
Citation: Kim, H.; Jang, K.; Lim, S.;

Kang, Y.; Kim, W.; Seo, H. Quantum

Neural Network Based Distinguisher

on SPECK-32/64. Sensors 2023, 23,

5683. https://doi.org/10.3390/

s23125683

Academic Editor: Alexios Mylonas

Received: 21 March 2023

Revised: 4 June 2023

Accepted: 16 June 2023

Published: 18 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Quantum Neural Network Based Distinguisher on SPECK-32/64
Hyunji Kim, Kyungbae Jang, Sejin Lim, Yeajun Kang, Wonwoong Kim and Hwajeong Seo *

Division of IT Convergence Engineering, Hansung University, Seoul 02876, Republic of Korea
* Correspondence: hwajeong@hansung.ac.kr; Tel.: +82-760-8033

Abstract: As IoT technology develops, many sensor devices are being used in our life. To protect
such sensor data, lightweight block cipher techniques such as SPECK-32 are applied. However,
attack techniques for these lightweight ciphers are also being studied. Block ciphers have differential
characteristics, which are probabilistically predictable, so deep learning has been utilized to solve
this problem. Since Gohr’s work at Crypto2019, many studies on deep-learning-based distinguishers
have been conducted. Currently, as quantum computers are developed, quantum neural network
technology is developing. Quantum neural networks can also learn and make predictions on data,
just like classical neural networks. However, current quantum computers are constrained by many
factors (e.g., the scale and execution time of available quantum computers), making it difficult for
quantum neural networks to outperform classical neural networks. Quantum computers have higher
performance and computational speed than classical computers, but this cannot be achieved in the
current quantum computing environment. Nevertheless, it is very important to find areas where
quantum neural networks work for technology development in the future. In this paper, we propose
the first quantum neural network based distinguisher for the block cipher SPECK-32 in an NISQ.
Our quantum neural distinguisher successfully operated for up to 5 rounds even under constrained
conditions. As a result of our experiment, the classical neural distinguisher achieved an accuracy of
0.93, but our quantum neural distinguisher achieved an accuracy of 0.53 due to limitations in data,
time, and parameters. Due to the constrained environment, it cannot exceed the performance of
classical neural networks, but it can operate as a distinguisher because it has obtained an accuracy
of 0.51 or higher. In addition, we performed an in-depth analysis of the quantum neural network’s
various factors that affect the performance of the quantum neural distinguisher. As a result, it was
confirmed that the embedding method, the number of the qubit, and quantum layers, etc., have an
effect. It turns out that if a high-capacity network is needed, we have to properly tune properly to take
into account the connectivity and complexity of the circuit, not just by adding quantum resources.
In the future, if more quantum resources, data, and time become available, it is expected that an
approach to achieve better performance can be designed by considering the various factors presented
in this paper.

Keywords: quantum neural network; SPECK-32/64; differential; distinguisher

1. Introduction

As IoT technology develops, numerous sensor devices are being used in real life.
Accordingly, a large amount of sensor data are being generated. However, if the personal
data of sensor devices connected to the IoT network are leaked, it may cause great personal
and social problems. Therefore, lightweight encryption technologies are applied to protect
such sensor data, since the deployed sensors are often resource-constrained (low-cost,
low-energy, etc.) [1]. SPECK-32 is a lightweight block cryptographic algorithm that is
suitable for operation on sensor devices because it uses 32-bit plaintext and ciphertext and
a 64-bit key [2]. However, attack techniques for lightweight cipher on sensor devices are
also being studied [3].

A block cipher has a characteristic in which an output difference according to an
input difference exists probabilistically. In addition, these differential characteristics are
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propagated and can be probabilistically predicted even when encryption is performed. That
is, since a differential characteristic exists with a certain probability and can be predicted
probabilistically, deep learning is suitable as a solution for this. Since Gohr’s work [4],
numerous studies on deep-learning-based distinguishers have been conducted [5–11].
In addition, as quantum computers have been developed in recent years, a quantum
neural network utilizing a quantum computer is attracting attention. Quantum neural
networks replace the training process of classical neural networks with quantum circuits.
In other words, the quantum circuit acts as a neural network. Simply, we use the rotation
gate of a quantum circuit to update the output value of the circuit by changing the state
of the qubit. This is similar to the training process in which classical neural networks
reduce losses while updating the weights of the network. Quantum neural networks
have the advantage of being able to achieve fewer parameters and higher performance
compared to classical neural networks. However, since current quantum computers are
noisy intermediate-scale quantum computers (https://horizon.kias.re.kr/16769/ accessed
on 15 June 2023) (NISQs), it is difficult to correct errors in qubits. Therefore, a hybrid neural
network that combines a classical neural network and a quantum neural network is now
stable in terms of performance.

In this paper, we propose a novel distinguisher using quantum neural networks.
Our quantum neural distinguisher distinguishes cryptographic data from random data.
In a nutshell, when we input random or cryptographic data into our quantum neural
distinguisher, it predicts which type of data they are. Furthermore, as described above,
quantum neural networks can achieve higher performance and efficiency than classical
neural networks in certain problems. Therefore, we proposed various approaches to design
an effective quantum neural network based distinguisher. Our contributions are as follows.

