
Citation: Snoap, J.A.; Popescu, D.C.;

Latshaw, J.A.; Spooner, C.M.

Deep-Learning-Based Classification

of Digitally Modulated Signals Using

Capsule Networks and Cyclic

Cumulants. Sensors 2023, 23, 5735.

https://doi.org/10.3390/s23125735

Academic Editor: Peter Chong

Received: 12 May 2023

Revised: 12 June 2023

Accepted: 15 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Deep-Learning-Based Classification of Digitally Modulated
Signals Using Capsule Networks and Cyclic Cumulants
John A. Snoap 1 , Dimitrie C. Popescu 1,* , James A. Latshaw 1 and Chad M. Spooner 2

1 Department of Electrical and Computer Engineering, Old Dominion University, Norfolk, VA 23529, USA;
jsnoa001@odu.edu (J.A.S.); jlats001@odu.edu (J.A.L.)

2 NorthWest Research Associates, Monterey, CA 93940, USA; cmspooner@nwra.com
* Correspondence: dpopescu@odu.edu

Abstract: This paper presents a novel deep-learning (DL)-based approach for classifying digitally
modulated signals, which involves the use of capsule networks (CAPs) together with the cyclic
cumulant (CC) features of the signals. These were blindly estimated using cyclostationary signal
processing (CSP) and were then input into the CAP for training and classification. The classification
performance and the generalization abilities of the proposed approach were tested using two distinct
datasets that contained the same types of digitally modulated signals, but had distinct generation
parameters. The results showed that the classification of digitally modulated signals using CAPs and
CCs proposed in the paper outperformed alternative approaches for classifying digitally modulated
signals that included conventional classifiers that employed CSP-based techniques, as well as alter-
native DL-based classifiers that used convolutional neural networks (CNNs) or residual networks
(RESNETs) with the in-phase/quadrature (I/Q) data used for training and classification.

Keywords: deep learning; digitally modulated signals; neural networks; signal classification; cyclostationarity

1. Introduction

Blind classification of digitally modulated signals is a problem that occurs in both mili-
tary and commercial applications such as signal intelligence, electronic warfare, or spectrum
monitoring [1], and implementing conventional approaches to modulation classification in
modern software-defined and cognitive-radio receivers can prove challenging [2]. These
approaches use signal processing techniques and are grouped into two distinct classes:

• The first is likelihood-based methods [3,4], in which the likelihood function of the
received signal is calculated under multiple hypotheses that correspond to the various
signals that are expected to be received, and the classification decision is made based
on the maximum of this function. We note that likelihood-based approaches are
sensitive to variations in the signal parameters, which are expected to be estimated,
and estimation errors can lead to significant performance degradation [5].

• The second is feature-based methods that use CSP techniques [6–8] in which CC
features [9,10] are extracted from the received signal, and classification is accomplished
by comparing the values of these features with prescribed values corresponding to
the signals that are expected to be received [11]. As noted in [12,13], the performance
of CC-based approaches to modulation classification is affected by the presence of
multipath fading channels, and robust CC-based classifiers for multipath channels
were discussed in [14–16].

As an alternative to the conventional methods mentioned above, in recent years, deep-
learning (DL)-based techniques employing neural networks (NNs) have been explored
for classifying signals using specific features that can be extracted from the data [17–22].
We note that NNs require extensive training to become proficient and that, depending
on the type of NNs and features used, overfitting and a lack of generalization can affect
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the robustness of the trained NNs such that their performance degrades when presented
with inputs that have different probability distributions than those in the training dataset.
This aspect was studied in [23,24] in the context of DL-based approaches that use the I/Q
components of the signal data to train different types of NNs such as CNNs, RESNETs, and
CAPs for classifying signals, and it has been noted that NNs trained using the I/Q signal
data have difficulty maintaining classification performance when presented with signals
whose underlying digital modulation parameters have different probability distributions
than those of the signals in the training dataset. This lack of generalization that affects the
performance of NN classifiers that use the I/Q signal data is due to the fact that the I/Q
components of digitally modulated signals are affected by various aspects with underlying
random variables whose probability distributions widely vary in practice. These include
the parameters of the digitally modulated signal such as the symbol interval or rate, the
carrier frequency offset (CFO), the excess bandwidth, or the received signal power level,
which will be discussed in more detail in subsequent sections, resulting in a virtually
infinite set of possibilities for signal-generation parameters, so the dataset shift problem
cannot simply be overcome by creating a large enough dataset of signals that accounts for
all possible parameters of the digital modulation schemes to be classified. We note that the
generalization aspect of DL-based classifiers for digitally modulated signals is an instance
of domain adaptation, which is an important component of machine learning that deals
with the ability of an NN trained in one or more source domains to transfer learning to a
different (but related) target domain and has also been studied in the context of DL-based
approaches for machine fault diagnosis [25,26], face recognition [27], or data analysis [28].

The above-mentioned aspects motivated the work presented in this paper, which
proposes a new DL-based approach to the classification of digitally modulated signals
with improved generalization abilities that employs CAPs in conjunction with the CC
features of the signals. The synergistic use of CAPs and CC features is supported by the
CAPs’ ability to distinguish digital modulations [29,30] and to outperform CNNs and
RESNETs in the I/Q-based classification of digitally modulated signals [23], as well as
by the proven robustness of the CC features obtained by CSP to co-channel signals [9,10]
and to variations in noise models [31]. To the best of our knowledge, using CC features
with DL-based signal classifiers has not been studied before. We note that this work was
presented in part at the 2022 IEEE Military Communications Conference (MILCOM) [32]
and that the current journal submission contains a more detailed study, which goes beyond
that in [32] and includes: details on the CC features of digitally modulated signals and how
these are estimated; a comparison of the proposed DL-based classifier with a conventional
classifier that uses the CC features of digitally modulated signals as outlined in [10]. We
also note the related approach in [33], which studied the use of a CNN in conjunction
with the spectral correlation function (SCF) [6,7] in the context of spectrum sensing to
classify wireless signals based on standards such as GSM, UMTS, and LTE and presented a
comparison with alternative approaches used in spectrum sensing such as constant false
alarm rate (CFAR) detectors or support vector machines (SVMs). However, the use of the
SCF alone is not sufficient to distinguish between the various MPSK (M ≥ 4) and QAM
signals considered in the processed datasets herein, as those signals have identical SCFs.

