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Abstract: Signal transmission plays an important role in the daily operation of structural health
monitoring (SHM) systems. In wireless sensor networks, transmission loss often occurs and threatens
reliable data delivery. The massive amount of data monitoring also leads to a high signal transmission
and storage cost throughout the system’s service life. Compressive Sensing (CS) provides a novel
perspective on alleviating these problems. Based on the sparsity of vibration signals in the frequency
domain, CS can reconstruct a nearly complete signal from just a few measurements. This can improve
the robustness of data loss while facilitating data compression to reduce transmission demands.
Extended from CS methods, distributed compressive sensing (DCS) can exploit the correlation across
multiple measurement vectors (MMV) to jointly recover the multi-channel signals with similar sparse
patterns, which can effectively enhance the reconstruction quality. In this paper, a comprehensive
DCS framework for wireless signal transmission in SHM is constructed, incorporating the process of
data compression and transmission loss together. Unlike the basic DCS formulation, the proposed
framework not only activates the inter-correlation among channels but also provides flexibility and
independence to single-channel transmission. To promote signal sparsity, a hierarchical Bayesian
model using Laplace priors is built and further improved as the fast iterative DCS-Laplace algorithm
for large-scale reconstruction tasks. Vibration signals (e.g., dynamic displacement and accelerations)
acquired from real-life SHM systems are used to simulate the whole process of wireless transmission
and test the algorithm’s performance. The results demonstrate that (1) DCS-Laplace is an adaptative
algorithm that can actively adapt to signals with various sparsity by adjusting the penalty term to
achieve optimal performance; (2) compared with CS methods, DCS methods can effectively improve
the reconstruction quality of multi-channel signals; (3) the Laplace method has advantages over the
OMP method in terms of reconstruction performance and applicability, which is a better choice in
SHM wireless signal transmission.

Keywords: structural health monitoring; distributed compressive sensing; hierarchical Bayesian
model; wireless signal transmission; Laplace prior

1. Introduction

Structural health monitoring (SHM) has become a rapidly developing technology in
the last decade, aimed at the damage detection and condition assessment of structures with
sensing techniques and structural characteristics analysis [1–5]. Data transmission is an
important step in SHM applications, which is based on the hardware implementation of
sensor networks. Compared with traditional wired sensing, wireless sensing has unique ad-
vantages, leading to the attractive prospect of monitoring large civil infrastructures [3,6–8].
However, packet loss is a common problem in wireless signal transmission due to a
range of reasons, including radio interference, large transmission distances, and hardware
failure [9–11]. In addition, to comprehensively monitor the dynamic response of a structure
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under external excitations, a great number of sensors are deployed for the excessive collec-
tion of data. For example, sensors are usually sampled at higher frequencies than the actual
signal frequency. The huge amount of data will cost large storage space and energy con-
sumption during transmission, increasing the workload of the sensor networks [1,3,12]. To
tackle these problems, traditional communication technologies have been applied in SHM.
Data compression attempts to exclude redundant data before transmission, thus improving
power efficiency [13–15]. On the other hand, several reliable communication protocols
have been widely adopted to cope with data loss by retransmitting the lost packets [16–19].
However, conventional compression approaches are extravagant as the over-captured
data still requires plenty of memory while the redundant data are selectively discarded
afterward. Meanwhile, the retransmission-based methods greatly limit communication
efficiency and cannot fundamentally mitigate the impact of missing data.

Compressive Sensing (CS) provides a new perspective for wireless signal transmission.
In the CS-based technique, instead of transmitting the original signal, the measurements
obtained by projecting the original signal into a low-dimensional and incoherent space
are recorded and transmitted [11,12]. The length of the measured vector is generally
reduced, which is equivalent to data compression or partial data loss during transmission.
Utilizing the sparsity of the signal on some basis, the original signal can be effectively
reconstructed from the received incomplete measurements [20,21]. This indicates that
CS can not only maintain robustness to data loss but also facilitate data compression for
energy efficiency. In SHM, related work has been carried out on vibration signals with high
sparsity in the frequency domain [22–29]. Bao et al. [22], O’Connor et al. [23], Klis et al. [24],
Jayawardhana et al. [12], and Wan et al. [25] implemented CS-based data compression and
reconstruction on different types of vibration signals. Bao et al. [9–11] and Li et al. [26]
proposed data loss recovery approaches according to the CS theory. Huang et al. [27,28]
innovatively applied Bayesian compressive sensing (BCS) to SHM. Recently, an adaptive
CS method incorporating deep learning has been explored for vibration data transmission
in high-speed railroads with ideal results [29].

On the other hand, improving the signal quality during transmission can further enhance
the data compressibility and resistance to packet loss. A common phenomenon in SHM is
that there is a degree of spatial or temporal correlation among structural responses acquired
from the sensor network, especially for sensors distributed on an identical structure with
similar loading conditions. Some studies have achieved high data availability by exploiting the
correlation among multiple sensors. For example, Zhang et al. [30] restored missing stress data
with an interpolation method based on the correlation of multi-sensor stress changes; Chen
et al. [31–34] developed a distribution regression approach for missing data imputation; and
Zhang et al. [35] presented a Bayesian dynamic regression method to capture the relationship
among sensors and reconstruct the missing data. However, the multi-sensor correlation
modeling in the above studies depends on the long-term and cumulative monitoring of data.
In wireless transmission, signals should be sent and received in real time, and reconstruction
tasks are usually conducted on segment-wise measurements with a fixed length. The different
application scenarios lead to the fact that the above methods are not suitable for enhancing
the reconstruction quality in signal transmission.

Fortunately, a novel technique called Distributed Compression Sensing (DCS) has
been gradually developed in the field of CS [36–45]. Compared with CS for the basic single
measurement vector (SMV), DCS can take advantage of the inter-correlation of multiple
measurement vectors (MMV) to jointly recover the multi-channel signals with approximate
sparse patterns, thus improving the reconstruction performance [36–39]. The DCS meth-
ods are usually extended from the original CS methods and can be broadly classified as
greedy methods, such as Simultaneous Orthogonal Matching Pursuit (SOMP) [40], iterative
reweighted methods [37,41], and Bayesian approaches, such as Bayesian compressive sens-
ing [42], Sparse Bayesian Learning (SBL) [43,44], and the Laplace method [45] under MMV
cases. In SHM, some scholars have preliminarily verified the effectiveness of DCS [46–52].
Bao et al. [46,47] proposed a group sparse optimization algorithm on the basis of the
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group sparsity of structural vibration data; Huang et al. [48,49] and Wan et al. [50] applied
multi-task Bayesian methods to data loss recovery and structural damage diagnosis; and
Amini et al. [51] used the algorithm of DCS-SOMP to recover multi-channel signals with
different data loss patterns. Recently, Wan et al. [52] developed an improved complex
multi-task Bayesian compressive sensing approach that allows the joint reconstruction
of vibration signals on the discrete Fourier basis. The promising results show the great
potential of DCS for wireless signal transmission in SHM. However, it should be noted
that (1) the issues of data compression and data missing recovery are mostly considered
separately in the above studies, which lack discussion of their transforming relationship
and comprehensive influence on wireless transmission and (2) the aforementioned research
mostly concentrates on the underlying commonality across sensors while ignoring the
transmission independence of each channel. In practical engineering, the compression, loss,
and reconstruction scenarios of the signal from each channel are probably not identical,
which causes difficulties in the application of DCS.

