
Citation: Shang, Z.; Li, B.; Chen, L.;

Zhang, L. Defects Prediction Method

for Radiographic Images Based on

Random PSO Using Regional

Fluctuation Sensitivity. Sensors 2023,

23, 5679. https://doi.org/10.3390/

s23125679

Academic Editor: Christophoros

Nikou

Received: 20 May 2023

Revised: 11 June 2023

Accepted: 15 June 2023

Published: 17 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Defects Prediction Method for Radiographic Images Based on
Random PSO Using Regional Fluctuation Sensitivity
Zhongyu Shang 1, Bing Li 1,2, Lei Chen 1,* and Lei Zhang 1

1 State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710054, China;
zshang@stu.xjtu.edu.cn (Z.S.); lb@xjtu.edu.cn (B.L.); zl1872083252@stu.xjtu.edu.cn (L.Z.)

2 International Joint Research Laboratory for Micro/Nano Manufacturing and Measurement Technologies,
Xi’an Jiaotong University, Xi’an 710049, China

* Correspondence: raychen@xjtu.edu.cn

Abstract: This paper presents an advanced methodology for defect prediction in radiographic images,
predicated on a refined particle swarm optimization (PSO) algorithm with an emphasis on fluctuation
sensitivity. Conventional PSO models with stable velocity are often beleaguered with challenges
in precisely pinpointing defect regions in radiographic images, attributable to the lack of a defect-
centric approach and the propensity for premature convergence. The proposed fluctuation-sensitive
particle swarm optimization (FS-PSO) model, distinguished by an approximate 40% increase in
particle entrapment within defect areas and an expedited convergence rate, necessitates a maximal
additional time consumption of only 2.28%. The model, also characterized by reduced chaotic swarm
movement, enhances efficiency through the modulation of movement intensity concomitant with
the escalation in swarm size. The FS-PSO algorithm’s performance was rigorously evaluated via a
series of simulations and practical blade experiments. The empirical findings evince that the FS-PSO
model substantially outperforms the conventional stable velocity model, particularly in terms of
shape retention in defect extraction.
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1. Introduction

Particle swarm optimization (PSO) is a global optimization method first proposed
by Kennedy and Eberhart in 1995 [1]. Inspired by collective behavior in nature, PSO
has become a widely used technique in various fields. Initially designed for optimizing
continuous nonlinear functions, the original PSO algorithm has undergone numerous
enhancements to tackle complex problems [2]. These modifications enable its application
in multiobjective, constrained, discrete, and binary optimization scenarios [3]. In imaging
processing fields, there are some notable applications using the PSO algorithm:

• Clustering and image segmentation (classic PSO model);
• Multilevel image thresholding (modified PSO model);
• Noise reduction (modified PSO model);
• Evolving deep convolutional neural networks (hybrid PSO model).

Despite its improved performance, the PSO algorithm still faces challenges such
as convergence speed, premature convergence, sensitivity to initial values, and manual
parameter determination. This section explores the significance of PSO architecture design,
considering various modifications in fitness functions and velocity configurations, as
demonstrated through industrial applications.

1.1. PSO Applications in Image Processing

The wide range of applications and advancements in the PSO algorithm highlight the
importance of PSO architecture. Initially, PSO research focused on clustering, classification,
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and data mining from uncertain image datasets, outperforming traditional methods [4,5].
Image segmentation benefits from PSO’s ability to determine the number of clusters au-
tonomously using a histogram [6,7], while image thresholding reduces tolerances caused
by uneven distribution curves [8]. PSO has also been integrated with other methods, such
as SVM for surface defect detection and wavelets for medical image compression [9,10]. Hy-
brid approaches, such as PSO-K-means for MRI segmentation, PSO with machine learning
for image enhancement, and PSO with a residual network for pipeline robot fault diagnosis,
further improve performance [11–14]. In conclusion, various PSO models designed for
specific applications have their respective advantages and disadvantages. These include:

• Classic and Modified PSO Model

The original PSO model offers significant ease of use. By replacing the fitness function
with a specific mathematical equation or method, the classic model can be seamlessly
integrated into nearly any application scenario. On the other hand, PSO modifications, such
as evolving weights during iterations, offer greater probability for PSO implementations in
complex images, such as multilevel thresholding. However, such architecture is limited for
complex problems due to the lack of swarm diversities.

• Hybrid PSO Applications

Owing to its iterative features, the PSO algorithm is ideal for resolving the uncertainty
inherent in images. This attribute facilitates the acceleration of the optimization process
in numerous hybrid applications. However, controlling convergence during iterations
is a formidable challenge in the hybrid model. This is because the hybrid model, laden
with numerous functions and structures, may trigger premature convergence, thereby
preventing the global optimal value from reaching the anticipated result post all iterations.

