datasets.

The experiments and results described in Sections 3.4.1 and 4.2, respectively, proved
that the number of sensors used in the input of the classifier and classifier performance have
a positive correlation. This happens because each sensor signal has a correlation with the
activity characteristics, similar to an observer seeing the same scene from different angles.

The type of sensor is also important. Our work shows that a specific sensor, such as an
accelerometer, contributes in different ways to distinct activities and distinct contexts. Thus,
mixing different types of inertial sensors and different information from context sensors,
such as location, may improve the performance of CHAR applications without using more
complex classifiers.

To achieve good performance in CHAR applications, using as many sensors as possible
is not the only path. Using the correct information is also important. After studying the
difference between time-extracted and DFT-extracted features, we conclude that extracting
features from DFT signals performs better given the same ML algorithm and the same set
of sensors.

The findings of this study can be applied in many applications in the area of CHAR,
as by using the right set of sensors and DFT features, we can improve a CHAR application
that runs on wearable devices. Normally, these devices are equipped with less memory
space and less computational power and rarely have all kinds of sensors available to obtain
users’ information in real time.

Finally, as future work, the correlation analysis between the type of sensor and activi-
ties can be expanded to more activities and contexts in order to explore more applications,
such as sleep-monitoring routine recommendation systems. Another approach is to evalu-
ate a user’s routine diary and how it may affect sleep.
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