Given the limitations of previous studies, this paper explores the application of DCS
techniques to SHM wireless transmission. The outcomes can be summarized as follows:

(1) A comprehensive DCS framework for wireless signal transmission is constructed,
incorporating the process of data compression and transmission loss together. Unlike
the basic DCS formulation, the proposed framework starts from practical necessity,
which can not only activate the connection among the channels but also provide
flexibility and independence to single-channel transmission. Specifically, the scheme
enables a joint reconstruction of MMV with the same or even different compression
and loss rates by using a unique sensing matrix for each channel.

(2) Considering that common priors in the Bayesian framework can be set flexibly to
facilitate multi-task information sharing, a hierarchical Bayesian model is applied for
multi-channel signal reconstruction. To strengthen the sparsity constraint on SHM
signals, Laplace priors are imposed on sparse vectors. In addition, an efficient iterative
algorithm based on a modified sparse regression model, called Fast DCS-Laplace, is
employed to improve the computation efficiency in the face of large-scale problems.

(3) Vibration signals collected in real-life SHM systems with spatial or temporal cor-
relations are used to simulate the whole process of wireless transmission and test
the algorithm’s performance. In addition, a comparison with the DCS-SOMP algo-
rithm that has recently been applied in SHM is carried out under the proposed DCS
framework to prove the superiority of Fast DCS-Laplace.

This paper mainly involves three parts. The DCS methodology is presented in Section 1.
Section 2 is the case validation using the dynamic displacement data from Lieshihe Highway
Bridge and accelerations from Dashengguan High-Speed Railway Bridge, respectively.
Section 3 is the conclusion. In this study, only vibration signals in SHM are considered
because they are sparse enough in the frequency domain to satisfy the prerequisites of
sparse reconstruction.

2. Methodology
2.1. General CS-DCS Framework

Compressive sensing (CS) [20,21], also known as compressive sampling or sparse
signal recovery, is an effective approach for finding sparse solutions to underdetermined
linear systems. In the general CS framework, M random measurements are acquired from
the original signal u ∈ RN×1 M ≤ N as

v = Φu (1)

where v ∈ RM×1 is the available measured vector and Φ ∈ RM×N is the projection matrix.
To uniquely recover the unknown u given v and Φ, u should be sparse on a given basis Ψ as

u = Ψw (2)
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where w is the N-dimensional sparse vector. The basis Ψ can be an N × N orthogonal
matrix or an N × N1 redundant matrix where N < N1 [53]. Substituting (2) into (1) yields

v = ΦΨw = Aw (3)

where A is an M× N sensing matrix. The basic model is usually called the single mea-
surement vector (SMV) model as there is only a single measured vector. In distributed
compressive sensing (DCS) [36–39], multi-channel sparse vectors {wi}i=1,2,...,L can be jointly
recovered from the corresponding set of L-measured vectors {vi}i=1,2,...,L. The framework
has been extended to the multiple measurement vector (MMV) model given by

V = AW (4)

where V , [v1, v2, . . . , vL] and W , [w1, w2, . . . , wL] are the measured matrix and sparse
matrix, respectively, with each column representing a possible signal channel. It is assumed
that W should be jointly sparse (i.e., indexes of nonzero entries in each channel are identi-
cal) [37,44]. By exploiting the correlation among channels, the reconstruction performance
of MMV models can be greatly enhanced compared with the SMV cases [40–45].

2.2. DCS Framework in SHM Wireless Transmission
2.2.1. Stage 1: Data Compression

In the DCS framework, data compression is achieved through the transformation
of original signals into projected signals. According to (1), the original signal of each
channel

{
ui ∈ RN×1}

i=1,2,...,L is projected separately into the incoherent space to obtain
the measurement vector

{
vi ∈ RMi×1}

i=1,2,...,L using the corresponding projection matrix{
Φi ∈ RMi×N}

i=1,2,...,L
vi = Φiui (5)

The commonly used projection matrices include Gaussian- or Bernoulli-distributed
random matrices [21]. However, in the wireless sensor network of SHM, the storage space,
computational power, and energy consumption of the sensor node are always limited,
which can cause great difficulties in the projection matrix embedding. To address this
issue, a unique sampling approach called random demodulator (RD) is adopted to provide
sufficient efficacy and efficiency for SHM data acquisition [11,54]. In this method, the
projection matrix can be determined by multiplying two matrices, the demodulation matrix
D ∈ RN×N and the sampling matrix Si ∈ RMi×N , respectively. By adjusting the length
and position of sliding bands in the sampling matrix, the signal compression ratio and
the data loss redundancy can be jointly controlled [11]. In addition, a permutation matrix
Pi ∈ RMi×Mi is additionally multiplied to further reduce the coherence and to ensure
robustness to continuous data loss [51]. Finally, the projection matrix for multi-channel
signal compression can be expressed as

Φi = PiSiD (6)

2.2.2. Stage 2: Data Loss in Transmission

After data compression, the projected signal vi will be divided into multiple packets
and transmitted wirelessly one by one. During this process, each channel may suffer
varying degrees of data loss and the base station will receive L incomplete measured
vectors ṽi ∈ RM̃i×1. Therefore, (5) would be rewritten as

ṽi = Φ̃iui (7)

where Φ̃i ∈ RM̃i×N is a submatrix of the original projection matrix. Since the indexes of
packets received in each channel are recorded, the Φ̃i can be obtained by extracting the
corresponding rows of Φi.
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2.2.3. Stage 3: Data Reconstruction

The signal reconstruction of multiple channels can be carried out simultaneously
once measurements are received at the base station. Since the vibration signal in SHM is
generally sparse in the frequency domain, the Discrete Cosine Transform (DCT) basis is
used as Ψ in this study [55]. Substituting (2) into (7) yields

ṽi = Φ̃iΨwi = Ãiwi (8)

where Ãi is an M̃i × N sensing matrix. It can be observed that there are significant differ-
ences between the MMV models in (8) and (4). In (8), the length of the measured vectors
{ṽi}i=1,2,...,L can be different, which means that the joint sparsity property of multiple chan-
nels is probably not strictly satisfied (i.e., the number and locations of nonzero entries from
each channel are not completely the same); the sensing matrix Ãi in each channel can be
different, which means reconstruction tasks for all channels are distinct and independent in
many cases. Therefore, to overcome the non-uniform transmission scenarios across MMV,
the DCS scheme should not only achieve the joint recovery of multi-channel signals more
practically but also provide flexibility and independence to single-channel reconstruction.