1.2. Defect Detection in Radiographic Images with PSO Implementations

Combined with deep learning and other machine learning methods, PSO offers a
robust approach for defect detection and classification in radiographic images. Unlike
traditional models, PSO provides flexibility in feature selection and classifier optimization,
resulting in improved performance and reduced computational load. Defect detection in
radiographic images is crucial for safety and reliability in industries such as inline inspec-
tion and medicine [15,16]. Recent research focuses on learning-based models such as deep
learning, SVM, and other machine learning methods for feature extraction, selection, and
classification. For instance, Dias Júnior et al. [17] achieved high accuracy in classifying
COVID-19 patients using PSO-optimized XGBoost with deep features. Narin [18] applied
PSO for feature selection in CNN models, achieving exceptional performance. Kumari
et al. [19] proposed a hybrid algorithm for segmenting COVID-19 infected X-ray images us-
ing PSO and K-means. Açıcı et al. [20] used PSO and GA to optimize CNN hyperparameters
for femoral neck fracture detection. In weld defect detection, Ma et al. [21] achieved high
accuracy using machine learning and active visual sensing. Naddaf-Sh et al. [22] trained an
optimized CNN for detecting weld defects. Hena et al. [23] emphasized the importance of
signal-to-noise and contrast-to-noise ratios in deep learning for NDT applications.

1.3. PSO Fitness Function and Velocity Configuration for Defects Analysis

CPSO-based methodologies show promise in defect detection and prediction. The
design of an optimal fitness function and velocity setting is crucial for efficient PSO-based
implementations.

However, challenges exist in PSO-based approaches. The fitness function plays a
key role in defect detection, requiring the ability to differentiate between defective and
nondefective areas and identify various types of defects [24]. For instance, in a study on
leather defect detection, a modified fitness function using selective-band Shannon entropy
improved segmentation efficiency [25]. The velocity setting also influences algorithm
convergence and search efficiency [26]. Balancing exploration and exploitation behaviors,
the velocity should facilitate effective solution space exploration without being trapped in
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local optima. Some studies propose enhancements to the velocity updating process, such
as incorporating Lévy flight strategy [27].

Despite the advantages of PSO in defect analysis, there are certain limitations:

• PSO approaches often entail a high computational cost due to a large number of
iterations [28].

• Selecting appropriate parameters for the PSO algorithm is challenging, often requiring
specific fitness function designs for different problem domains [29].

• Premature convergence leading to local optima is a risk. Velocity configuration can
enhance swarm diversity and behavior during iterations to mitigate this issue [30].

This paper introduces a novel variant of the PSO algorithm, which incorporates
regional fluctuation sensitivity for defect prediction in radiographic images. The proposed
modification of the PSO algorithm utilizes spatial entropy and an evolving swarm velocity
to accurately identify defect regions based on regional fluctuation phenomena. This unique
approach aims to circumvent the prevalent issues of premature convergence and elevated
computational expense, commonly encountered during the defect tracing process. Through
the theoretical model, simulation, and actual experiment, the result consists of three main
outcomes:

1. The proposed PSO model has lower computation cost than the stable velocity PSO model.
2. Premature convergence is mitigated and optimized by velocity configuration.
3. Traced defect areas have significantly higher shape retention than the stable velocity

PSO model.

Section 2 establishes the relationship between regional entropy features and fluctuation
phenomena for defect prediction. Section 3 outlines the structure design of velocity and
the fitness function critical for the defect tracing procedure. A simulation experiment with
a turbine blade model embedded with artificial defects validates the defect prediction
performance in Section 4. Section 5 presents laboratory-based experimental results using
an actual turbine blade, examining performance, computational efficiency, convergence
analysis, and the correlation between PSO results and defect dimensions. Finally, Section 6
summarizes the findings, evaluates them, and suggests directions for future research.

2. Related Work
2.1. PSO Fitness Function Design Based on Entropy Theory

Entropy theory has been effectively applied in image processing, including the use of
PSO models for edge detection, segmentation, and thresholding [31–33]. Despite its ability
to optimize global values by analyzing regional variations, PSO fails to detect defects on a
global statistical scale. Therefore, the integration of entropy in PSO tracking necessitates
both its use as a fitness function and a comprehensive modification of PSO for adaptive
defect detection.

Radiography images exhibit a wide dynamic range (usually 14–16 bit) and high
resolution in the exposure orientation. The pixel information in these images can provide
a comprehensive understanding of potential defects. However, traditional thresholding
methods are not suitable due to irregular gray value discrepancies within defect regions.
The entropy algorithm offers a solution by utilizing regional statistical methods to calculate
entropy values based on the relativity of neighboring pixel values.

The entropy algorithm seeks to identify defects by employing regional statistical
methods to calculate the target area based on the relativity of neighboring pixel values. The
calculation process for entropy J, as illustrated in Equation (1), utilizes the target pixel (i, j)
value IN along with N neighbors in an image with an M-bit depth.

J(i, j) =
2M−1

∑
0

IN(i, j)log2 IN(i, j) (1)
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Within the defect area, the gray value of neighboring pixels in close proximity to
the defect center exhibits significant changes due to uneven density. Theoretically, the
mathematical value of entropy J(i, j) reflects the regional abundance within the target area.
This regional feature renders the entropy algorithm suitable for the precise detection of
defects in radiographic images. The relationship between exposure settings and image
quality relies on a quantified method to determine whether the actual data are optimal
for detection purposes. In contrast to the International Electrotechnical Commission (IEC)
standard guidelines [34,35], conventional exposure indicators employ a preset reference
for exposure settings as directed by the manufacturer. Conversely, the entropy algorithm
offers a quantified approach to assess image quality, utilizing abundance as a reference for
specific tested objects.