In this context, our goal was to provide full details on the use of CAPs and CC features
for signal classification and to assess the robustness and generalization abilities of the
proposed DL-based digital modulation classifier using CAPs and CCs on two distinct
datasets that are publicly available from [34]. These datasets include signals with similar
digital modulation schemes, but which were generated using distinct parameters, and
are suitable for generalization studies as data from one dataset can be used for training
while data from the other dataset are used for testing. Furthermore, we also compared
the proposed classifier with a baseline classification model in which the cycle frequencies
corresponding to non-zero CCs were extracted using CSP and used for signal classification,
as well as with the alternative DL-based classifier in [23], which uses a CAP with the I/Q
signal data for classification.



Sensors 2023, 23, 5735 3 of 20

The remainder of this paper is organized as follows: Section 2 provides a brief review
of the CC features for digitally modulated signals and introduces the baseline classification
model. This is continued in Section 3 with the presentation of the proposed DL-based
approach to digital modulation classification, which involves the use of CAPs in conjunction
with the CC features of digitally modulated signals for training and signal classification.
Section 4 describes the datasets used for CAP training and performance evaluation and
is followed by the presentation of the numerical results and the performance analysis in
Section 5. A brief discussion of the results and suggestions for further investigation are
provided in Section 6, and the paper is concluded with final remarks in Section 7.

2. CC Features for Digitally Modulated Signals and Baseline Classification Model

CSP provides a set of analytical tools for estimating distinct features that are present
in various modulation schemes and that can be used for blind signal classification in
various receive scenarios, which include stationary noise and/or co-channel interference.
These tools enable the estimation of higher-order CCs [9,10] and of the SCF [6,7] from the
received signal, such that the estimates of the CC or of the SCF can then be compared
to a set of theoretical values of the CCs or the SCF, for classifying the corresponding
digital modulation scheme embedded in the received signal. We note that, in addition
to being affected by propagation, which includes noise and/or co-channel interference,
the received signal features are also affected by other aspects with underlying random
variables whose probability distributions vary widely in practice and influence the decisions
of blind classifiers. These may include (but are not limited to): the symbol interval or the
corresponding data rate, the carrier frequency offset (CFO), the excess bandwidth of the
signal implied by variations of the pulse-shaping function parameters, or the received signal
power level, which directly impacts the in-band signal-to-noise ratio (SNR). While some of
these parameters that affect signal characteristics may have limited practical ranges, such
as the roll-off parameter β in the case of square-root raised-cosine (SRRC) pulse-shaping
for example, which is typically in the [0.2, 0.5] range, others such as the symbol interval or
the CFO possess an infinite number of valid practical choices.

We emphasize here that CCs, although conceptually and mathematically obscure
and complex, are intimately related to the set of nth-order probability density functions
(PDFs) governing the behavior of communication signals [6,7]. As outlined in Section 2.1,
CCs are the Fourier series components of the power-series-expansion coefficients of the
logarithm of the characteristic function, which itself is simply the Fourier transform of a
PDF. CCs are not the sort of features that are typically associated with machine learning and
data mining, where voluminous datasets are searched with fast computers for correlations
between mathematical transformations of the data and the signal-class label. Being strongly
related to all joint PDFs associated with the signals’ samples, the use of CCs as features has
much more in common with decision-theoretic approaches than with modern feature-based
approaches, for which there may not be any provided mathematical rationale [11,35].

2.1. CC Feature Extraction

Consider the generic digitally modulated signal written as:

x(t) = as(t)ei(2π f0t+φ) + w(t), (1)

where a denotes the signal amplitude, s(·) is the complex envelope of the signal, f0 is the
CFO, and w(t) is additive white Gaussian noise (AWGN). The CC features of this signal
are extracted using a CSP-based approach [9–11] that starts with the nth-order temporal
moment function defined by

Rx(t, τ; n, m) = Ê{β}
{

n

∏
j=1

x(∗)j(t + τj
)}

, (2)
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where m of the factors are conjugated, (∗) represents an optional conjugation, and Ê{β}

is the multiple sine-wave extraction operator, which is the direct analog of the stochastic
process expected value operator in the fraction-of-time probability framework [6],

Ê{β}{g(t)} = ∑
β

gβei2πβt, (3)

for arbitrary g(t), with

gβ , lim
T→∞

1
T

∫ T
2

−T
2

g(u)e−i2πβu du ≡ 〈g(u)e−i2πβu〉, (4)

and the summation in (3) is taken over all β for which gβ 6= 0. The corresponding nth-order
temporal cumulant function (TCF) is given by:

Cx(t, τ; n, m) = ∑
Pn

[
h(p)

p

∏
j=1

Rxνj

(
t, τνj ; nj, mj

)]
, (5)

where the sum is over all distinct partitions
{

νj
}p

j=1 of the index set {1, 2, . . . , n} and

h(p) = (−1)p−1(p− 1)!. We note that the nth-order moment functions are polyperiodic
functions of time, which implies that the nth-order cumulant functions are as well, and
thus, each of them can be represented in terms of a generalized Fourier series.