Hierarchical Bayesian models are one of the most important DCS methods [42,45,49].
Among the MMV algorithms, Bayesian methods usually have high reconstruction perfor-
mance and computation efficiency and can provide an estimation of the reconstruction
uncertainty from a probabilistic perspective [42–45]. More importantly, the flexible setting
of common priors can facilitate information sharing of multiple reconstruction tasks while
maintaining their individuality, which is greatly beneficial for the implementation of the
MMV model in (8). Given the distinct advantages, an improved version of the hierarchical
Bayesian model named DCS-Laplace is constructed in this study. The algorithm will be
discussed in the following subsections.

After obtaining the estimated sparse vector ŵi, the recovered vibration signal ûi can
be calculated by (2). The flow chart of the proposed DCS Framework for SHM wireless
transmission is shown in Figure 1.
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2.3. DCS-Laplace for Multi-Channel Signal Recovery
2.3.1. Hierarchical Bayesian Modelling Using Laplace Priors

As a starting point for many CS sparse recovery algorithms, w in (3) is generally
approximated by solving the following l1 regularized formulation [20,56]

ŵ = argmin
w

{
‖ṽ− Ãw‖2

2 + κ‖w‖1

}
(9)

where κ is the regularization coefficient that controls the sparsity of the formulation. From
the Bayesian perspective, the mapping ṽ→ w can be converted into a sparse linear regres-
sion problem, where the unknown parameters can be considered as random quantities with
prior knowledge represented by specified probability distributions [57,58]. The Gaussian
likelihood function for the weights w under the observed vector ṽ is

p(ṽ|w, β ) = N
(

ṽ
∣∣∣Ãw, β−1

)
(10)

where β = 1/σ2 is the unknown precision in the regression task. The w is then assigned a
prior distribution p(w |γ ) to model its sparsity. It can be observed that the properties of the
above distributions depend on the parameters γ and β, which are called hyperparameters,
and the prior distributions are called hyperpriors. A Gamma prior is usually placed on β as

p(β|a, b ) = Γ(β|a, b ) =
ba

Γ(a)
βa−1 exp(−bβ) (11)

In the framework of a relevance vector machine (RVM) or sparse Bayesian learning
(SBL) [59], the prior distribution of w is expressed as the product of N zero-mean Gaussian
distributions as (12), and Gamma priors are also placed on the hyperparameter γ to
promote sparsity over the weights. However, it has been pointed out that, in contrast
to RMV, Laplace priors placed on w can powerfully encourage sparsity while being log-
concave [60]. In addition, the RVM can be considered a special case to be incorporated
into the Laplace framework [58]. Therefore, the hierarchical Bayesian model using Laplace
priors is employed in this study.

p(w |γ ) =
N

∏
j=1

N
(

wj

∣∣∣0, γ−1
j

)
(12)

Unlike RVM, the precision variables γ−1
j in (12) should be substituted by γj. To

overcome the problem that the Laplace distribution is not conjugate to (10), γj is assigned a
hyperprior as [58]

p
(
γj|λ

)
= Γ

(
γj|1, λ/2

)
=

λ

2
exp

(
−λ

2
γj

)
, γj ≥ 0, λ ≥ 0 (13)

Then, the Laplace prior on w can be expressed as

p(w|λ ) =
∫

p(w |γ )p(γ|λ )dγ = ∏
j

∫
N
(
wj
∣∣0, γj

)
Γ
(
γj|1, λ/2

)
dγj

=
(√

λ
2

)N
exp

(
−
√

λ∑
j

∣∣wj
∣∣) (14)

It has been demonstrated that the solution of (9) can be determined through the
maximum a posteriori (MAP) estimation on w with (10) and (14), and λ plays the same
role as the regularization factor κ [61,62]. Therefore, by adjusting the value of λ, the
reconstruction algorithm under different sparsity constraints can be acquired, which is the
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theoretical basis of the adaptive hierarchical Bayesian model proposed in this study. Finally,
the automatic estimation of λ can be achieved using the Gamma priors as follows:

p(λ|τ ) = Γ(λ|τ/2, τ/2) (15)

To summarize, a four-layer hierarchical Bayesian model is built in this subsection, as
shown in Figure 2. The observed vector ṽ and the sparse vector w constitute the bottom
layer of the model. The introduction of the hyperparameters extends the model to higher
stages, and the prior distributions act as links between layers. Combining the layers of the
Bayesian model, the joint probability distribution can be obtained as follows (parameters a,
b, and τ are omitted for clarity in this paper)

p(ṽ, w, γ, λ, β) = p(ṽ|w, β )p(β)p(w |γ )p(γ|λ )p(λ) (16)
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2.3.2. DCS-Laplace with Parameter Estimation

To facilitate the joint reconstruction of multi-channel signals in (8), a multi-channel
hierarchical Bayesian model using Laplace Priors, named DCS-Laplace, is extended from
the original Bayesian CS formulation in this paper. As illustrated in Figure 3, the DCS-
based approach enables the flexibility to model both the individuality of channels and
information sharing among channels. Specifically, the channel-specific parameters ṽi
and wi at the bottom layer are modeled through sparse learning with a unique Ãi in an
individual channel, while the hyperparameters on the upper layers are fully shared to
establish connections among channels. The common priors are determined by the joint
learning of multi-channel signals, and the model in each channel learns independently
while accepting the influence from other channels. As a result, the independent learning
and joint learning of the reconstruction task are closely integrated to enable information
transfer across channels.

Accordingly, in the proposed DCS framework, the prior distributions (10), (12), and
(14) should be converted to

p(ṽi|wi, β ) = N
(

ṽi

∣∣∣Ãiwi, β−1
)

(17)

p(wi |γ ) =
N

∏
j=1

N
(

wi,j

∣∣∣0, γ−1
j

)
(18)

p(wi|λ ) =
∫

p(wi |γ )p(γ|λ )dγ = ∏
j

∫
N
(
wi,j
∣∣0, γj

)
Γ
(
γj|1, λ/2

)
dγj

=
(√

λ
2

)N
exp

(
−
√

λ∑
j

∣∣wi,j
∣∣) (19)
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Figure 3. Hierarchical Bayesian representation of the DCS-Laplace.