Figure 1 illustrates the entropy features at the defect area, demonstrating how the
entropy value increases with the contrast under different exposure settings. Excessive
exposure energy penetrating through the defect can cause indistinguishable gray values
from neighboring pixels, resulting in a decrease in calculated entropy. Therefore, the highest
entropy value guides the determination of the optimal exposure setting for defect detection.
This entropy-based method offers a valuable alternative to conventional exposure indicators
that rely on preset references. Instead, it leverages the abundance of information within the
target pixel area to assess image quality in radiographic defect detection.
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2.2. Fluctuation Phenomenon of Entropy Value in Defect Area

During radiographic imaging, scattering effects caused by small gaps and edges in
tested objects result in blurred edges in the image [36,37]. This phenomenon arises from
multiple reflections in small corners, amplifying regional X-ray intensity [38]. The area
surrounding these gaps exhibits inconsistent gray values and reduced accuracy, making it
conducive to defect detection. Defects such as cracks or holes introduce regional enhanced
intensity effects, leading to fluctuations in gray values [39,40]. Entropy theory suggests that
increased regional pixel value abundance corresponds to higher entropy values, allowing
identification of regional fluctuations caused by defects.

Figure 2 demonstrates the procedure for extracting defects using the entropy filter.
The defect hole area exhibits a significantly higher entropy value than other areas through
the filter calculation. After thresholding the extracted area based on the defect’s entropy
value and denoising, the defect area can be precisely detected.

2.3. PSO with Fluctuation Sensitive Invariant

In practical scenarios, defects often exhibit a random distribution within tested objects.
The PSO algorithm, with its random optimization process, is suitable for identifying regions
with fluctuations. Traditional setups tend to attract particles towards the highest gray value
when using a gray value thresholding method in the fitness equation. However, if the
defect area’s gray value is obscured by complex geometric objects, such as free-form
surfaces, detecting the defect becomes challenging. Implementing entropy, as explained in
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Equation (1) and demonstrated in Figure 1, enables more effective highlighting of regional
fluctuations through statistical calculations, making it suitable for the fitness function.

PSO employs random particles with predefined velocities to search for the target
fitness value at specific locations. In each iteration, guided by the fitness equation, the
global optimal position gradually approaches the defect area due to the magnification effect
of regional fluctuations on the particles. This effect arises from uneven density within the
defect area, where the biased thickness is amplified through each PSO iteration.

Figure 3a displays a typical radiographic image of a welding point in a gas pipeline
with a void defect. The image is processed with Equation (1) taking N = 9 to obtain the
entropy filtered image in Figure 3b. According to the indicated color map, the entropy
distribution in the defect area is significantly higher (J ≥ 3) compared to neighboring pixels
(J ≤ 1.5).
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By utilizing entropy value as the fitness equation, PSO demonstrates fluctuation
sensitivity characteristics. This method is ideal for potential defect recognition, offering
adaptive detection capabilities for tested objects. The optimized locations identified through
PSO iterations demarcate the target area of the defect within a specific region.
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3. PSO Algorithm Structure Design
3.1. Flexible Velocity Design Based on Thresholding

Conventional defect detection methods use thresholding processes to identify potential
defect areas, but they often face limitations in handling regional defects with irregular
shapes. To overcome threshold limitations, an optimization strategy for constraining
particle velocity is introduced.

Vparticle = VPSO × ws ×
(

Ire f−Iparticle

)
(2)

ws = wg × ln
Ire f

Vmax
(3)

lim
Iparticle→Iref

Vparticle= 0

lim
Iparticle→0

Vparticle = VPSO × ws × Ire f
(4)

Equation (2) outlines the basic procedure for velocity setting. VPSO refers to the
stable velocity model for velocity setup [41], while Ire f represents the reference grayscale
threshold. The coefficient ws is employed to set the velocity based on the difference between
the threshold value Ire f and the particle value Iparticle. In Equation (3), the coefficient ws
consists of the division of Ire f and Vmax, along with a constant wg. Equation (4) describes
two limit values of particle velocity Vparticle, which is the velocity range set by the coefficient

ws and the gray value of the particle location ( Iparticle

)
. Notably, Vparticle might be set as a

negative value due to bidirectional movements in the image’s space.
During the PSO process, particles generated at random pixel locations are assigned

velocities according to the gray value difference between the threshold and the pixel itself.
As the difference decreases, the velocity increases. The relationship between velocity
Vparticle and difference is adjusted by ws, which restricts the intensity of particle movements.
The purpose of coefficient ws is to provide the particle with sensitivity for detecting regional
fluctuation variations. When a particle is situated at the edge of a defect area, the difference
between Ire f and Iparticle will significantly increase. Consequently, the velocity Vparticle
decreases, slowing the particle’s movement and trapping it within the defect area. Moreover,
particles have a random chance to move to the edge of any area in the image. In this
situation, regular-shaped areas without defects will assign Vparticle a significantly high
value, causing the particle to flee from the current area during the next iteration.