The coefficients of the cumulant Fourier series represent the CCs of the signal (1) and
are given by [9]

Cα
x(τ; n, m) = 〈Cx(t, τ; n, m)e−i2παt〉, (6)

where α is an nth-order cycle frequency (CF) of the signal.
The CFs α for which the CC (6) is not zero for typical digitally modulated signals

include the harmonics of the symbol rate 1/T0, multiples of the CFO f0, and combinations
of these two sets, such that α can be written as

α = (n− 2m) f0 ± k/T0. (7)

For second-order CFs (n = 2), the non-conjugate CFs corresponding to m = 1 depend only
on the symbol rate 1/T0, while the conjugate CFs corresponding to m = 0 depend on both
the symbol rate 1/T0 and the CFO f0.

To obtain accurate estimates of the CC features for signal classification, knowledge of
signal parameters such as the symbol rate and CFO is necessary, as these parameters define
the CFs needed for CC computation. Estimates of these signal parameters are obtained
using CSP techniques such as the strip spectral correlation analyzer (SSCA) [36] or the time-
and frequency-smoothing methods in [6,7] and can be further refined using additional
parameters such as the excess bandwidth and the in-band SNR, which can be estimated
using energy-based band-of-interest (BOI) detectors that do not require CSP [37].

To extract the necessary signal parameters for CC estimates, we used this procedure:

1. Use the BOI detector [37] to evaluate the signal bandwidth and obtain a low-resolution
estimate of the center frequency.

2. Frequency shift the BOI to the baseband using the low-resolution CFO estimate.
3. Downsample/upsample the data as necessary such that the signal bandwidth is

maximized, but keep the fractional bandwidth of the result strictly less than 1.
4. Apply the SSCA to the data provided by Step 3 to detect the second-order CFs.
5. Use the non-conjugate second-order CFs (if these are present) to obtain a high-

resolution estimate of the symbol rate 1/T0.
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6. If no non-conjugate CFs are present, the symbol rate may be estimated from any
conjugate CFs present, which can also be used to provide a high-resolution estimate
of the CFO.

7. Determine the basic pattern of the second-order CFs present in the BOI.
8. If conjugate CFs are not present from Step 4, then the data from Step 3 are raised to

the fourth power and Fourier transformed, and further CSP is applied to determine
the CF pattern and to estimate the symbol rate if not provided by Step 5 and to obtain
a high-resolution estimate of the CFO.

We note that Steps 7–8 are a key element of the procedure, which aims at identifying
the basic second-order CF pattern of the signal implied by (7), which for typical digital
modulation schemes is one of the following: BPSK-like, QPSK-like, π/4-DQPSK-like, 8PSK-
like, and staggered QPSK (SQPSK)-like. Furthermore, all digital QAM signals with balanced
(symmetric) constellations and more than two constellation points map to the QPSK-like
pattern and amplitude-shift-keyed signals, BPSK, and OOK map to the BPSK-like patterns.
For an illustration, some of these CF patterns are shown in Figure 1.

Once the CF pattern is identified, one can also determine the actual number of CFs
needed to fully characterize the modulation type through its set of associated CC values.

To reduce computations for the CCs (6), we used the following parameters:

• The delay vector τ = 0;
• The orders of CC features were limited to the set n = {2, 4, 6}, and the number of

conjugation choices was constrained by the order n to n + 1;
• For each (n, m) pair, the CFs where CCs are non-zero are related to the CFO ( f0)

and symbol rate (1/T0) by Equation (7), where the set of non-negative integers k is
restrained to a maximum value of five.

These settings imply a total of 11 potential CFs for each of the 15 (n, m) pairs or a
maximum of 165 CC estimates for each digitally modulated signal to be classified. The
actual number will depend on the blindly estimated second-order CF pattern.

2.2. The Cyclic Cumulant Estimate

After the band-of-interest detection, blind key parameter estimation, and CF pattern
determination are performed, the cyclic cumulants can be estimated. This was performed
by combining appropriate estimates of cyclic temporal moment functions (CTMFs), which
are the Fourier series coefficients of the temporal moment functions (2). The CTMF for
cycle frequency β is given by

Rβ
x(τ; n, m) = lim

T→∞

1
T

∫ T/2

−T/2
Rx(t, τ; n, m)e−i2πβt dt. (8)

It can be shown that the cyclic cumulant (6) is given by

Cα
x(τ; n, m) = ∑

Pn

h(p) ∑
β1†=α

p

∏
j=1

R
β j
xνj
(τνj ; nj, mj)

, (9)

where β = [β1 β2 . . . βp], and the sum over β requires the inclusion of all such distinct
CTMF cycle frequency vectors whose components sum to the target cyclic cumulant cycle
frequency α [6,7].
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Figure 1. Five common CF patterns for digital-QAM and PSK modulation types. The CF pattern is
more general than the constellation, with the shaping pulse bandwidth controlling the number of
significant CC values in the harmonic-number (k) dimension and the probabilistic structure of the
symbol random variable controls the pattern across the (n, m) dimension [7].

Figure 1. Five common CF patterns for digital QAM and PSK modulation types. The CF pattern is
more general than the constellation, with the shaping pulse bandwidth controlling the number of
significant CC values in the harmonic number (k) dimension, and the probabilistic structure of the
symbol random variable controls the pattern across the (n, m) dimension [7] .