To estimate the unknown parameters, the method of evidence maximization or type-II
Maximum Likelihood is usually performed [59]. Firstly, try to maximize the posterior
distribution as

L

∏
i=1

p(wi, γ, λ, β|ṽi ) =
L

∏
i=1

p(wi|ṽi, γ, λ, β )p(γ, λ, β|ṽi ) (20)

Since p(wi|ṽi, γ, λ, β ) ∝ p(ṽi, wi, γ, λ, β), the distribution p(wi|ṽi, γ, λ, β ) should also
be a multivariate Gaussian distribution with mean and covariance

µi = ΣiβÃ
T
i ṽi (21)

Σi =
[
Λ + βÃ

T
i Ãi

]−1
(22)

where Λ = diag
(

γ−1
j

)
considering that p(γ, λ, β|ṽi ) ∝ p(ṽi, γ, λ, β), the hyperparameters

can be estimated by maximizing the logarithm of the joint distribution
L
∏
i=1

p(ṽi, γ, λ, β) with

the marginalization over wi, that is

{γe, λe, βe} = argmax
γ,λ,β

L
∑

i=1
log p(ṽi, γ, λ, β)

= argmax
γ,λ,β

L
∑

i=1
log
∫

p(ṽi, wi, γ, λ, β)dwi

= argmax
γ,λ,β

L
∑

i=1
log
∫

p(ṽi|wi, β )p(β)p(wi |γ )p(γ|λ )p(λ)dwi

(23)

Referring to (21) and (22) and the solution of hyperparameters in (23), the unknown
parameters can be estimated in an iterative process.
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2.3.3. An Efficient DCS-Laplace Algorithm with Modified Bayesian Model

Although the iterative algorithm discussed above is mathematically feasible, the
computation complexity of µi and Σi through (21) and (22) is extremely high [42,57,58].
This leads to sluggish calculation and numerical errors in the algorithm in the face of
large-scale problems. Therefore, an efficient iterative approach is adopted in this study to
improve its usability in practical engineering. In addition, to reduce the computational
uncertainty caused by the initially estimated precision β, a modified sparse regression
model for multi-channel signal reconstruction is introduced [42,45]. Instead of seeking
the point estimates of β, the model integrates β out to concentrate on the iteration of
hyperparameter γ.

In the modified Laplace framework, β is added to the prior distribution of the weights
wi as (24), and all hyperpriors in (11), (13), and (15) are unchanged.

p(wi|γ, β ) =
N

∏
j=1

N
(

wi,j

∣∣∣0, γjβ
−1
)

(24)

Correspondingly, p(wi|ṽi, γ, λ ) is equivalent to p(wi|ṽi, γ, λ, β ) integrating over β as

p(wi|ṽi, γ, λ ) =
∫

p(wi|ṽi, γ, λ, β )p(β|a, b )dβ

=
Γ(a+N/2)

[
1+ 1

2b (wi−µi)
TΣ−1

i (wi−µi)
]−(a+N/2)

Γ(a)(2πb)N/2|Σi |1/2

(25)

With parameters

µi = ΣiÃ
T
i ṽi (26)

Σi =
[
Λ + Ã

T
i Ãi

]−1
(27)

To obtain the solution of hyperparameters, evidence maximization is utilized to per-
form Bayesian inference. The maximization of the logarithm of the joint distribution

L
∏
i=1

p(ṽi, γ, λ) can be expressed as

{γe, λe} = argmax
γ,λ

L(γ, λ)

= argmax
γ,λ

L
∑

i=1
log p(ṽi, γ, λ)

= argmax
γ,λ

L
∑

i=1
log
∫

p(ṽi|wi, β )p(wi|γ, β )p(γ|λ )p(λ)p(β)dwidβ

(28)

The solutions of λ and τ from (28) are provided, respectively, as follows:

λ =
N − 1 + τ/2
N
∑

j=1
γj/2 + τ/2

(29)

log
τ

2
+ 1− ψ

(τ

2

)
+ log λ− λ = 0 (30)

where ψ(τ/2) denotes the digamma function at τ/2.
The fast iterative algorithm adopted in this study originated from the work of Tipping

et al. [63,64] and was extended afterward by Ji et al. [42], Babacan et al. [58], and Wang
et al. [45]. The key to the approach is to convert the maximization of L(γ) into the
maximization of a separated component l

(
γj
)

that only depends on a single variable γj.
Therefore, the maximization can start with an empty vector (γ = 0) and update a single
γj instead of updating the entire vector γ in each iteration, thus adding the components
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of the model one by one. Considering the sparsity of wi, most of the µi,j and γj will be set
to zero, and the corresponding Ãi,j will be pruned out from the model. Hence, the matrix
Σi can be represented with fewer dimensions than N × N, leading to the greatly reduced
computational complexity of the iterative algorithm. The update of the hyperparameters λ
and τ at each iteration still follows the solution (29) and (30). The convergence criterion of
the algorithm is defined as ∣∣∆L(γp)− ∆L

(
γp−1)∣∣

|max(∆L(γ)− ∆L(γp))| < ε (31)

where ∆L(γp) is the increment of L(γ) at the pth iteration, and ε is the predetermined
threshold. For more details of the method, refer to Refs. [45,58]. The updated formulas of
the parameters Σi and µi are provided in Appendix B of Ref. [42].

3. Results
3.1. Case 1: Lieshihe Highway Bridge

Lieshihe highway bridge, shown in Figure 4a,b, is a representative continuous beam
bridge on the Jiangsu Coastal Expressway in China. It is composed of two symmetrical
lanes, left and right, with opposite traveling directions. The superstructure of each lane
is composed of several 6× 25 m prestressed concrete box girders bounded by expansion
joints. An SHM system was installed to monitor the daily operation of the bridge in real
time. As the typical vibration signal induced by traffic loads, the dynamic displacement
data are used to simulate the wireless transmission in this study. The measuring positions
are in the midspan of the girder with five sensors assigned to each lane. Taking the left
lane as an example, the site installation of the sensor is shown in Figure 4c. Each sensor
is deployed laterally at the bottom flange centerline of box girders 1–5, respectively, as
presented in Figure 4d. The sampling frequency of the signal is 50 Hz.