3.2. PSO Structure Integrated with Entropy Fitness Function

The proposed PSO model employs the pixel’s entropy value as the fitness function for
evaluating regional fluctuations to predict potential defect areas.

Figure 4 depicts the workflow of the FS-PSO (fluctuation-sensitive) algorithm. Based
on the input image and target defect scale, the intensity coefficient ws, including reference
threshold Ire f and velocity limit Vmax, is established to indicate expected defect predictions
with a specific movement intensity. The fitness function pertains to the spatial entropy
distribution of the input image, where the regional fluctuation is enhanced, as demon-
strated in Figure 3. Upon implementing the PSO process, a probability distribution map is
generated from the optimal particle statistics.
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3.3. Defect Prediction Method for Radiographic Testing

The PSO process applied to radiographic images extracts a set of locations converging
towards the theoretical center of the fluctuation area. To quantify potential defects, these
optimal locations necessitate a statistical model to address the probability distribution in
the image.

P[i, j] =
∑n

0 Nparticles[
itarget × jtarget

] (5)

lim
Nparticles→n

P[i, j]= 100% (6)

The probability of a defect in the pixel matrix
[
itarget × jtarget

]
is depicted in Equation

(5), calculated by dividing the number of optimal particles by the total pixel number of
the matrix

[
itarget × jtarget

]
in the region. Equation (6) demonstrates the situation when all

particles are located within the pixel matrix, which indicates the defect area. Employing
the probability method for defect prediction description helps circumvent the background
interference issue, which arises when objects with free-form geometry exhibit high entropy
values in their spatial distribution.

As the size of potential defects is relatively small compared to the tested object,
the probability prediction serves as an approachable method, utilizing the PSO iteration
algorithm to filter interferences instead of relying on conventional thresholding methods.

4. Simulation Results
4.1. PSO Tracing Implementation on Theoretical Model

The proposed PSO model, featuring fluctuation invariance, is illustrated in Figure 5a.
Upon generating the particle swarm, each particle’s velocity is constrained by the global
entropy value of the input image. If the entropy value at the particle’s location is lower than
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the global value, the velocity is set randomly for further movements. Conversely, if the
pixel entropy at the particle’s location exceeds the global value, the velocity is determined
based on the value difference with the reference threshold Ire f . Figure 5b showcases the
defect-trapping mechanism facilitated by the PSO algorithm with fluctuation invariance.
When a particle enters a defect with a lower gray value, its velocity is significantly reduced,
causing the particle to be trapped within the defect area. After several iterations, numerous
particles become clustered within the defect area.
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In accordance with the presented method, a simulated curved surface using a parabolic
polynomial equation is employed for testing. The designated defect area exhibits relatively
lower gray values compared to the surrounding areas. Figure 6 portrays this phenomenon.
When entropy calculation is applied, the defect area exhibits a peak entropy value, indica-
tive of regional fluctuation.
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4.2. PSO Result on Radiographic Image

The PSO experiment employs a radiographic image of a free-form turbine blade model
generated using the voxel method [42–44]. Figure 7a,b display the blade model, which has
dimensions of 50 × 83 × 240 mm and features six artificial defect holes, detailed in Table 1.
The exposure distance is set to 1 m, and the grayscale image has a resolution of 1557 × 1557
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with a 14-bit depth. The swarm consists of 5000 particles, and the experiment runs for
100 iterations. Multiple attempts are conducted to ensure the accuracy of the PSO results.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 20 
 

 

  
(a) (b) 

Figure 6. Regional fluctuation analysis on parabolic polynomial equation in (a) simulated image; (b) 
spatial entropy. 

4.2. PSO Result on Radiographic Image 
The PSO experiment employs a radiographic image of a free-form turbine blade 

model generated using the voxel method [41–43]. Figure 7a,b display the blade model, 
which has dimensions of 50 × 83 × 240 mm and features six artificial defect holes, detailed 
in Table 1. The exposure distance is set to 1 m, and the grayscale image has a resolution of 
1557 × 1557 with a 14-bit depth. The swarm consists of 5000 particles, and the experiment 
runs for 100 iterations. Multiple attempts are conducted to ensure the accuracy of the PSO 
results. 

   
(a) 

 

(b) (c) 

Figure 7. Blade model and simulation results in (a) blade model; (b) particle racing result in radio-
graphic image; (c) spatial fitness function (spatial entropy). 

Table 1. Dimension of 6 artificial defects in simulated blade model. 

Defect<break/>Num-
ber<break/>(Top to 

Bottom) 

De-
fect<break/>

Diame-
ter<break/>(

mm) 

De-
fect<break/>Hole<bre

ak/>Type 

De-
fect<break/>Co

ne An-
gle<break/>(De-

gree) 

De-
fect<break/>D
epth<break/>(

mm) 

1 4 Conical 80.54 5.62 
2 6 Through 80.54 5.83 
3 8 Through 80.54 5.90 
4 10 Through 80.54 5.92 
5 12 Through 80.54 5.90 

Figure 7. Blade model and simulation results in (a) blade model; (b) particle racing result in radio-
graphic image; (c) spatial fitness function (spatial entropy).