1.1. Our Contribution
1.1.1. Quantum Neural Network Based Distinguisher for 5-Round SPECK-32 in NISQ

In this work, we proposed a quantum neural network based distinguisher for SPECK-32
that can be feasible in NISQ. To the best of our knowledge, the first quantum neural network-
based analysis of a modern block cipher. In NISQs, it is difficult to obtain quantum advantages
over classical neural networks unless it is a simple task. However, for 5-round SPECK-32, our
quantum neural distinguisher successfully distinguished cipher from random.

1.1.2. In-Depth Analysis of Factors Affecting the Performance of the Quantum Neural
Distinguisher

The performance of quantum neural networks is determined by the expressiveness
and connectivity of quantum circuits, and they change due to various factors, such as the
number of qubits and quantum layers in quantum circuits, the embedding method, and
the number of parameters. In this paper, we performed experiments on various elements
constituting quantum neural networks and conducted an in-depth analysis of them.

The remainder of this paper is organized as follows. In Section 2, the backgrounds of
the neural distinguisher and the quantum neural network are covered. In Section 3, we
present a quantum neural network based distinguisher for 5-round SPECK-32. In Section 4,
the performance of the quantum neural distinguisher was evaluated and various factors
affecting the performance of the quantum neural network were analyzed. Finally, Section 5
concludes the paper.

2. Background
2.1. Classical Neural Networks

Artificial neural networks [12] are supervised learning algorithms. As shown in Figure 1,
a neural network is constructed in the form of stacked layers of multiple nodes, and multiple
layers that exist between the input layer and the output layer are called hidden layers.
Neurons (nodes) of each layer are multiplied by weights and the values of neurons in the
previous layer connected to them, and then they are added [13]. The calculated values are
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input to the nonlinear activation function, then the values are determined as the value of
the current node. All nodes of the corresponding layer are input to the next layer and are
used to calculate the values of the nodes. After performing this process in all layers, the
final value of the network is output. The output is input to the loss function along with
the label (the correct answer of the actual data). A loss is then calculated that represents
the difference between the label and the predicted value. In order to minimize the loss,
the weights of the neural network are updated, and the neural network is trained to make
a correct prediction. Artificial neural networks can solve classification and regression
problems. Classifying into two classes is called binary classification, and classifying into
multiple classes is multiple classification. In addition, for this task, various structures of
neural networks can be used. There are Multi-Layer Perceptron (MLP) with the most basic
structure, Convolutional Neural Networks (CNNs) [14] effective for image processing,
Recurrent Neural Networks (RNNs) [15] suitable for processing time series data, and
Generative Adversarial Networks (GANs) [16], etc.

⋯

⋯

⋯

Hidden layerInput layer Output layer

Weights Nodes

Predicted 
value

Input 
data Loss function

Actual label

Loss

Update weights

Figure 1. Training process of artificial neural network.

2.2. Quantum Neural Networks
2.2.1. Quantum Circuit

Quantum circuits are constructed through bits and gates like classical logic circuits.
However, instead of the classic bits and gates, quantum circuits use qubits and quantum
gates that have the superposition and entanglement principles of quantum mechanics, and
it works in quantum computers. A qubit is like a classical bit, but through superposition
states, values exist as probabilities and are determined to be a single value after observation.
In addition, since qubits can represent any value in the Bloch sphere, they can represent a
richer range of values than classical bits. In addition, multiple physical qubits are required
for one logical qubit (without error), and error correction techniques are required. However,
current quantum computers do not have enough resources and techniques to correct errors.

There are several types of gates used in quantum circuits [17], and the state of a qubit
can be changed by applying quantum gates. Figure 2 shows some of the quantum gates.
The Hadamard (H) gate makes a superposition so that qubits can have both 0 and 1 states
at the same time. Furthermore, when the same qubit passes through the Hadamard gate
again, it is restored to its original state. The X gate changes the state of the qubit (e.g., from
0 to 1), and it changes the probability in the superposition state. The CNOT gate uses the
first qubit as the control qubit. When the control qubit is 1, the NOT operation is applied to
the second qubit. Here, entanglement for two qubits is used. Next, there are Rx, Ry, and
Rz rotation gates that rotate the qubits about the x, y, and z axes. These gates rotate the
qubit by the rotation angle based on a specific axis.
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	𝐻𝑞0 	𝑋𝑞0

Hadamard 𝑋

𝑞0
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𝐶𝑁𝑂𝑇 𝑅𝑥, 𝑅𝑦, 𝑅𝑧	(Rotation)

Figure 2. Quantum gates.

Quantum circuits can be constructed by applying these quantum gates to qubits. At this
time, an efficient circuit design is required considering the depth (length of the circuit) and width
(the number of qubits) of the circuit. Quantum circuits can be implemented using the quantum
language QASM and host languages such as Python and JavaScript in various quantum
computing frameworks [18] such as Qiskit (https://qiskit.org/documentation/getting_started.
html accessed on 15 June 2023), ProjectQ (https://projectq.ch/ accessed on 15 June 2023), and
Pennylane (https://pennylane.ai/ accessed on 15 June 2023).