An estimate of the CC (9) (equivalently (6)) is given by simply replacing the infinite-
time averages in the definition of the Fourier coefficients (8) with finite-time averages and
by replacing the TMF in (8) with the corresponding homogenous delay product:

R̂β
x(τ; n, m) =

1
T

∫ T

0

[
n

∏
j=1

x(∗)j(t + τj)

]
e−i2πβt dt, (10)

where the shift in the integration interval results in a phase shift of the CTMF relative to
(8) and is easily accommodated. The estimate of the cyclic cumulant is then given by the
properly weighted sum of products of CTMF estimates:

Ĉα
x(τ; n, m) = ∑

Pn

h(p) ∑
β1†=α

p

∏
j=1

R̂
β j
xνj
(τνj ; nj, mj)

. (11)
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Because we have estimated the CF pattern and the key signal parameters, we can find
all required lower-order cycle frequencies implied by the sum over the lower-order cycle
frequency vector β.

2.3. Baseline Classification Model

Our baseline classification model was a conventional CC-based classifier as outlined
in [10], where the CC values were estimated for each signal to be classified and a modulation
classification decision was made based on the closest proximity of the estimated CCs to
a modulation’s theoretical CC values to assign a signal modulation label as discussed
in [10]. Eight digital modulation schemes of interest were considered: BPSK, QPSK, 8PSK,
π/4-DQPSK, MSK, 16QAM, 64QAM, and 256QAM, and the performance of the baseline
classification model was assessed on the two datasets available from [34]. Details on these
datasets are discussed in Section 4, and we emphasize that all of the signal processing
techniques used in our baseline classification model were fully blind and all parameters
needed (such as the symbol interval or rate, CFO, or signal bandwidth) were estimated
from the I/Q data using signal processing as outlined in Section 2.1. This allowed a fair
comparison with the performance of the proposed DL-based classifier, which uses capsule
networks, which is described in the following section, because this was also not provided
any prior information when making an inference.

3. Cyclic Cumulants and Capsule Networks for Digital Modulation Classification

CAPs are a particular set of NNs that have been introduced in the context of emulating
human vision [38] because of their proven ability to focus on learning desirable characteris-
tics of the input pattern or signal, which correspond to a specific input class. In the case of
the human visual system, when the eye is excited by a visual stimulus, it does not focus on
all available inputs, but rather establishes points of fixation instead, which can be thought
of as characteristics present in the input data that are useful for classification. CAPs are a
special class of shallow CNNs in which the learned desirable characteristics of the training
dataset are captured by means of capsules consisting of multiple parallel and independent
units that can learn class-specific characteristics of the training data. CAPs differ from
CNNs, which rely on a single output neuron per class, as well as from multi-branch NNs,
in which the multiple branches processed are recombined into fully connected layers.

In recent years, CAPs have been successfully used in DL-based modulation recognition
systems [29,30] and have been shown to display better classification performance than
CNNs and RESNETs in the I/Q-based classification of digitally modulated signals [23].
The apparent superiority of CAPs over other types of NNs has prompted our proposed
approach for digital modulation classification, in which we used the CC features of digitally
modulated signals as the inputs to the CAP to train it to classify the same eight digital
modulation schemes of interest mentioned in Section 2.3 (BPSK, QPSK, 8PSK, π/4-DQPSK,
MSK, 16QAM, 64QAM, and 256QAM). Consequently, the CAP used in our approach
consists of eight capsules, as illustrated in Figure 2, taking as inputs the 11× 15 = 165
CC values of the received signal, which matches the dimension of the input layers for the
defined capsules.

Because in general, the higher-order CCs have larger magnitudes than the lower-order
CCs and because the CCs also scale with the signal power, the CC estimates Ĉα

x(τ; n, m)
were further processed as follows prior to use with the proposed CAP for training and
classification:

• Warping: This involves using the order n of the CC estimates to obtain “warped”

versions Ĉα
x(τ; n, m)(2/n). We note that CSP-based blind modulation classification also

employs warped CC estimates.
• Scaling: The warped CC estimates were subsequently scaled to a signal power of

unity, using a blind estimate of the signal power. This provided consistent values for
the capsule network to train on and prevented varying signal powers from causing
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erroneous classification results due to neuron saturation—a common issue with input
data that do not go through some normalization process.

CNN FE

CNN_1_1 … CNN_1_8

CNN_2_1 … CNN_2_8

FC_1 … FC_8

Softmax

Output Layer

Tanh

Tanh

ReLU

AvgP

Tanh

Tanh

ReLU

AvgP

Tanh

Tanh

ReLU

AvgP

I/Q Input

Tanh

Feature
Extraction

Primary
Capsules

Fully 
Connected 
Layer

Classification
Layer

Figure 2. CAP with eight branches for classifying the eight digital modulation schemes of interest.

After these pre-processing steps, the warped and scaled CC estimates can be used to
train the CAP with the structure shown in Figure 2 and parameters outlined in Table 1, and
subsequently, the trained CAP can be employed to blindly classify digitally modulated
signals. The various components of the proposed CAP include:

• Feature extraction layer: This first layer of the network performs a general feature
mapping of the input signal, and its parameters are similar to those used in other
DL-based approaches to classification of digitally modulated signals [21,24,39]. This
layer includes a convolutional layer followed by a batch normalization layer and an
activation function.

• Primary capsules: This layer consists of eight primary capsules, which is equal
to the number of digital modulation classes of interest. These capsules operate in
parallel using as the input the output from the feature extraction layer, and each
primary capsule includes two convolutional layers with a customized filter, stride,
and activation function, followed by a fully connected layer.