Table 1. Dimension of 6 artificial defects in simulated blade model.

Defect
Number

(Top to Bottom)

Defect
Diameter

(mm)

Defect
Hole
Type

Defect
Cone Angle

(Degree)

Defect
Depth
(mm)

1 4 Conical 80.54 5.62

2 6 Through 80.54 5.83

3 8 Through 80.54 5.90

4 10 Through 80.54 5.92

5 12 Through 80.54 5.90

6 14 Through 80.54 5.84

Figure 7b,c illustrate the PSO tracing results, with particle traps marked by red dots
in (a). As the fitness function utilizing fluctuations exhibits higher values around the
defect area, particles traversing these regions become ensnared. Additionally, due to the
decreasing velocity at lower gray values, particles situated in the background with minimal
fluctuations and entropy values also become trapped after a certain number of iterations.

4.3. Iteration Analysis on Velocity Invariant

In PSO algorithm structure design (Section 3.1), the PSO structure is designed with
fluctuation sensitivity for defect trap functions. However, movement intensity also influ-
ences the particle swarm. For example, if the intensity is too low, the particle velocity would
be low, making it difficult for particles outside the defect trap to seek another trap location.
In such cases, the number of particles falling into the defect area will decrease. Figure 8
demonstrates the PSO process with 10% random invariant integration on particle velocity.

In Figure 8a, the velocity set in each iteration without an implemented random variant
exhibits faster convergence speed. The swarm reaches a relatively stable state at around
600 iterations, with the probability of particles inside the defect trap at approximately
0.01 (1% of the total swarm). In Figure 8b, the velocity is assigned a random value if the
difference between Iparticle and Ire f is high. Under this condition, particles exhibit greater
movement intensity rather than a linear relationship with the reference threshold value
during each iteration. The results reveal that the overall probability of particles within
the defect area stabilizes at around 0.03 (3% of the total swarm) within 900 iterations.
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Consequently, the random variant application can enhance the defect trap function but
may reduce the efficiency of the PSO tracing process.
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4.4. Defect Prediction with Indicated Dimension

To verify the PSO tracing results and generate the probability map for defect prediction,
the presented method employs a detection window of 20 × 20 pixels to calculate the
probability P[i, j] in Equation (5). The PSO tracing process utilizes 1000 particles and
100 iterations for training, with the experimental results obtained by averaging values from
1000 repeated processes. Figure 9 presents the processed probability map, and the PSO
statistical results are listed in Table 2.
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Table 2. PSO results on artificial defects in simulated blade model.

Defect
Number

Regional
Pixels

Average
Entropy

Particles
in Defect

Probability
%

1 63 2.73 3 5.62
2 161 3.58 9 5.83
3 240 3.82 14 5.90
4 352 3.86 21 5.92
5 459 3.78 27 5.90
6 630 3.37 37 5.84

Total Average Total Average
1905 3.52 111 3.69
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Based on the results, the average number of particles trapped within the defect area
is approximately 70.36, covering 3.69% of the total pixels in the defect area. According
to the varying sizes of the six defects, the trapped particles exhibit an incremental trend
in each defect area, as the regional entropy value is directly proportional to the gray
value fluctuations.

5. Experimental Results
5.1. Experimental Result on Turbine Blade Radiographic Image

Following the validation of the simulation blade model using the PSO tracing method,
an experiment involving an actual blade is conducted to further validate the defect predic-
tion model. Figure 10 displays the utilized nickel-based alloy blade, which features a set
of artificial defects. The specifications of the in-lab radiography system include a 225 kV
X-ray source and a 14-bit flat panel detector with a 222 mm × 222 mm imaging window,
1557 × 1557 resolution, and 143 µm pixel pitch. The experiment employs three defects with
dimensions of 5 mm length and 0.5 mm width for radiographic imaging. Each defect has a
depth of 0.5 mm, 0.7 mm, and 0.9 mm, respectively. The exposure setup utilizes an ASTM
1A6 image quality indicator (IQI) affixed to the blade to ensure optimal image contrast in
the imaging area. The resulting tested image is presented in Figure 11.
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The PSO tracing experiment setup involves 200 iterations and various particle sizes,
ranging from 2000 to 10,000, with the average result generated from 1000 repetitions.
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Figure 11b displays the PSO results with a 2000-swarm setting, where particles in the defect
area are marked in red. Table 3 lists the PSO results under different settings generated by
Intel Xeon workstation equipped with an E5 2670 V2 dual CPU, 128 GB DDR3 RAM, Nvidia
RTX 3080 Ti graphic card. The swarm is filtered by eliminating particles in the background
with a zero-entropy value. As the swarm size increases, the ratio of total particles trapped
in the defect area also rises.

Table 3. PSO tracing and computation result of 3 defects with different swarm size.