2.2.2. Quantum Neural Network

A quantum neural network [19] is an artificial intelligence that utilizes quantum
mechanics phenomena (entanglement and superposition). Figure 3 shows the training
process of a quantum neural network. A quantum neural network consists of qubits
and quantum gates on a quantum computer. Therefore, it learns quantum state data by
encoding classical data into quantum data. There are several types of data encoding: basis
embedding, angle embedding, amplitude embedding, etc. Through the data embedding
process, classical data are converted into a quantum state that quantum circuits can learn.
After the embedding process is completed, a parameterized quantum circuit consisting of a
rotating gate with parameters is executed. The state of each qubit changes as the circuit
is performed, and the state of the qubit is measured at the end of the circuit. Based on
this measured value, the loss is calculated and the rotation angle of the quantum gate
is updated. Then, the quantum circuit to which the changed parameters are applied is
re-executed. By repeating this process the quantum neural network is trained.

𝟒. Calculate loss𝟏. Embedding
(classical data to quantum state)

𝟑. Measure and   
expectation

𝑞𝑢𝑏𝑖𝑡	0

𝑞𝑢𝑏𝑖𝑡	1

Ry(0.4)H

H Ry(0.35)

M

Classical data
[0.4, 0.35 ] [0.7] Loss 

function
Rx(0.8) ⋯

⋯

𝟐. Parameterized circuit

𝟓. Update parameters
(angle (𝜽) of rotation gate)

Figure 3. Training process of quantum neural network.

Quantum neural networks require fewer parameters and fewer training data than classi-
cal neural networks. They also have the advantage of being able to perform better than classi-
cal neural networks. However, with current quantum computers, it is difficult to use many
qubits [20]. Therefore, the quantum–classical hybrid neural network [21,22] combined with the
classical neural network is now widely used. In a quantum–classical hybrid neural network, a
parameterized quantum circuit is used as one of the layers of a classical neural network. There-
fore, elements such as loss functions, optimization functions, metrics, and epochs are used the
same as in classical neural networks. Currently, hybrid neural networks have the advantage of

https://qiskit.org/documentation/getting_started.html
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being more stable and able to obtain higher accuracy than using only quantum circuits. How-
ever, in NISQs, it is difficult to exceed the performance of classical neural networks for complex
problems. Currently, there are many studies finding quantum advantages. However, there are
opinions that when identifying the tasks that quantum neural networks can solve and analyze,
both the positive and negative results should direct the research for the quantum neural net-
works [23] (https://discuss.pennylane.ai/t/why-quantum-circuit-in-deep-learning/426 ac-
cessed on 15 June 2023, https://discuss.pennylane.ai/t/qml-algorithm-doesnt-learn/468/21
accessed on 15 June 2023). Despite these limitations, quantum neural network models with
various structures are currently being studied [24–30], and most of them are used in a hy-
brid way.

2.3. Differential Characteristics

Differential cryptanalysis [31] is a representative cryptanalysis method of block ciphers.
The input difference (δ) is the XOR between the plaintext pairs (P0, P1), and the output
difference (∆) is the XOR between the ciphertext pairs. That is, as in Equation (1), if the
delta is XORed to the random plaintext, it is calculated as P1. Furthermore, the results of
encrypting (E) P0 and P1 are C0 and C1, respectively. Finally, by XORing C0 and C1, the
output difference (∆) can be calculated. A pair of input and output differences ((δ, ∆))
is called a differential. If encrypted data can be distinguished from random using the
differential characteristic, data complexity is significantly lower than that of an exhaustive
search. In the case of an ideal encryption algorithm, when plaintext with any input
difference is encrypted, the output difference should be uniform. Conversely, a weak cipher
has a certain output difference. If the probability of having an output difference for an
input difference is greater than the random probability, the ciphertext can be distinguished
from the random. These characteristics are propagated even when encryption is performed
and can be predicted probabilistically.

P1 = P0 ⊕ δ,
C0 = E(P0), C1 = E(P1),
∆ = C0 ⊕ C1

(1)

2.4. Neural-Network-Based Distinguisher for Differential Cryptanalysis
2.4.1. Basic Design of Neural Distinguisher

The neural distinguisher performs an attack that distinguishes cryptographic data
from random data by utilizing deep learning networks and differential characteristics.
Figure 4 shows the overall process of a basic neural distinguisher. The most basic model has
a structure that distinguishes between random data and cryptographic data satisfying one
differential characteristic. Therefore, it is necessary to generate a random ciphertext pair
and a cryptographic data pair satisfying one differential characteristic. The paintext pair
(P0, P′0) with an input difference by XORing one input difference (δ) with random plaintext
(P0) can be created. Then, when this plaintext pair is encrypted, a ciphertext pair (C0, C′0)
that probabilistically satisfies the output difference is generated. A random data pair (C0,
C1) can be obtained by encrypting two random plaintexts (P0, P1). A data set is generated
by labeling these random and cryptographic data pairs as 0 and 1, respectively. Next, the
data set is fed into the neural network. At this time, 1 bit of the data set is allocated to each
neuron. The neural network learns the characteristics of the input data. As a result, the
neural distinguisher can distinguish cryptographic data pairs from random pairs. This
is the basic neural distinguisher architecture, and there are several architectures: using
multiple types of single input differential characteristics, using multiple input differential
characteristics, using multiple input differential combinations, etc.

https://discuss.pennylane.ai/t/why-quantum-circuit-in-deep-learning/426
https://discuss.pennylane.ai/t/qml-algorithm-doesnt-learn/468/21


Sensors 2023, 23, 5683 6 of 16

Figure 4. Basic design of neural distinguisher.