• Fully connected layer: This layer consists of a 1× 8 neuron vector with the weights
connecting to the previous layer. Each neuron in the last layer of the primary capsules
will be fully connected to each neuron in this layer. These neurons are expected to
discover characteristics specific to the capsules’ class. To make the output of the
network compatible with a SoftMax classification layer, each neuron within this layer
is fully connected to a single output neuron, and the output neurons for all primary
capsules are combined depthwise to produce an eight-dimensional vector n, which
is passed to the classification layer. The value of each respective element of n will be
representative of the likelihood that its corresponding modulation type is present in
the received digitally modulated signal.

• Classification layer: In this layer, vector n is passed to the SoftMax layer, which
will map each element ni, i = 1, . . . , 8, in n to a value:

σi(n) =
eni

8

∑
j=1

enj

, (12)
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where σi(n) ∈ [0, 1], with each element representing the probability of occurrence,
such that the sum of elements in n adds up to 1 [40]. This provides a convenient way
to determine which modulation type is most likely to correspond to the signal at the
input of the CAP.

Table 1. CC-trained CAP layout.

Layer (# of Filters)[Filt Size] Stride Activations

Input 11× 15× 1
Conv (56)[6× 4× 1] [1× 2] 11× 8× 56

Batch Norm
Tanh

Conv-1-(i) (56)[4× 4× 56] [1× 2] 11× 4× 56
Batch Norm-1-(i)

Tanh-1-(i)
Conv-2-(i) (72)[4× 6× 56] [1× 2] 11× 2× 72

Batch Norm-2-(i)
Tanh-2-(i)

FC-(i) 7
Batch Norm-3-(i)

ReLu-1-(i)
Point FC-(i) 1

Depth Concat (i = 1:8) 8
SoftMax

We note that, similar to the CAP used in [23], the CAP described above was inspired
by [38], and its structure and topology were established using a custom genetic algorithm
that determined the CAP parameters shown in Table 1 (convolutional layer filter size, filter
stride, and the number of layers). While providing full details of the genetic algorithm
employed is beyond the scope of the paper, we mention that the algorithm would randomly
choose a value (over a defined interval) for each of the above-listed parameters, randomly
turning off a layer or adding a new one. This “pseudo-randomly” generated network
would then be trained and evaluated against the testing dataset, repeating the experiment
multiple times, with the best-performing networks being noted. The hyper-parameters of
the best-performing network(s) were noted, and their likelihood of selection for subsequent
experiments was slightly increased. Over the course of many such experiments, networks
having a specific layer structure and layer hyper-parameters began to emerge, which helped
to inform the chosen topology.

4. CAP Training and Performance Evaluation

To train and assess the modulation classification performance of the proposed CAP
(including its out-of-distribution generalization ability), we used two datasets that both
contain the eight modulation types of interest (BPSK, QPSK, 8PSK, π/4-DQPSK, MSK,
16QAM, 64QAM, and 256QAM) and are publicly available from [34].

4.1. The Training/Testing Datasets

The two datasets are referred to as CSPB.ML.2018 and CSPB.ML.2022 [34], and details
about their signal-generation parameters are given in Table 2. To summarize their character-
istics, we note that each of the datasets contains collections of the I/Q data corresponding
to a total of 112,000 synthetic digitally modulated signals that include equal numbers of the
eight digital modulation schemes of interest. With the exception of MSK-modulated signals,
all other signals employ square-root raised-cosine (SRRC) pulse-shaping with roll-off factor
β, and 32,768 samples for each instance of each signal are provided. We note that the listed
SNRs for the signals in both datasets correspond to in-band SNR values and that a BOI
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detector [37] was used to validate the labeled SNRs, CFOs, and SRRC roll-off values for the
signals in both datasets.

Table 2. Dataset signal-generation parameters.

Parameter CSPB.ML.2018 CSPB.ML.2022

Sampling Frequency, fs 1 Hz 1 Hz

Carrier Frequency Offset uniformly uniformly
(CFO), f0 distributed in distributed in

(−0.001, 0.001) (0.01, 0.02)

Symbol Period, T0, Range [1, 23] [1, 29]

SRRC Pulse-Shaping
Roll-Off Factor, β, Range [0.1, 1] [0.1, 1]

In-Band SNR Range (dB) [0, 12] [1, 18]

In-Band SNR Center of Mass 9 dB 12 dB

Reviewing the signal-generation parameters of these two datasets outlined in Table 2
confirmed that they are suited for testing the generalization abilities of the proposed capsule
network as the signals in the two datasets were generated with distinct non-overlapping
ranges for the CFO. Specifically, the maximum CFO in CSPB.ML.2018 is 0.001, while the
minimum CFO in CSPB.ML.2022 is an order of magnitude larger at 0.01. We note that, as
the other signal-generation parameters are similar for the two datasets, the differences in
the CFO will enable the observation of the generalization abilities of the trained CAPs, as
will be discussed in detail in Section 5:

• For the CAP that uses the I/Q signal data for training and testing, the CFO shift in the
testing dataset relative to the training dataset resulted in significant degradation of the
classification performance of the CAP and indicated that it was unable to generalize
its training to new datasets that contain similar types of signals, but with differences in
some of their digital modulation characteristics. This aspect was also reported in [23],
and similar results have been reported for CNNs and RESNETs in [24].

• As will be seen in Section 5, the CAP that uses the CC features for training and testing
the CFO shift in the testing dataset relative to the training dataset resulted in similar
classification performance and indicated that the CAP trained using CC features was
resilient to variations of the CFO from the training dataset.