Total
Swarm

Filtered
Swarm *

0.5 mm
Defect *

0.7 mm
Defect *

0.9 mm
Defect *

Computation
Time (ms) *

2000 626.5 2.82 3.69 4.86 402.5

3000 930.8 3.74 5.09 6.55 430.9

4000 1238.7 4.99 6.60 8.62 455.2

5000 1535.8 5.69 8.11 10.49 475.9

6000 1831.0 6.96 9.46 12.43 494.5

7000 2162.9 7.79 10.76 14.32 511.5

8000 2437.2 8.93 12.22 16.57 562.9

9000 2763.3 9.95 13.69 17.94 582.6

10,000 3042.7 10.97 15.13 20.48 598.8
* The results are generated by the average result from 1000 repetitions using MATLAB R2022b Update 3
9.13.0.2126072 64-bit win64 version.

5.2. Relation of Probability Prediction with Defect Dimension

Figure 12 depicts the particles trapped in each defect with different swarm sizes,
utilizing the same settings as in Section 5.1. As deeper defects exhibit higher regional
entropy values, the PSO tracing method demonstrates optimal performance in the 0.9 mm
defect area. In Figure 12, the increment in swarm size exhibits an approximately linear
relationship. With the same input image in the PSO algorithm, the slope of the curve
correlates with the defect’s depth since deeper defects exert greater influence on particle
velocity, as per Equation (2). Nonetheless, setting an excessively large swarm size would
increase overall computational demands.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20 
 

 

8000 2437.2 8.93 12.22 16.57 562.9 
9000 2763.3 9.95 13.69 17.94 582.6 

10,000 3042.7 10.97 15.13 20.48 598.8 
* The results are generated by the average result from 1000 repetitions using MATLAB R2022b Up-
date 3 9.13.0.2126072 64-bit win64 version. 

5.2. Relation of Probability Prediction with Defect Dimension 
Figure 12 depicts the particles trapped in each defect with different swarm sizes, uti-

lizing the same settings as in Section 5.1. As deeper defects exhibit higher regional entropy 
values, the PSO tracing method demonstrates optimal performance in the 0.9 mm defect 
area. In Figure 12, the increment in swarm size exhibits an approximately linear relation-
ship. With the same input image in the PSO algorithm, the slope of the curve correlates 
with the defect’s depth since deeper defects exert greater influence on particle velocity, as 
per Equation (2). Nonetheless, setting an excessively large swarm size would increase 
overall computational demands. 

 
(a) 

 
(b) 

Figure 12. Experimental results analysis in (a) relation of defect depth and trapped particles; (b) 
relation of swarm size and particles in defect. 

5.3. Convergence Behavior on Velocity Intensity 
The performance of the proposed PSO algorithm is evaluated under different velocity 

settings to examine the impact of 𝑤   on the tracing procedure. The experiment is 

Figure 12. Cont.



Sensors 2023, 23, 5679 13 of 19

Sensors 2023, 23, x FOR PEER REVIEW 13 of 20 
 

 

8000 2437.2 8.93 12.22 16.57 562.9 
9000 2763.3 9.95 13.69 17.94 582.6 

10,000 3042.7 10.97 15.13 20.48 598.8 
* The results are generated by the average result from 1000 repetitions using MATLAB R2022b Up-
date 3 9.13.0.2126072 64-bit win64 version. 

5.2. Relation of Probability Prediction with Defect Dimension 
Figure 12 depicts the particles trapped in each defect with different swarm sizes, uti-

lizing the same settings as in Section 5.1. As deeper defects exhibit higher regional entropy 
values, the PSO tracing method demonstrates optimal performance in the 0.9 mm defect 
area. In Figure 12, the increment in swarm size exhibits an approximately linear relation-
ship. With the same input image in the PSO algorithm, the slope of the curve correlates 
with the defect’s depth since deeper defects exert greater influence on particle velocity, as 
per Equation (2). Nonetheless, setting an excessively large swarm size would increase 
overall computational demands. 

 
(a) 

 
(b) 

Figure 12. Experimental results analysis in (a) relation of defect depth and trapped particles; (b) 
relation of swarm size and particles in defect. 

5.3. Convergence Behavior on Velocity Intensity 
The performance of the proposed PSO algorithm is evaluated under different velocity 

settings to examine the impact of 𝑤   on the tracing procedure. The experiment is 

Figure 12. Experimental results analysis in (a) relation of defect depth and trapped particles; (b) rela-
tion of swarm size and particles in defect.

5.3. Convergence Behavior on Velocity Intensity

The performance of the proposed PSO algorithm is evaluated under different velocity
settings to examine the impact of wg on the tracing procedure. The experiment is designed
with a swarm size of 10,000 and a velocity limit of 16 pixels (approximately 1/100 image
resolution). Figure 13 presents the experimental results for various wg values.
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In the tracing results, particles trapped in all defects are sensitive to wg values, which
alter velocity intensity and induce chaotic movements in the swarm. As illustrated in
Figure 13a–c, any changes in wg decrease the hit rate during initial tracing phases, due
to the modification of the linear relationship between regional entropy and velocity limit.
Furthermore, when wg is set higher than 1.0, the trapping effects on particles in thinner
defects tend to malfunction, resulting in trapped particles escaping the defect area.