2.4.2. Related Works

At CRYPTO 2019, Gohr [4] proposed the first deep-learning-based neural distinguisher
for round-reduced SPECK. They used a deep-learning-based classifier to distinguish
random data from input differences, and reduced data complexity for key recovery attacks
compared to a classical distinguisher. The accuracy of the neural network distinguisher for
8-round SPECK is about 0.514, and since we obtained an accuracy of 0.5 or more, we can
classify cipher data from random data. After Gohr’s work, in [8], differential cryptanalysis
for SIMON was performed using the deep-learning-based neural distinguisher. In [4],
one ciphertext pair (two ciphertexts) was used as input data, whereas k (k > 1) ciphertext
pairs were used as input data in [5]. That is, k ciphertext pairs are input to the neural
distinguisher and classified. Their target ciphers are SPECK, CHASKEY, PRESENT, and
DES. The experiment was conducted according to the k, and an accuracy of 0.5 or more was
obtained in all cases. In [6], they conducted experiments on multiple input differentials in
5-round SPECK-32. It was analyzed that there are differential characteristics with a higher
probability than 0x00400000, which is the input difference of the 5-round SPECK used
in Gohr’s work. They experimented with the top 25 input differences. In most cases, an
accuracy of 75% or better was achieved, and for 0x28000010, an accuracy of 90% or more
was achieved. In [7], the target ciphers are GIMLI, ASCON, KNOT, and CHASKEY, and
two models were proposed considering multiple input differences and single difference.
The neural distinguisher for multiple input differences performs multi-classification by
setting each input difference as a class, and the neural distinguisher for single input
difference performs binary classification on random data and ciphertext data. Baksi et
al. experimented using MLP, CNNs, and LSTM (Long Short-Term Memory) for GIMLI-
CIPHER. In this task, MLP performed the best, and CNN could not achieve an accuracy
higher than 0.5. Therefore, in their work, the MLP model was used for other ciphers.
However, the existing deep-learning-based neural distinguisher has limitations in round
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expansion due to lack of memory and data complexity. To overcome this, a new approach
combining a classical distinguisher and neural distinguisher has been proposed in [9]. Input
the input difference to the classical distinguisher to find the output difference for r rounds.
Then, the distinguisher for the extended round was proposed, using the output difference of
the r round as the input difference of the neural distinguisher. As such, research on various
ciphers, input differences, neural network structures, etc., is being actively conducted using
neural distinguishers, and current studies are the result of round-reduced ciphers, not
full rounds.

3. Design of Quantum Neural Distinguisher for SPECK-32

In this paper, we present a quantum neural distinguisher using a quantum–classical hy-
brid neural network for SPECK-32. The purpose of a neural distinguisher is to distinguish
the ciphertext pair from the random pair using differential characteristics. Propagation of
the differential characteristics to the nonlinear layer is probabilistically predictable even if
encryption is repeated, and the cipher data used have differential characteristics. There-
fore, by using neural networks, data with differential characteristics can be distinguished
from random data. Quantum–classical hybrid neural networks also perform training and
prediction for data, so they can distinguish the cipher from random.

Figure 5 shows the system diagram of the proposed quantum neural distinguisher.
Our method has two steps (data preparation and training of a quantum–classical hybrid
neural network). Data preparation is the process of generating data with differential
characteristics and random data for training. In addition, the quantum–classical hybrid
neural network is composed of quantum circuits and classical layers as described above.
Since the quantum–classical neural network can learn the characteristics of data like the
classical neural network, it can distinguish the cipher data from random. So, it can be used
as a distinguisher. Details of both parts are described below.

Ciphertext 𝐶!, 𝐶", 𝐶′!

Input difference

Plaintext 𝑃!, 𝑃"(≠ 𝑃!⨁𝛿), 𝑃′! (= 𝑃!⨁𝛿) 

Input
data

Classical
hidden layer

(optional)

Classical
output layer

Quantum circuit
(Embedding & Parameterized circuit)

Random
or

Cipher

⋯ ⋯

⋯

⋯

⋯ ⋯

Quantum-classical hybrid network

𝐶!||𝐶"	 à	Label 0 (Random) 
Bit

𝐶!||𝐶′! à Label 1 (Cipher)
Encryption

Data preparation

Figure 5. Diagram of the proposed method.