4.2. CAP Training
The proposed CAP was implemented in MATLAB and trained on a high-performance

computing cluster with 18 NVidia V100 graphical processing unit (GPU) nodes available,
with each node having 128 GB of memory. We note that, while the DL network training
process is computationally intensive, if the available computing resources are leveraged
appropriately such that the entire training dataset is loaded into the available memory,
training can be completed in several minutes for the CC-trained networks (provided the
CC estimates are readily available), as compared to several hours in the case of a CAP
that uses the I/Q signal data [23]. The CC-trained CAPs obtained the best results with an
adaptive moment estimation (Adam) optimizer [41] using ten epochs while shuffling the
training data before each training epoch, a mini-batch size of 250, an initial learn rate of
0.001, a piecewise learning schedule involving a multiplicative learning rate drop factor of
0.9 every five epochs, an L2 regularization factor of 0.0001, a gradient decay factor of 0.9, a
squared gradient decay factor of 0.999, an epsilon denominator offset of 10−8, and a final
batch normalization using the entire training data population statistics.

Two distinct training/testing instances were performed as follows:

• In the first training instance, dataset CSPB.ML.2018 was used, splitting the available
signals into 70% for training, 5% for validation, and 25% for testing. The correspond-
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ing objective and loss functions for the trained CAP are shown in Figure 3, and we
note that the probability of the correct classification for the test results was obtained
using the 25% test portion of the signals in CSPB.ML.2018.
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Figure 3. Objective and loss functions for the CC-trained CAP using the CSPB.ML.2018 dataset.

The CAP trained on CSPB.ML.2018 was then tested on dataset CSPB.ML.2022 to
assess the generalization abilities of the trained CAP in classifying all signals available
in CSPB.ML.2022.

• In the second training instance, the CAP was reset and trained anew using the signals
in dataset CSPB.ML.2022, with a similar split of 70% of signals used for training, 5%
for validation, and 25% for testing. The corresponding objective and loss functions for
the trained CAP were similar to the ones in Figure 3 and were omitted for brevity. The
probability of correct classification for the test results was obtained using the 25% test
portion of the signals in CSPB.ML.2022.

The CAP trained on CSPB.ML.2022 was then tested on dataset CSPB.ML.2018 to
assess the generalization abilities of the re-trained CAP when classifying all signals
available in CSPB.ML.2018.

4.3. Assessing Generalization Abilities

We note that the CFOs for both datasets were generated randomly with a uniform
distribution and that the CFO distribution interval for CSPB.ML.2018 was non-intersecting
with the CFO interval for CSPB.ML.2022. This was performed to assess the ability of a
trained CAP to generalize:

• If the CAP was trained on a large portion of CSPB.ML.2018 and its performance when
classifying a remaining subset of CSPB.ML.2018 was high, but its performance when
classifying CSPB.ML.2022 was low, then the CAP’s ability to generalize was low, and
its performance was vulnerable to shifts in the signal parameter distributions.

• By contrast, if the classification performance of the CAP on both the remaining subset
of CSPB.ML.2018 and on all of CSPB.ML.2022 was high, then its generalization ability
was high, and the CAP was resilient to shifts in signal parameter distributions.



Sensors 2023, 23, 5735 12 of 20

5. Numerical Results and Performance Analysis

We ran simulations to test the classification performance of the proposed CAP and
compared it to the performance of the baseline classification model and to the performance
of a CAP that used I/Q data as the input [23]. The results are summarized in Table 3 and
Figures 4 and 5 and are discussed in the following sections.

Table 3. Classification performance.

Classification Model Results for Dataset
CSPB.ML.2018

Results for dataset
CSPB.ML.2022

Baseline Model 82.0% 82.0%

CSPB.ML.2018
I/Q-trained CAP 97.5% 23.7%

CSPB.ML.2022
I/Q-trained CAP 25.7% 97.7%

CSPB.ML.2018
CC-trained CAP 92.3% 93.1%

CSPB.ML.2022
CC-trained CAP 91.6% 92.5%
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Figure 4. Initial and generalization test results for CAPs trained on CSPB.ML.2018. The CC-trained
CAP exhibited high classification performance under both testing scenarios.
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Figure 5. Initial and generalization test results for CAPs trained on CSPB.ML.2022. The CC-trained
CAP exhibited high classification performance under both testing scenarios.
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5.1. Baseline Model Performance

The baseline classification model requires no training as it was based solely on com-
paring the estimated CCs of the digitally modulated signal with theoretical CC values
corresponding to different modulation schemes. This conventional CSP approach to the
classification of digitally modulated signals resulted in good performance for both datasets,
CSPB.ML.2018 and CSPB.ML.2022. By utilizing all of the 32,768 samples for each signal
in a dataset, the baseline model yielded quite accurate estimates of the CC features and
resulted in an overall modulation classification accuracy of 82.0% for both CSPB.ML.2018
and CSPB.ML.2022.

We note that the baseline performance curves shown in Figures 4 and 5 do not dis-
play a steady increase in PCC with increasing SNR, which highlights the difficulty associ-
ated with performing modulation classification on these two datasets CSPB.ML.2018 and
CSPB.ML.2022 using conventional CSP-based approaches. Nevertheless, the results of the
baseline model set a clear standard for performance and generalization because it was
based on CSP and the minimum distance to theoretical CCs, with no training required, such
that the classification results can be obtained with equally high performance, independent
of signal parameter distribution functions.

5.2. CC-Trained CAP Performance

For the proposed CAP trained using CC features extracted from signals in dataset
CSPB.ML.2018, the variation of PCC versus the SNR is shown in Figure 4. The overall
PCC achieved by this network was 92.3%, which was about a 10% improvement over the
baseline model. When the CAP trained using CC features from signals in the CSPB.ML.2018
dataset was used to classify signals in the CSPB.ML.2022 dataset, the overall PCC value
continued to remain high at 93.1%, which was about 11% larger than that of the baseline
classification model and implied excellent generalization abilities.