5.4. Performance Comparison on Defects Predication

To assess the performance of trap effect in the proposed PSO with fluctuation sensitiv-
ity (FS-PSO), a comparative analysis was conducted with the conventional PSO technique.
The experimental setup comprised 200 iterations and was repeated 1000 times. In the PSO
model with stable velocity, the inertia weight ws was assigned a value of 0.9, while the coef-
ficients ϕ1 and ϕ2 were set to 1.5, in accordance with the algorithmic structure suggested
by Kennedy [45]. Both the proposed and stable velocity methods utilized regional entropy
as the fitness function for particle tracing tests. The outcomes of the experiment are sum-
marized in Table 4. The computational time of the FS-PSO employing a 10% randomization
exhibits a marginally elevated duration, ranging from 1.20% to 2.28% in comparison to the
stable velocity model. Notably, this discrepancy diminishes as the swarm size escalates.

Table 4. Performance comparison of FS-PSO and PSO model with stable velocity settings.

Algorithm Model
Swarm

Size
Filtered
Swarm *

Trapped
Particles *

Computation
Time (ms) *

FS-PSO
model

2000 606.2 3.17 404.4
5000 1529.9 17.86 482.3
8000 2431.2 25.34 560.1

10,000 2433.5 32.35 613.7

FS-PSO
model

with 10% random

2000 629.1 4.56 410.9
5000 1533.3 19.85 486.4
8000 2433.5 26.14 563.2

10,000 3049.1 33.40 616.5

PSO model
with stable velocity

2000 564.4 2.76 401.7
5000 1481.3 14.71 479.4
8000 2398.0 22.99 556.3

10,000 2985.2 31.22 609.1
* The results are generated by the average result from 1000 repetitions using MATLAB R2022b Update
3 9.13.0.2126072 64-bit win64 version.

Figure 14 presents a comparative analysis of defect extraction employing FS-PSO
and PSO with a stable velocity configuration. Owing to the trapping effect inherent in
the FS-PSO approach, all defect regions are accurately identified and recovered with high
shape retention. In contrast, the PSO model with a stable velocity setting exhibits increased
randomness in particle movements during the tracing process, resulting in a more dispersed
extraction of defect areas, particularly in cases of larger iteration counts.

Given the outlined limitations of the PSO implementation, as discussed in Section 1.3,
it is noteworthy to mention that the proposed FS-PSO algorithm exerts minimal impact on
the computational cost. This is primarily due to the velocity configuration being associated
solely with the regional entropy value, eliminating the need for high-order computations
characteristic of other learning-based models. Furthermore, the regional entropy feature is a
statistical value that is universally applicable to all images. Notably, the velocity component
of the FS-PSO algorithm, which incorporates a trapped effect, alleviates the local optima
problem typically encountered with the stable velocity PSO model. Because the presence
of a fluctuation phenomenon is uniquely observed within defect areas, this enhances
the model’s ability to accurately identify defects; consequently, the FS-PSO algorithm
demonstrates superior efficacy in the optimization of image processing tasks, underlining
its practical utility in this domain.



Sensors 2023, 23, 5679 15 of 19

Sensors 2023, 23, x FOR PEER REVIEW 15 of 20 
 

 

Table 4. Performance comparison of FS-PSO and PSO model with stable velocity settings. 

Algorithm 
Model 

Swarm<break/>
Size 

Fil-
tered<break/>S

warm * 

Trapped<brea
k/>Particles * 

Computa-
tion<break/>Time 

(ms) * 

FS-
PSO<break/>mod

el 

2000 606.2 3.17 404.4 
5000 1529.9 17.86 482.3 
8000 2431.2 25.34 560.1 

10,000 2433.5 32.35 613.7 
FS-

PSO<break/>mod
el <break/>with 

10% random 

2000 629.1 4.56 410.9 
5000 1533.3 19.85 486.4 
8000 2433.5 26.14 563.2 

10,000 3049.1 33.40 616.5 

PSO 
model<break/>wi
th stable velocity 

2000 564.4 2.76 401.7 
5000 1481.3 14.71 479.4 
8000 2398.0 22.99 556.3 

10,000 2985.2 31.22 609.1 
* The results are generated by the average result from 1000 repetitions using MATLAB R2022b Up-
date 3 9.13.0.2126072 64-bit win64 version. 

Figure 14 presents a comparative analysis of defect extraction employing FS-PSO and 
PSO with a stable velocity configuration. Owing to the trapping effect inherent in the FS-
PSO approach, all defect regions are accurately identified and recovered with high shape 
retention. In contrast, the PSO model with a stable velocity setting exhibits increased ran-
domness in particle movements during the tracing process, resulting in a more dispersed 
extraction of defect areas, particularly in cases of larger iteration counts. 

 

Figure 14. Comparison of defects extraction (100,000 swarm size, 200 iterations) with different PSO 
models. 

Given the outlined limitations of the PSO implementation, as discussed in Section 
1.3, it is noteworthy to mention that the proposed FS-PSO algorithm exerts minimal im-
pact on the computational cost. This is primarily due to the velocity configuration being 
associated solely with the regional entropy value, eliminating the need for high-order 
computations characteristic of other learning-based models. Furthermore, the regional en-
tropy feature is a statistical value that is universally applicable to all images. Notably, the 

Figure 14. Comparison of defects extraction (100,000 swarm size, 200 iterations) with different
PSO models.