3.1. Data Set Preparation

First, two random plaintexts (P0, P1) are selected. These two plaintexts do not satisfy
the input difference (δ = 0x00000040). Then, the input difference is XORed to one random
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plaintext (P0); this XORed value is called P′0. After these three plaintexts are generated,
each plaintext is encrypted with SPECK-32. These are called C0, C1, and C′0, respectively.
C0 and C1 are random ciphertext pairs because they are encrypted values of unrelated
random plaintext pairs. Furthermore, C0 and C′0 are ciphertext pairs obtained by encrypting
plaintext pairs that satisfy the input difference. Thus, a random ciphertext pair is labeled
class 0, and a differential ciphertext pair is labeled class 1. When this process is completed
for all data, the data set required to train the quantum neural network based distinguisher
is created. The data set generated through this process is input to the quantum–classical
hybrid neural network.

3.2. Structure of Quantum Neural Distinguisher
3.2.1. Overall Network Structure

Figure 6 shows the detailed architecture of a quantum–classical hybrid neural network.
The input of the hybrid neural network are cipher pairs or random data pairs (C0||C′0 or
C0||C1) generated in the data preparation process. Since the block size of SPECK-32, the
target cipher, is 32-bit, the data input to the network are 64-bit and have 64 data features. In
classical neural networks, 1 bit of input data is allocated to 1 neuron. In this work, 1 bit
of the input data is allocated to 1 qubit. However, this does not require 64 qubits. Since
many qubits cannot be used in current quantum computing, input data are divided. The
64-bit data are divided by n, then input to 64÷ n quantum circuits with n qubits. If n is 8,
64-bit data are divided into 8 bits. Then each 8-bit data segment is input into 8 quantum
circuits. Therefore, 64 qubits are not required, and the quantum circuit can be run with
only n qubits. After the data of n-bit is input to the quantum circuit with n-qubit, data
embedding and parameterized quantum circuit are executed. At this time, the initial values
of the qubits of the quantum circuit are set to zero. At the end of the quantum circuit, the
value of each qubit is measured as n classical values. The measured value can optionally be
input to the classical hidden layer or can be directly input to the output layer. The output
layer is a classical layer, and it classifies randoms and ciphers.

Since our quantum-classical neural distinguisher is a quantum–classical hybrid network,
the loss function and optimization function used are classical methods. Since it is a binary
classification, the binary cross-entropy loss function is used, and the activation function
of the output layer is sigmoid. Furthermore, the Adam optimization function is used. In
addition, the adjoint differentiation (https://pennylane.ai/qml/demos/tutorial_adjoint_
diff.html accessed on 15 June 2023) was used to calculate the parameters of the quantum
circuit, such as calculating the gradient in the classical neural network. This is a time- and
memory-efficient method compared to other methods (i.e., parameter shift, backprop). We
use the adjoint method with an accelerated simulator to simulate more quantum resources
and increase the training speed.

Figure 6. Overall structure of quantum neural distinguisher.

https://pennylane.ai/qml/demos/tutorial_adjoint_diff.html
https://pennylane.ai/qml/demos/tutorial_adjoint_diff.html
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3.2.2. Data Embedding

As explained above, 64-bit data are input to quantum circuits after being divided.
Quantum circuits extract and learn data features like hidden layers in classical neural
networks. Prior to training, data are required in a form that the quantum circuit can process.
Thus, classical data must be encoded into quantum states. There are various embedding
methods. Among them, Figure 7 shows two embedding schemes for representing classical
data as quantum data. Basis embedding represents each classical bit through each qubit.
First, all qubits are set to a state of 0. If the classical bit to be encoded is 1, an X gate is
applied to the corresponding qubit. Then, the state of the qubit to which the X gate is
applied is changed to 1. This method is suitable for representing binary data. n-qubits
are required to represent n-bit data, but the circuit for embedding has low depth and is
simple. In our work, we encode the input data, not the weights of the neural network. For
this, a basis embedding suitable for embedding cryptographic data was used. Amplitude
embedding is a method of expressing classical data as an amplitude vector of qubits and
is suitable for continuous and normalized data. Since the length of the amplitude vector
for n-qubits is 2n, data of 2n-bit can be embedded using only n-qubits. Since it requires a
relatively small number of qubits, it is easy to embed many data into a single quantum
circuit, but it is more complex and has a higher depth than basis embedding.

Figure 7. Quantum circuits for data embedding.

3.2.3. Parameterized Quantum Circuit

After embedding data into quantum states, quantum gates with parameters are applied
to qubits. The state of the qubits changes according to the parameter of the quantum
gates [32–37]. Depending on the state of the qubit, the predicted value of the neural
network changes. That is, quantum circuits can change the state of qubits with parameters.
Then, training is performed by changing the state of the parameters of the circuit so that
the correct result can be inferred in the quantum circuit. Figure 8 shows the parameterized
quantum circuit diagram used in the quantum neural distinguisher. Rx, Ry, and Rz gates
are used, and by rotating based on the x, y, and z axes, all values on the Bloch sphere can be
obtained. Through this, it becomes a superposition state and, unlike classical bits, can have
a wider range of values. In addition, through CNOT, a 2-qubit gate, several qubits become
entangled and affect the states of another qubit. The construction of parameterized circuits
for learning is similar to the way neurons in classical neural networks are connected to each
other with weights (parameters).