When the CAP was trained using CC features from the signals in the CSPB.ML.2022
dataset, the variation of PCC versus SNR is shown in Figure 5, and its classification per-
formance was similar to the previous case. The overall PCC achieved by this network was
92.5%, which was again about a 10% improvement over the baseline model. Furthermore,
the CAP was able to generalize and maintained an overall PCC value of 91.6% when tested
with signals in the CSPB.ML.2018 dataset.

These results showed that the proposed CAP can be successfully trained using CC
features to perform modulation classification with an overall PCC that exceeded that of
conventional CSP-based classification approaches, such as the one used in our baseline
model. Moreover, the proposed CC-trained CAP was able to generalize training and
continued to perform better than the baseline classification model even when the signal-
generation parameters differed or were out-of-distribution from the signals of the training
dataset. We note that the generalization performance of the proposed approach was due to
the fact that the CC features for distinct signals:

x(t) = as(t)ei(2π f1t+φ1) + wx(t), (13)

y(t) = as(t)ei(2π f2t+φ2) + wy(t), (14)

where wx(t) and wy(t) are independent AWGN processes and f1, f2, are randomly dis-
tributed (but not necessarily with the same distribution) are identical to within the mea-
surement error, and thus, the disjoint probability density functions for the CFO in the two
datasets had little effect on the classification performance. That is, the CFs differed, but the
CC values were invariant to this difference.

5.3. I/Q-Trained CAP Performance

We also include in Figures 4 and 5 plots for the PCC values versus the SNR for the CAPs
trained using the I/Q data discussed in [23]. The performance results were similar to those
reported in [23], and we note that, despite outperforming both the baseline model and the



Sensors 2023, 23, 5735 14 of 20

CC-trained CAP and achieving very good classification performance with signals that have
similar generation characteristics as those in the training dataset, the CAP trained using
the I/Q data failed to generalize and had poor performance when tested on signals coming
from the alternative datasets with characteristics that had not been used in training. Thus,
employing CAPs that use the I/Q signal data for training and modulation classification is
not feasible for practical settings since it would only work reliably under signal conditions
that fall exactly within its training dataset.

5.4. Confusion Matrix Results

To gain further insight into the classification performance of the proposed CAPs that
use CCs for training and testing, we also looked at the corresponding confusion matrices,
comparing them with those corresponding to the baseline classification model, as well as
to those of the CAPs that used the I/Q data [23]. The results for the CSPB.ML.2018 dataset
are illustrated in Figures 6–8, from which we note that:

• The confusion matrix for the baseline classification model in Figure 6 showed that, for
5 out of the 8 digital modulation schemes of interest (BPSK, QPSK, 8PSK, DPSK, and
MSK), the classification exceeded 95% accuracy, while for the remaining 3 schemes,
which were all QAM-based, the classification accuracy was at 72.5% for 16QAM,
55.9% for 256QAM, and 41.7% for 64QAM. We note the “unknown” classification
label, which appears in the confusion matrix of the baseline classifier because this was
not trained, but rather made its classification decision based on the proximity of the
estimated CCs to a modulation’s theoretical CC values as outlined in Section 2.3 and
discussed in [10]. Thus, when the baseline classifier was not able to match a signal
with a known pattern, it declared it “unknown” instead of confusing it with a different
type of signal as DL-based classifiers do.

• For the CC-trained CAPs, we show in Figure 7 the confusion matrix correspond-
ing to the generalization experiment, in which the capsule network was trained on
the CSPB.ML.2022 dataset followed by testing using all signals in the CSPB.ML.2018
dataset. We note that the CAP showed almost perfect accuracy (exceeding 99%) for the
BPSK, QPSK, 8PSK, DPSK, and MSK modulation schemes, with significant improve-
ment over the baseline model for the remaining QAM modulation schemes, for which
the classification accuracy increased to 97.5% for 16QAM, 74% for 256QAM, and 62.3%
for 64QAM, which implied about 20% or more improvement over the baseline model
classification performance.

• In contrast, the I/Q-trained CAP confusion matrix shown in Figure 8 corresponding
to the generalization experiment (the CAP was trained on the CSPB.ML.2022 dataset
followed by testing on all signals in the CSPB.ML.2018 dataset) showed very poor
classification accuracy, despite having excellent accuracy when classifying the 25%
test portion of the signals in the CSPB.ML.2018 dataset [23].

Similar classification accuracies were observed for the signals in the CSPB.ML.2022
dataset, but the corresponding confusion matrices were omitted from the presentation
for brevity.

5.5. Computational Aspects

From a computational perspective, we note that both the baseline classifier and the
proposed CAP-based classifier required the estimation of the CC features, for which the
computational burden was variable depending on the CF pattern determined during pro-
cessing (the computation was data-adaptive, unlike simpler signal-processing operations
such as the FFT). When the processing is blind, as it is in this work, second- and higher-
order processing is applied to find high-accuracy estimates of the rate and carrier offset.
Once these key parameter values are known and the CF pattern is determined, the CC
computation can commence.

The computational cost of obtaining a CC feature was determined by the following
costs for the major computational steps:
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Figure 6. Confusion matrix of the baseline classifier on all CSPB.ML.2018 signals.
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Figure 8. Confusion matrix of the CSPB.ML.2022 I/Q-trained CAP classifying all CSPB.ML.2018 signals.

1. Blind exhaustive spectral correlation and coherence analysis for N complex val-
ues and N′ strips in the strip spectral correlation analyzer (SSCA) algorithm [36]:
NN′(log2(N′) + log2(N) + 4).

2. The cost of estimating the quadrupled-carrier from the FFT of x4(t), and therefore the
carrier offset, if the CF pattern was not determined to be BPSK-like or SQPSK-like
after SSCA analysis: 3N + N log2(N).