6. Discussion

This section presents a parallel comparison and analysis of the proposed FS-PSO
model and the stable velocity model, primarily to evaluate the overall performance and
architectural advances of the FS-PSO model. For a parallel comparison, both models
employ the same randomly generated swarm of 2000 particles. As indicated by the data in
Figure 13, the number of iterations is set at 200 to prevent premature convergence.

Figure 15 provides a demonstration of swarm behavior within both models. Particles
represented by red dots indicate a target entropy value higher than global entropy, while
those represented by green dots denote a lower entropy value. Notably, the convergence
speed of the FS-PSO model is considerably faster, while the swarm in stable velocity
model is stuck without further movement. In the FS-PSO model, the swarm bifurcates
into two smaller swarms. One swarm gravitates toward the blade’s edge areas due to
high entropy value, while the other moves within the blade’s thinner region, progressively
drawn toward defects. In the stable velocity model, the swarm is attracted to the peak
spatial entropy value due to the entropy fitness function. After 200 iterations, the majority
of the particles have migrated toward areas of high entropy, demarcated by a blue dotted
curve in Figure 15.

Such differences in the two models are caused by the free-form surface of the tested
blade, which have been discussed in previous studies [46–48]. Because of the significant
thickness variation in free-form objects, radiographic images are obtained using compro-
mised exposure settings to capture all possible data. Consequently, the thicker area in the
blade image appears underexposed due to limited X-ray energy, resulting in a high-entropy
boundary (blue dotted curve in Figure 15), acting as an edge effect. Conversely, the thinner
region, which receives abundant X-ray energy, contains more pixel information, thereby
creating a larger regional entropy value (orange dotted curve in Figure 15) conducive to
the trap effect utilized by FS-PSO for defect tracing.

As a result, as evidenced in Table 4 within Section 5.4, the FS-PSO model demonstrates
a substantial augmentation of around 40% in particle entrapment within defect areas when
contrasted with the stable velocity model. Furthermore, the swarm within the FS-PSO
model exhibits notably reduced chaotic movement patterns. This indicates that, despite the
variation in defect tracing between both models ranging from 10% to 60%, as per Table 4,
the actual increase in defect-bound particles results from diminished movement intensity
as the swarm size increases.
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While the FS-PSO model focuses on regional entropy fluctuations, it demonstrates
superior convergence speed in regional feature extraction compared to the stable veloc-
ity method. Despite the stable velocity model’s proficiency in rapid segmentation and
thresholding, with an emphasis on global image features validated by our prior work,
the comparison experiment supports that the FS-PSO model exhibits remarkable shape
retention in defect recovery, a feature attributable to its regional trap capabilities. Key
features of the FS-PSO model are summarized as follows:

• Low computation cost: Though the mathematical complexity of FS-PSO is slightly
greater than that of stable velocity models, it exhibits a linear computation cost relative
to its swarm size, which is marginally higher than stable velocity models.

• Adaptive architecture for defect prediction: The velocity configuration of trap ef-
fects in FS-PSO alters swarm behavior to prevent premature convergence during
iteration procedures.

• Local optima mitigation: With a direct focus on regional fluctuations for defect tracing,
the FS-PSO model exhibits a faster convergence process compared to the stable velocity
model, mitigating any local impasses.

7. Conclusions and Future Work

This paper proposed an improved defect prediction method for radiographic images
based on PSO architecture design referring to fluctuation sensitivity. Characterized by
approximately 40% enhanced particle entrapment within defect areas, faster convergence
speed, and less chaotic swarm movement, the FS-PSO model improved efficiency by alter-
ing movement intensity as swarm size increased. Despite a slight increase in mathematical
complexity, the model maintains a linear computation cost. Its adaptive architecture, fea-
turing a velocity configuration that adjusts swarm behavior, effectively curtails premature
convergence while also successfully mitigating local optima by guiding particle movements
toward regional fluctuations for defect tracing.

Despite the successful application of regional fluctuation for velocity adjustments
to address the issue of premature convergence in the context of locating small defects,
the characterization of these defects remains an unresolved problem. While Section 5.2
demonstrated a linear relationship between the predicted probability and defect dimen-
sions, developing a precise model for three-dimensional defect characterization remains a
substantial task. Although our prior research has delved into defect characterization, the
implementation of this process using a single two-dimensional image presents multiple
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challenges. These include the spectrum analysis of X-ray imaging, calibration of expo-
sure parallax, and optimization of exposure parameters. Consequently, these complexities
necessitate further investigation and experimentation within the radiography system.

Future work is mainly separated into two topics. The first topic focuses on continual
enhancements to the FS-PSO architecture, particularly towards establishing a correlation
between optimal iterations and swarm size. The purpose is to enable the PSO model
to become self-adaptive, effectively tracing any potential defects within target objects.
The second topic involves optimizing the methodologies of radiographic testing, such as
through multiple-exposure testing. This would yield test images that are more compatible
with the proposed FS-PSO algorithm, thereby enhancing its efficiency and accuracy.
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