Parameterized quantum circuits are not constructed according to specific rules. Quan-
tum circuits with high performance can be constructed without any rules, and Pennylane
provides several templates to easily create parameterized quantum circuits. In our work,
the ’Random layer’ was used. Random parameterized quantum circuits provided by Pen-
nylane can be made by stacking quantum layers. As quantum layers are stacked, quantum
gates are added to the circuit and the depth of the circuit increases. In addition, the rotation
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gate and entanglement of the circuit are randomly set according to the number of quantum
layers and the number of qubits. At the end of the quantum circuit, measurements are
performed on each qubit. Through this, the final state of each qubit is determined as a
classical value, and measured values, numbering as many as the number of qubits, are
calculated in each circuit. Through measurements on all circuits output 64 classical values,
which are passed to the output layer. That is, in the output layer, prediction is performed
based on the output value of the quantum circuit.

Figure 8. Randomly parameterized quantum circuit with 16 qubits.

4. Experiment and Evaluation

For the experiment, we used an Intel i7-13700KF CPU with 32GB RAM and an NVIDIA
GeForce RTX 4080 with 16GB RAM on Ubuntu 20.04.5 LTS. In terms of the programming
environment, Python 3.9, Tensorflow 2.9.0, and Pennylane [22] (a library for hybrid neural
networks) were used. As a simulator for performing quantum circuits, a C++-based
acceleration simulator (lightning.qubit) provided by Pennylane was used.

The performance (accuracy) of quantum neural networks is determined by the con-
nectivity and expressiveness of quantum circuits [38]. Experiments were conducted and
evaluated in terms of factors related to connectivity and expressiveness: number of qubits,
embedding method, and number of quantum layers.

4.1. Numerical Experiments and Results

In this section, we conduct numerical experiments on factors that affect performance.
However, on the NISQ, it took 3500 to 7500 s for 1 epoch depending on the case, so many
experiments could not be conducted. Therefore, we conducted more than 3 experiments
for each element and discussed based on the results. We plan to conduct more and more
diverse experiments in this regard in future work.

4.1.1. Accuracy according to Data Embedding

Table 1 shows the accuracy according to the data embedding method. We used the
same parameterized quantum circuit for both embedding schemes and set the number of
quantum layers to 5 and the epochs to 10. Furthermore, we used 16 qubits, which is the
maximum number of qubits available in the current quantum computing environment.

Amplitude embedding requires a small number of qubits and can embed data into a
single quantum circuit. However, considering the characteristics of the data to be trained,
this is not recommended. As a result of the experiment, when using amplitude embedding,
the test accuracy was 0.5, so it was impossible to distinguish the input data. Since the
random probability is 0.5, the training and test accuracy must be at least 0.51 to distinguish
the cipher data from random data. In general, if accuracy exceeds 0.51, it is considered valid.
Because, if it does not exceed 0.51, it has 50% accuracy (e.g., 50.1%, 50.5%, etc.). Therefore,
we set the distinguisher to be valid when the accuracy is greater than 0.51. In addition, the
distinguisher does not perform a differential attack directly, but it reduces data complexity
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in a differential attack (e.g., last round attack [39]). Therefore, our implementation can
be used as a distinguisher even if it is not highly accurate. In other words, although the
reliability is not high, it can be said to be a valid distinguisher. In contrast, when basis
embedding was used, it exceeded 0.51 in all test cases (We used a test data set consisting of
29.9660 rather than a single data point; furthermore, the calculated accuracies are averages
over three experiments.) From this result, it can be seen that basis embedding is appropriate
for the quantum neural distinguisher.

Table 1. Result according to the data embedding method (The number of quantum layers: 5,
Epoch: 10).

Embedding Method Basis Amplitude

Qubits 16 6
Training accuracy 0.52 0.51

Test accuracy 0.53 0.50

4.1.2. Accuracy according to the Number of Quantum Layers

Table 2 shows the result according to the number of quantum layers. We used the
random parameterized circuit provided by Pennylane. As a result of the experiment, when
using a quantum circuit with 10 layers, it was possible to learn from the data, and the
accuracy was higher than when using a parameterized quantum circuit with 5 layers.
However, the inference performance deteriorated due to overfitting, and the test accuracy
did not exceed 0.51. On the other hand, when using 5 quantum layers, a test accuracy
of 0.51 or higher was obtained for all test cases, and overfitting did not occur. As one
quantum layer is added, the quantum parameter increases by the number of qubits, so a
parameterized quantum circuit with 10 quantum layers has a higher circuit depth and twice
the number of quantum parameters than a circuit with 5 layers. That is, as the number of
quantum layers increases, the number of parameters per single qubit increases (see Table 3).
The factor that increases the number of parameters includes the number of qubits, but the
greater the number of qubits for the same number of quantum parameters, the smaller
the parameter for a single qubit. As in classical neural networks, overparameters cause
overfitting, and in this work, when the number of parameters per single qubit exceeds 5, it
becomes an overparameter state. Therefore, when using Pennylane’s random circuit with
16 qubits, if more than 5 layers are used, there is a risk of performance deterioration due to
overparameters. If the number of parameters must be increased to increase the capacity
of the network, increasing the number of qubits will be better because it does not cause
overparameterization. However, the increased circuit depth and connectivity by adding
qubits may not be suitable to run on an NISQ, so proper tuning is required.