3. The cost of the cyclic moments in (11) was determined by the cost of creating the
needed delay products (such as x(t)x(t)x∗(t)x∗(t)) and the DFTs for each combination
of lag product and needed cycle frequency. The number of required lag-product
vectors is P, which was maximum for BPSK-like and minimum for 8PSK-like, where
P = 3. Assuming K CFs across all orders n and lag products, the cost of this step was
PN + KN log2(N).

4. The cost of combining the CTMFs after their computation was negligible compared to
the previous sketched costs.

5. Total cost (blind processing): NN′(log2(N′) + log2(N) + 4) + (P + 3)N + N(K + 1)
log2(N).

For example, when operating on an Intel Xeon E3-1535 laptop using C-language
implementations of all operations, the total elapsed time when obtaining a BPSK CC feature
for a maximum cumulant order of six, N = 32,768, and N′ = 64 was 0.18 s and for the same
parameters, but for an 8PSK signal, the elapsed time was 0.10 s.

Once the CC features were available, the subsequent processing to classify the signals
was minimal in the context of modern processors capable of performing billions of floating-
point operations per second:

• In the case of the baseline classifier, the subsequent processing involved a comparison
of the estimated CC features to theoretical features to identify the closest, in terms of a
distance metric, theoretical CF pattern, as outlined in Section 2.3.

• In the case of the CAP classifier, the classifier was presented with the CC feature at the
input, and the classification decision corresponded to the CAP output. We note that
the one-time computational cost for training the CAP should also be included in the
cost in this case.
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Furthermore, when comparing the proposed CAP classifier with the CAP-based
classifier in [23], which uses the I/Q data of the signal to be classified, we note that the total
number of trainable parameters of the latter classifier was 2,079,304 and was significantly
larger than that of the proposed classifier, which only had 1,269,072 learnable parameters.
This difference impacted the one-time training cost of the classifier, but once trained, the
two CAPs should be able to reach rapid classification decisions.

We conclude the discussion on the computational aspects by noting that the parallel
branches of the CAP are well suited for FPGA implementations, since FPGAs are designed
for parallel computations. While this does not reduce the number of operations performed,
it does significantly reduce the latency of calculations, which is also an important consider-
ation in practical implementations.

6. Discussion

The results of this work suggested that a high degree of generalization cannot be
obtained using DL-based approaches applied to the modulation-recognition problem if the
input to the DL neural network is constrained to be sampled time-domain I/Q data. On
the other hand, if the inputs to the DL neural networks were carefully selected features
estimable from I/Q data, such as cyclic cumulants, the observed degree of generalization
was very high, and the performance was also high. The fundamental research question is:
Why do I/Q-based DL neural networks not generalize well? A second urgent question is:
Why do I/Q-trained neural networks not learn features like cyclic cumulants?

We speculate here that the reason I/Q-trained neural networks do not learn simul-
taneously high-performing and high-generalization features is due to their structure and
hyperparameters. Most RF domain machine learning systems (that the authors know about)
have adopted the structure (layers and the order of layers) and the hyperparameters that
have proven capable of performing high-quality image and natural language recognition,
such as AlexNet. However, modulation recognition using sampled data is a problem
that differs from image recognition in that the sought-after label is not associated with an
additive component of the input; there is no BPSK part of the I/Q sequence; the whole
sequence has a BPSK nature.

What separates a BPSK signal from a QPSK signal is the underlying probability density
function for the transmitted symbol. That symbol random variable is binary for BPSK
and quaternary for QPSK. This one density difference then leads to divergent nth-order
probability density functions for the signal’s samples. If a neural network could be trained
to learn several of these density functions from labeled data, high performance and high
generalization might be obtained. However, estimating higher-order probability density
functions likely requires explicit nonlinear layers rather than multiple linear convolutional
layers. Therefore, we speculate that no amount of training or adjustment of the hyperpa-
rameters will lead to high generalization for a DL neural network with I/Q input; structural
changes are needed.

Specific future research problems suggested by this work include:

• Investigating the performance and generalization for further datasets with more signal
types and randomized multipath channels;

• Determining the PCC performance of the developed capsule network as a function
of the input I/Q vector length. Can it reach PCC = 1? In tandem, can the baseline
signal-processing method provide PCC near one for larger input vector lengths?

• What is the fundamental reason that DL neural networks (including capsule networks)
fail to generalize with I/Q input data?

• Why do I/Q-trained DL networks not learn CC features? Can they be modified to do
so by modifying the form of the feedback error and/or modifying the network layers
and structure? Can the I/Q-input neural network be forced to learn CCs by imposing
dimensionality or variability constraints on the latent embedding?
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7. Conclusions

This paper presented a novel deep-learning-based classifier for digitally modulated
signals that uses capsule networks and blindly estimated cyclic-cumulant features as
the input. The proposed classifier outperformed conventional (non-machine-learning)
classifiers employing CSP and had very good generalization abilities, unlike conventional
CNNs using I/Q sample inputs, which can achieve excellent performance, but have not
been made to generalize. This work, and the work upon which it was built [23,24,32],
showed that the combination of conventional NNs and sampled-data inputs did not lead
to both good classification performance and good generalization. The use of principled
features as inputs, such as CCs, did in fact lead to simultaneous good performance and good
generalization. The next step in this research is to attain that simultaneity without having to
perform the signal-processing feature-extraction step outside of the network. To do this, we
intend to explore new nonlinear layers in neural networks, de-emphasizing convolutions
and, thereby, regaining the convenience of using sampled data inputs while retaining the
performance and generalization associated with the principled statistical features.
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