In this case, only signals from the left lane are used to simplify the research. Figure 5
shows an intercepted multi-channel signal at the same period in both the time and
frequency domains. From Figure 5a, it can be observed that vibrations caused by passing
vehicles will lead to the reciprocal displacement of the box girder, and the displacement
will close to 0 when there are no vehicles. Figure 5b reveals that the Fourier amplitude
of the signal from each channel, which is approximately sparsely distributed in the
frequency domain, is mostly concentrated in the frequency interval of 0–0.5 Hz and
2–4 Hz with the negligible magnitude of the rest range. Meanwhile, the trend of the
amplitude-frequency curves is quite close, indicating that the dynamic displacement
data are strongly correlated in the frequency domain. The correlation matrix shown in
Table 1 again confirms this fact. Therefore, the vehicle-induced dynamic displacement of
the bridge girder is sufficiently sparse and intercorrelated, which meets the theoretical
prerequisites of DCS. The vehicle-induced displacement in Figure 5a (10–90 s, 4000
data points in total) is finally selected as a case study of the DCS-Laplace algorithm for
multi-channel signal transmission.

Table 1. Correlation Matrix of Fourier Amplitude Spectrum of Channels 1–5 in Figure 5b.

Chan. 1 Chan. 2 Chan. 3 Chan. 4 Chan. 5

Chan. 1 1 0.9859 0.9374 0.9251 0.9039
Chan. 2 1 0.9555 0.9493 0.9214
Chan. 3 1 0.9685 0.9522
Chan. 4 1 0.9838
Chan. 5 1
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3.1.1. Projection Matrix Setting and Data Loss Pattern

As mentioned earlier, vibration signals are compressed utilizing the RD-based projec-
tion matrix before transmission. Specifically, in the RD sampling process, the discrete-time
signal will be randomly demodulated via the matrix D in the first step. Then the low-pass
antialiasing filtering and downsampling are applied to the demodulated signal with the
accumulate-and-dump operation of the matrix S [54], thus achieving data compression.
Assume that a signal of 1 s is sampled at 12 Hz. Using RD to downsample at a low rate of
3 Hz, the corresponding sampling matrix can be expressed as

S =

 1 1 1 1
1 1 1 1

1 1 1 1

 =

 b
b

b

 (32)
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where b is a sliding band with length l = 4 and all elements equaling to 1. Define the
compression ratio (CR) of the measurement vector as

CR =
N
Mi

(33)Sensors 2023, 23, 5661 12 of 31 
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It can be discovered that, after multiplying S in (29), the original signal will be encoded
at CR = 4. In the transmission process, the signal compression ratio and the redundancy of
transmission loss can be regulated by adjusting the length and position of the sliding band
in S [11]. For instance, suppose that the length of the sliding band is fixed at 4, to achieve
the CR of 1, 2, and 4, respectively, the sampling matrix Sl,CR can be expressed as follows:

S4,1 =



1 1 1 1
1 1 1 1

. . . . . . . . . . . .
1 1 1 1

1 1 1
1 1

1


N×N

(34)

S4,2 =



1 1 1 1
1 1 1 1

1 1 1 1
. . . . . . . . . . . .

1 1 1 1
1 1


Mi×N

(35)

S4,4 =


1 1 1 1

1 1 1 1
1 1 1 1

. . .
1 1 1 1


Mi×N

(36)

It can be observed that a proportion of redundant sliding bands appear in both S4,1
and S4,2, which can improve the robustness of missing data in the wireless transmission.
However, the excessive pursuit of redundancy will inevitably lead to overlong sliding
bands. This can not only increase the computational complexity but also the coherence
of the projection matrix, which will lead to the degradation of the signal recovery [51].
Therefore, the length and position of the sliding band should be determined to balance the
tradeoffs among the data compression, the tolerance of data loss, and the reconstruction
performance. According to Refs. [11,51] and a series of trials in this study, the sliding band
with l = 4 was chosen for data compression. Note that when the original signal length N is
not divisible by CR, it can be taken as N̂, that is the smallest value of an integer multiple of
CR greater than N, and then the column N + 1, N + 2, . . . , N̂ of Sl,CR should be deleted.

The loss pattern of multi-channel signals can be classified as random loss and contin-
uous loss. In the random loss pattern, each data packet of the measured vector vi would
be lost randomly during wireless transmission. Continuous loss indicates that a stream of
data packets of vi are lost during a certain time period of transmission. Moreover, in the
proposed DCS framework, the data missing scenario (i.e., loss rate (LR) and loss sequence)
varies from channel to channel. Since the permutation matrix P can equivalently convert
the continuous loss pattern to the random loss pattern [51], the continuous data missing
will not be considered in this study. To better present the performance of the reconstruction
algorithm, signals with uniform random loss are used for algorithm testing. In addition,
signals with non-uniform random loss are used to simulate the actual transmission situa-
tion in engineering and verify the applicability of the algorithm. The visualization of the
data loss patterns in Case 1 is shown in Figure 6.
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Figure 6. Received measurement vectors under different data loss patterns in Case 1: (a) uniform
random loss, Channel 1 and 2 with CR = 2, LR = 20%; (b) non-uniform random loss, Channel 1
with CR = 4, LR = 20% and Channel 2 with CR = 4, LR = 40%.

3.1.2. Adaptive DCS-Laplace with Different Parameter Settings

In this section, the reconstruction performance of DCS-Laplace with different choices
of the parameter λ is evaluated using the dynamic displacement data with uniform random
loss, which focuses on both reconstruction accuracy and computation efficiency. To simulate
the noise-free environment during wireless transmission, we set α = 10−8 and b = 1. The
convergence threshold ε is taken as 10−8. To measure the reconstruction quality of the
algorithm, the signal-to-noise ratio (SNR) is defined as

SNR = 20 log10

(
‖ui‖2
‖ui − ûi‖2

)
(37)

where ui is the original signal and ûi is the recovered signal. Considering the randomness in
data loss, each test is conducted 50 times and the results are averaged. All the experiments
are performed on the same laptop platform programmed in MATLAB with an Inter (R) Core
(TM) i7-10750 CPU @ 2.60 GHz. A series of DCS-Laplace algorithms with the following
parameter settings are compared:
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Algorithm 1-1 (Alg. 1-1): automatically estimated using Equation (26)
Algorithm 1-2 (Alg. 1-2): λ = 0 (MT-BCS) Algorithm 1-3 (Alg. 1-3): λ = 0.1
Algorithm 1-4 (Alg. 1-4): λ = 1
Algorithm 1-5 (Alg. 1-5): λ = 10