Table 2. Results according to the number of quantum layers (using basis embedding, Epoch: 10).

Quantum layer 5 10

Qubit 16

Depth 22 42

Quantum parameters 80 160

Training accuracy 0.52 0.53

Test accuracy 0.53 0.49
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Table 3. The number of quantum parameters depending on the number of qubits and quantum layers.

Qubit Quantum Layers Quantum Parameters Parameters Per
Single Qubit

8 5 40 5
8 10 80 10

16 5 80 5
16 10 160 10

4.1.3. Accuracy according to the Number of Qubits

Table 4 shows the accuracy according to the number of qubits. Compared to a circuit
with 8 qubits, a quantum circuit with 16 qubits has more quantum gates, a larger number
of quantum parameters, and a larger circuit depth and circuit size. That is, the complexity
and the number of parameters of the circuit increase. However, this is sufficiently available
in an NISQ and is not an overparameter state considering the number of parameters per
single qubit. In addition, connectivity increased by adding qubits, and higher test accuracy
was achieved due to higher connectivity. In particular, when using an 8-qubit circuit, there
were some cases where the test accuracy did not exceed 0.5. However, when using quantum
circuits with 16 qubits, an accuracy of better than 0.51 was achieved in all cases. As such, it
was confirmed that increasing the number of qubits increases the connectivity of the circuit
and improves performance as more data points are reflected in a single circuit. Since there
are many factors such as circuit complexity and data complexity, it is not certain that the
greater the number of qubits, the better. However, considering the above experimental
results, it is thought that it would be good to increase the number of qubits for this work if
more qubits become operable in the future quantum computer.

Table 4. Result according to the number of qubits (using basis embedding, number of quantum
layers: 5, Epoch: 10). Since there is a connection between one qubit and the qubits it affects, we called
the average number of entangled (affected) qubits per single qubit the circuit’s connectivity in this
experiment.

Qubits 8 16
Gates (Rx, Ry, Rz, CNOT) 12, 16, 12, 16 26, 29, 25, 31

Quantum parameters 40 80
Depth 14 22

Quantum layers 5 5
Quantum circuit size 112 352

Connectivity 5.00 7.93
Training accuracy 0.52 0.52

Test accuracy 0.50 0.53

4.2. The Best Model of Our Quantum Neural Distinguisher

Figure 9 shows the accuracy of our quantum neural distinguishers depending on
options (left side), and the accuracy of each test data set for our best model (right side).
As mentioned above, we conducted three experiments using training and test data sets
due to the very long training time. Q and QL are the number of qubits and quantum
layers, respectively, (e.g., 5Q means 5 qubits. It can be confirmed that our final model
(Basis/16Q/5QL), constructed through our experiments, exceeds the accuracy of 0.51 for
all test data sets for the 5-round SPECK-32.
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Figure 9. Accuracy of our quantum neural distinguishers depending on options (left side), XXX
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4.3. Comparison of Quantum and Classical Neural Distinguisher

In this section, we compared our quantum neural distinguisher with classical methods.
In this experiment, three approaches were considered due to the limited environment of
quantum neural networks (quantum resources, memory, and time limitations). The first
(only Q ) is the method used in the above experiments, using only a quantum circuit as a

hidden layer. The second (constrained C ) is a neural network that uses only 1 classical
hidden layer, and uses the same limited data size, epoch, and batch size as the quantum
methods. The last approaches ( C1 and C2 ) are the results presented in [1] and [5],
respectively. The last method works for more than 5 rounds, but for comparison, we
compared the accuracy for 5 rounds.

Table 5 shows the comparison of quantum and classical neural distinguisher for 5-
round SPECK-32 . C1 [1] and C2 [5] without data and parameter restrictions achieved
higher accuracy than others, and the constrained C showed better performance than
only Q . Furthermore, as we saw earlier, the only Q method using 16 qubits was able to
distinguish 5 rounds. As such, it is currently difficult to obtain quantum advantages for
complex data in NISQs.

However, our approach can be used as a quantum neural distinguisher in NISQs
despite the constrained environment, and we were able to confirm its potential. To improve
the accuracy of the only Q method, it would be necessary to be able to embed more data
into a single circuit and increase the number of training data. In addition, it is believed that
the number of parameters across the network is insufficient, and the number of parameters
should be increased without excessively increasing the number of parameters per single
qubit. Several methods could be used to increase the number of parameters, but basically
more qubits would have to be available. If more resources and more efficient learning
techniques are developed in the future, we expect to achieve better accuracy as more data
and resources become available.

Figure 9. Accuracy of our quantum neural distinguishers depending on options (left side), XXX
(right side).