Figure 7 shows the reconstruction quality of the DCS-Laplace for vibration signals
from channels 1–3 under different CR and LR, respectively. Taking channel 1 as an
example, it can be observed that SNR-LR curves with CR = 1 seem to intersect in a
specific SNR interval. When the SNR value is higher than the interval, the reconstruc-
tion accuracy of Algorithm 1-2 to Algorithm 1-5 usually decreases with the increase
in λ; when the SNR value is below the interval, the performance of Algorithm 1-2 to
Algorithm 1-5 usually improves with the increase in λ. In fact, vibration signals in
SHM are not strictly sparse in the frequency domain. As shown in Figure 4b, there
will be a great number of non-zero entries close to zero in the sparse vector wi . The
increase in λ will strengthen the penalty on wi , and more non-zero entries will be
erased to zero, thus leading to the underfitting of the DCS-Laplace at low CR and LR
(CR = 1, LR ≤ 40%). However, the rising sparsity of wi will improve the robustness of
the data compression and transmission loss, especially at high CR and LR. Algorithm
1-1 automatically estimates the value of λ via (26) and outperforms all algorithms at
low CR and LR, while its performance at high CR and LR is very close to that of algo-
rithm 2. It should be noted that algorithm 2. with λ = 0 is equivalent to the Multitask
Bayesian Compressive Sensing (MT-BCS) with the framework of RVM proposed in
Ref. [42].

Based on the above phenomena, the distortion of the recovered signal can be classi-
fied into three levels according to the SNR value, which are mild distortion (SNR > 40),
moderate distortion (40 ≥ SNR ≥ 20), and severe distortion (20 > SNR). The critical
values are marked with black dashed lines in Figure 7. Signals with mild distortion are
very close to the original signals, which can meet the requirement of high-precision
recovery. The moderately distorted signal has a high practical value as the accuracy
can satisfy most engineering applications while providing enough redundancy for
data compression and transmission loss. The SNR value of the reconstructed signal
should be at least higher than 20; otherwise, it will be diagnosed as an unusable signal
with severe distortion. Under this criterion, the proposed DSC-Laplace is an adaptive
algorithm. By adjusting the penalty factor λ, DSC-Laplace can adapt to vibration
signals with different sparsity to optimize performance. In Case 1, algorithm 1. is
suggested if a high-accurate signal is required; algorithm 5. is suggested to obtain a
signal with moderate distortion if striking the balance between transmission energy
consumption, missing data allowance, and reconstruction quality. The reconstructed
dynamic displacement of channel 1 with absolute errors (AE) when the SNRs are close
to 40 and 20 is shown in Figure 8, respectively. According to the definition of SNR
in (37), the decrease in the SNR indicates the accuracy decline of the reconstructed
signal. Therefore, the AE of the reconstructed signal when the SNR is close to 20 is
much higher than when the SNR is close to 40.

In addition, when comparing the SNR-LR curves from different channels at the same
CR in Figure 7, it can be discovered that the curves of each algorithm follow the same
trend, which again validates the performance variation among Algorithm 1-1 to Algorithm
1-5. Compared with channel 3, signals from channels 1 and 2 usually have higher SNR
values under the same CR, LR, and algorithm choice. Therefore, signals from different
channels can adjust the compression strategies according to their own characteristics to
achieve high-quality wireless transmission.

In a test of computing efficiency, to simulate the reconstruction scenarios with different
degrees of distortion, the CR of multi-channel signals are taken as 1, 2, and 4, while the LR
is fixed at 30%. Table 2 shows the average computational time in a single reconstruction
task. The results present that the recovery can be completed in a relatively short time (up
to 127 s) for both mildly and moderately distorted signals, which meets the requirement
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of engineering applications. Moreover, the running time seems to be positively correlated
with the reconstruction quality of the signal. As the CR increases, the SNR values and
the running time under the same algorithm decrease significantly. At the same CR, the
algorithm with higher accuracy usually requires a longer computation time, especially
when CR = 1 and CR = 4.
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Table 2. Computational time of Fast DCS-Laplace in Case 1. 
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Table 2. Computational time of Fast DCS-Laplace in Case 1.

Alg 1-1 Alg 1-2 Alg 1-3 Alg 1-4 Alg 1-5

CR = 1, LR = 30% 126.9731 s 125.2586 s 114.4848 s 93.5504 s 83.0950 s
CR = 2, LR = 30% 54.0480 s 54.5392 s 49.5011 s 44.6238 s 48.6521 s
CR = 4, LR = 30% 10.1138 s 10.2370 s 11.8390 s 16.6280 s 22.2154 s

3.1.3. Performance Comparison of CS and DCS Methods

The following experiments are designed to verify the superiority of DSC over CS.
According to the performance evaluation of the adaptive DCS-Laplace and the equivalent
Bayesian method (MT-BCS), algorithms with automatically estimated λ and λ = 10 are
selected in this study. The original signals in CS algorithms are limited to single-channel
signals, and the test environment is consistent with Section 3.1.2. Furthermore, the
DCS-SOMP and its CS algorithm, which have recently been applied in SHM signal
recovery [38,51], are also included to compare the performance with the Laplace method.
Referring to the theorems of CS and RD [54,56], when applying the OMP method, stable
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recovery can be ensured if the sparsity of wi satisfies the following constraint at a certain
CR and LR:

M̃i ≥ C · Kilog(
N
Ki

) (38)

where N is the length of the original signal, M̃i is the length of the received measured signal,
Ki is the number of nonzero components in wi, and C is a positive constant depending
on the tested signal. Based on the research in Refs. [11,54] and several trials in Case 1,
the OMP method has sufficiently good performance when C = 2. By eliminating the
smaller coefficients in wi, we chose the maximum nonzero number K̂i that satisfies (35).
Considering the similar trend of the SNR-LR curves for each channel, the reconstruction
results except for channel 1 are omitted in this section. The tested algorithms are listed
as follows:

Algorithm 2-1 (Alg. 2-1): DCS-Laplace with λ automatically estimated
Algorithm 2-2 (Alg. 2-2): DCS-Laplace with λ = 10
Algorithm 2-3 (Alg. 2-3): DCS-SOMP
Algorithm 2-4 (Alg. 2-4): CS-Laplace with λ automatically estimated
Algorithm 2-5 (Alg. 2-5): CS-Laplace with λ = 10
Algorithm 2-6 (Alg. 2-6): CS-OMP

Figure 9 presents the SNR-LR curves of the DCS Algorithm 2-1 to Algorithm 2-3 and
the CS Algorithm 2-1 to Algorithm 2-6 using uniform random loss data. It can be discovered
that, compared with the CS algorithms, DCS-Laplace and DCS-SOMP can increase the
SNR values for both mild and moderate distortion signals under the same CR and LR,
especially in the moderate distortion interval (40 ≥ SNR ≥ 20). This indicates that the
DCS approach can effectively improve the reconstruction quality in the multi-channel
signal transmission process. An interesting finding is that, with the same overall reduction,
signals at higher CR usually have lower SNR, especially in the CS methods. For example,
the SNR values of Algorithm 2-4 to Algorithm 2-6 with CR = 1, LR = 50% are higher than
those when CR = 2, LR = 0%, although the signals in both cases are reduced by half. This
is probably because the coding redundancy of the RD matrix goes down with the increase
in CR, which leads to the recovery decline of CS [11,51]. However, the problem is alleviated
in Algorithm 2-1 to Algorithm 2-3 as the frequency commonalities of the multi-channel
signal are exploited in DCS. This phenomenon will not be further discussed as it is not the
focus of this study.