4.3. Comparison of Quantum and Classical Neural Distinguisher

In this section, we compared our quantum neural distinguisher with classical methods.
In this experiment, three approaches were considered due to the limited environment of
quantum neural networks (quantum resources, memory, and time limitations). The first
(only Q) is the method used in the above experiments, using only a quantum circuit as
a hidden layer. The second (constrained C) is a neural network that uses only 1 classical
hidden layer, and uses the same limited data size, epoch, and batch size as the quantum
methods. The last approaches (C1 and C2) are the results presented in [4] and [5], respec-
tively. The last method works for more than 5 rounds, but for comparison, we compared
the accuracy for 5 rounds.

Table 5 shows the comparison of quantum and classical neural distinguisher for 5-
round SPECK-32. C1 [4] and C2 [5] without data and parameter restrictions achieved
higher accuracy than others, and the constrained C showed better performance than only Q.
Furthermore, as we saw earlier, the only Q method using 16 qubits was able to distinguish
5 rounds. As such, it is currently difficult to obtain quantum advantages for complex data
in NISQs.

However, our approach can be used as a quantum neural distinguisher in NISQs
despite the constrained environment, and we were able to confirm its potential. To improve
the accuracy of the only Q method, it would be necessary to be able to embed more data
into a single circuit and increase the number of training data. In addition, it is believed that
the number of parameters across the network is insufficient, and the number of parameters
should be increased without excessively increasing the number of parameters per single
qubit. Several methods could be used to increase the number of parameters, but basically
more qubits would have to be available. If more resources and more efficient learning
techniques are developed in the future, we expect to achieve better accuracy as more data
and resources become available.
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Table 5. Comparison of quantum and classical neural distinguisher for 5-round SPECK-32.

Method Only Q Constrained C C1 [4] C2 [5]

Qubits 16 -
Quantum layers 5 -

Embedding method Basis -

Parameters 385 4353 100897 Can be adjusted
adaptively

Data size
(Training, Test) 213.8727, 29.9660 223.2534, 219.9316

Epoch 10 200 10
Batch size 32 5000 500

Training accuracy 0.52 0.79 0.93 0.99 (Max)
Test accuracy 0.53 0.76 0.93 0.99 (Max)

4.4. Quantum Neural Distinguisher in NISQ

Quantum neural distinguishers in NISQs have many limitations including the number
of data/parameters and training time.

Currently, real QPUs are not easy to use, and large numbers of qubits are not available.
Therefore, we have to use the simulator in general. When using a simulator, 1 epoch takes
between 3500 and 7500 s depending on the device used (here, the number of data used is
only 15,000 training data). According to our experiments, if the number of data increases n
times, the training time also increases n times in the Pennylane simulator. Therefore, we
cannot realistically use a large number of data. In fact, compared to 223.5234 training data
that can be used in classical neural networks, the number of data available in quantum
neural networks is significantly smaller. In (quantum and classical) deep learning, the
number of training data is a very important factor affecting accuracy. Therefore, it is difficult
for the quantum neural distinguisher to outperform the classical neural distinguisher in
an NISQ. In addition, the number of parameters is also a constraint in NISQs. The larger
the number of parameters, the longer the training time. Therefore, a limited number of
parameters must be used to train in a feasible time.

Due to these limitations, it is difficult to achieve high performance of a quantum neural
distinguisher in NISQs. It is thought that the performance will improve when simulators
and technologies for accelerating training are developed, or a way to use more quantum
resources in a reasonable time is presented.

5. Conclusions and Future Work

Although many studies are being conducted to find various problems that quantum
artificial intelligence can solve, an NISQ’s quantum neural network technology is difficult
to use to obtain quantum advantages for complex data. In this work, we proposed a
distinguisher based on a quantum neural network for SPECK-32. As a result of the experi-
ment, the classical method achieved an accuracy of 0.93, our quantum neural distinguisher
achieved an accuracy of 0.53 due to limitations in time, data, and parameters, and the
constrained classical method (under the same limited conditions as the quantum method)
achieved an accuracy of 0.76. Our target cipher, SPECK-32, has 32-bit plaintext, so they are
complex data with a total of 64 data points, and as shown in the experimental results, it
is still difficult to obtain quantum supremacy. However, we confirmed that our work is
feasible in an NISQ and can operate as a distinguisher for 5-round SPECK-32. We evaluated
our implementation in terms of the number of qubits, the embedding scheme, and the
number of quantum layers, and compared it with the classical method. As a result, the
basis embedding was more suitable for the quantum neural distinguisher. In addition,
since adding a quantum layer for higher expressiveness can greatly increase the depth of a
circuit or cause overparameters, it is thought to be better to increase the number of qubits
to increase network capacity. However, increasing the number of qubits also increases the
complexity of the circuit, so extending a quantum circuit does not guarantee performance
improvement. Therefore, a tuning process is needed to properly set all elements in consid-
eration of connectivity and expressiveness. In the future, recently developed technologies
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such as data re-uploading [30] or circuit cutting should be applied so that more quantum
resources, data, and time can be used. Furthermore, we will consider different kinds of
embedding schemes, such as trainable embeddings [40], for better results. In addition,
since quantum neural network technology is developing day by day, it is thought that
there will be another suitable methodology for distinguishers. Furthermore, the analysis of
the various factors presented in this paper is expected to help design new approaches to
achieve better performance in the future.
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