Meanwhile, the performance difference between OMP and Laplace is also revealed
in Figure 9. It can be found that the SNR values of OMP are higher than Laplace when
only slight data loss occurs, regardless of CS or DCS methods. However, with the increase
in CR and LR, the performance of Laplace gradually overtakes OMP, and the SNR gap
reaches the maximum in the moderate distortion interval. Considering that signals are
approximately lossless when SNR > 40, the performance enhancement of OMP at low
CR and LR is unnecessary in practical engineering. In contrast, Laplace can significantly
raise the signal quality with moderate distortion. It is more advantageous when data
compression is necessary or serious transmission loss occurs. Table 3 shows the calculation
efficiency of Algorithm 2-1 to Algorithm 2-3 for a varying number of channels when
CR = 2, LR = 0%, and Table 4 shows the average number of nonzero components in each
recovery task. The computer configuration for the tests is the same as that in Section 3.1.2.
As can be seen, the computing time gradually increases with the rise in channel number
L. Compared with OMP, Laplace can complete the task in a shorter time even with more
non-zero elements. Therefore, Laplace is a better choice in wireless signal transmission in
terms of recovery performance.
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Table 3. Running Times of DCS Algorithms with varying L when CR = 2, LR = 0%.

L = 1 L = 2 L = 3 L = 4 L = 5

Alg. 2-1 18.0238 s 39.5313 s 59.8162 s 81.0295 s 99.3569 s
Alg. 2-2 11.6737 s 26.6665 s 37.9230 s 60.1796 s 68.2221 s
Alg. 2-3 21.3301 s 46.6377 s 68.5796 s 91.5953 s 114.0725 s
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Table 4. Average Nonzeros of DCS Algorithms for each task in Table 3.

L = 1 L = 2 L = 3 L = 4 L = 5

Alg. 2-1 1441 1436 1497 1513 1482
Alg. 2-2 1073 1134 1126 1216 1172
Alg. 2-3 910 910 910 910 910

3.1.4. DCS Reconstruction in Non-Uniform Transmission Scenarios

To further demonstrate the applicability of DCS-Laplace to the proposed DCS
framework in practical engineering, signals with non-uniform random loss are used to
simulate the transmission situation. Different compression strategies are also adopted
in multiple channels. Table 5 provides seven simulated scenarios. Taking Scenario 1
as a reference, the changing CR and LR in other scenarios are marked in orange. The
corresponding results of DCS Algorithm 2-1 to Algorithm 2-3 are shown in Table 6. As
can be seen, relative to Scenario 1, when the CR or LR of a single channel rises, the
SNR values of itself, the adjacent channels, and even all the channels decrease; when
the CR or LR of a single channel drops, the SNR values of itself, the adjacent channels,
and even all the channels increase. This reveals that the reconstruction variation in a
single channel can exert a positive influence on the remaining channels; Algorithm 2-1
to Algorithm 2-3 are proved to be effective in the proposed DCS framework, which
can guarantee the independence of single-channel transmission while exploiting the
inter-correlation among channels. However, it is important to note that the signal
sparsity in OMP should be restricted by (35), which takes several influence factors,
including CR, LR, and signal features, into account, comprehensively. This means
that to obtain the optimal results for DCS-SOMP in Table 6, the recovery of each
channel should be carried out separately, where the number of nonzero components
K̂i is set differently. This greatly limits the flexibility of the OMP method for multi-
channel reconstruction tasks. In contrast, Laplace provides flexibility to enable both the
individuality of channels and information sharing among channels, so it can achieve
high joint-recovery quality despite the inconsistency of CR and LR across channels.
In addition, by adjusting the penalty factor λ, Laplace can actively adapt to different
reconstruction environments and reach peak performance conveniently. Therefore,
DCS-Laplace also has higher applicability than DCS-SOMP in practical engineering.

Table 5. Simulated Non-uniform Transmission Scenarios with Multi-channel Signals in Case 1.

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 Scenario 7

CR LR CR LR CR LR CR LR CR LR CR LR CR LR

Chan. 1 2 10 2 10 2 10 2 10 2 50 4 10 4 10
Chan. 2 2 30 2 30 2 30 2 30 2 30 2 30 2 30
Chan. 3 2 50 2 10 1 50 1 50 2 50 2 50 2 50
Chan. 4 2 0 2 0 2 0 2 0 2 0 2 0 4 0
Chan. 5 2 20 2 20 2 20 1 20 2 20 2 20 2 20

In Table 5, the unit of LR is “%”; the orange background represents the changed CR or
LR value referring to Scenario 1.

3.2. Case 2: Dashengguan High-Speed Railway Bridge

Dashengguan Yangtze River Bridge located in Nanjing is a six-line high-speed railway
bridge. It was the largest high-speed railroad bridge in the world when it was completed,
and is an essential part of the Beijing–Shanghai High-speed Railway. The superstruc-
ture of the bridge is a six-span continuous steel truss arch with a span arrangement of
(108 + 192 + 336 + 336 + 192 + 108) m. The main bridge consists of three giant steel truss
arches and steel bridge decks. A comprehensive SHM system has been installed on the
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bridge. To measure the vertical acceleration of the railway deck, six uniaxial accelerometers
are employed separately in midspan sections of the main girder. The sampling frequency
of the signal is 200 Hz. The bridge layout and the accelerometer placement are shown in
Figure 10b.

Table 6. Comparison Results of DCS Algorithms 2-1 to 2-3.

Scenario 1
SNR (dB)

Chan. 1 Chan. 2 Chan. 3 Chan. 4 Chan. 5

DCS-Laplace
(automatically
estimated λ)

1 36.6662 34.0724 26.4272 32.6855 26.3189
2 37.6487 35.4543 35.1345 33.2156 26.8240
3 38.5772 35.1956 36.6870 34.1764 27.5615
4 40.5286 34.6369 37.6548 35.5751 42.6754
5 28.2025 32.7598 26.3141 31.3953 24.4993
6 28.0049 32.6742 26.1043 31.0674 24.2534
7 28.2131 31.9908 26.0608 27.0719 23.1887

DCS-Laplace
(λ = 10)

1 37.5008 36.3378 27.9808 33.6630 28.1540
2 38.2697 37.1796 35.8453 34.0343 28.7652
3 39.0819 37.6513 38.0546 35.0832 29.7045
4 40.7152 37.9528 39.5789 36.1490 40.0842
5 29.9361 35.1431 27.6651 32.5002 26.7678
6 29.5179 34.7118 27.5555 32.3976 26.3908
7 29.3773 34.0283 27.1823 28.1313 25.0307

DCS-SOMP

1 30.3471 31.1345 23.7890 28.1335 22.0260
2 30.7220 31.3312 29.2418 28.5245 22.0624
3 31.8760 32.0159 32.4429 30.0957 22.7680
4 32.7611 31.9126 33.9947 32.3952 41.9091
5 25.9234 30.4896 23.7146 27.6011 21.5107
6 25.8473 30.5776 23.7111 27.6932 21.4629
7 25.8201 30.2585 23.7947 25.1174 20.6950

In China, the models of high-speed trains can be divided into 4M4T (four mo-
tors and four trailers) and 8M8T (eight motors and eight trailers) according to the
train formation. The relatively uniform train models can lead to similar bridge–train
interactions. Therefore, it can be speculated that accelerations at a fixed position of
the girder under various train events may have a certain degree of correlation in the
frequency domain. Figure 11a exhibits the vertical accelerations from sensor 1 when
different trains pass over the bridge. To simplify the research, only three acceleration
signals are selected, including two generated from 8M8T trains and one generated
from the 4M4T train. The Fourier spectrums of train-induced accelerations (17.5–32.5 s,
3000 data points in total) are shown in Figure 11b, and the correlation matrix is also
shown in Table 7. The results reveal that multi-channel accelerations under 4M4T and
8M8T train events are correlated in the frequency domain with sparse distribution,
which meets the theoretical prerequisites of DCS. The RD matrix setting and data loss
patterns remain the same, as in Case 1.
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ment on the bridge.
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Figure 11. Acceleration signals from sensor 1 under 3 different train events in the time and fre-
quency domain, respectively: (a) the measured signals within 45 s; (b) the Fourier spectrum of
train-induced accelerations.

Table 7. Correlation Matrix of Fourier Amplitude Spectrum of Channels 1–3 in Figure 11b.

Chan. 1 Chan. 2 Chan. 3

Chan. 1 1 0.8790 0.7710
Chan. 2 1 0.8247
Chan. 3 1

3.2.1. Adaptive DCS-Laplace with Different Parameter Settings

In this section, the reconstruction performance of the adaptive DCS-Laplace is evalu-
ated using acceleration signals with uniform random loss. The test environment is the same
as Section 3.1.2. The DCS-Laplace with the following parameter settings are compared:

Algorithm 3-1 (Alg. 3-1): automatically estimated λ using (26)
Algorithm 3-2 (Alg. 3-2): λ = 0 (MT-BSC)
Algorithm 3-3 (Alg. 3-3): λ = 0.1
Algorithm 3-4 (Alg. 3-4): λ = 1
Algorithm 3-5 (Alg. 3-5): λ = 10

Figure 12 illustrates the multi-channel SNR-LR curves of Algorithm 3-1 to Algorithm 3-5
with CR = 1 and CR = 2, respectively. In the instance of channel 1, it can be observed
that the curves of algorithms 1-2 are very close to each other. The same phenomenon
occurs in Algorithm 3-3 to Algorithm 3-5, and their SNR-LR curves are always above
those of Algorithm 3-1 to Algorithm 3-2 (except when CR = 1, LR = 0%). This indicates
that the reconstruction accuracy of Algorithm 3-3 to Algorithm 3-5 is higher than that of
Algorithm 3-1 to Algorithm 3-2 in this case. In addition, the increase in λ does not lead
to the obvious performance enhancement of Algorithm 3-4 to Algorithm 3-5. Instead, it
causes the underfitting of mildly distorted signals at CR = 1, LR = 10% in Algorithm
3-5. Therefore, Algorithm 3-4 is suggested to acquire signals with mild and moderate
distortions. Note that a higher CR is not desirable in this case as the acceleration under
the high-speed train contains abundant high-frequency components, which results in its
relatively low sparsity. In the face of high-frequency and low-sparsity vibration signals, the
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DCS in wireless signal transmission should concentrate on data loss recovery rather than a
high degree of data compression. The reconstructed acceleration signals of channel 1 with
an SNR close to 40 and 20 are shown in Figure 13, respectively.
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Figure 12. The SNR values of recovered signals from channels 1–3 under different CR and LR with
DCS-Laplace: (a) channels 1–3 from left to right with CR = 1; (b) channels 1–3 from left to right with
CR = 2.
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Figure 13. Reconstructed signals of channel 1 with AE when SNR values are close to 40 and 20, 

respectively: (a) 40.5403SNR = ; (b) 20.0039SNR = . 

Meanwhile, Table 8 shows the calculation efficiency of the Fast DCS-Laplace under 

different CR and LR. It can be discovered that the algorithm has a short computational 

time even for large-scale accelerations with low sparsity, and a single task can be com-

pleted basically within 300 s. Unlike Case 1, the positive correlation between the average 

running time and the reconstruction quality is not significant in this case, especially when 
1, 10%CR LR= = . 

Table 8. Computational time of Fast DCS-Laplace in Case 2. 

 Alg. 3-1 Alg. 3-2 Alg. 3-3 Alg. 3-4 Alg. 3-5 

1, 10%CR LR= =  306.0228 s 293.1825 s 284.9227 s 249.9455 s 188.6743 s 

1, 40%CR LR= =  102.7295 s 100.3038 s 133.1828 s 129.5480 s 114.7767 s 

2, 10%CR LR= =  49.4826 s 47.9823 s 111.7089 s 135.2697 s 124.3077 s 

3.2.2. Performance Comparison of CS and DCS Methods 

Additional simulations are carried out to verify the superiority of DCS over CS and 

compare the performance between the OMP and the Laplace method. In this case, the 

DCS-Laplace with 1 =  is chosen, and the constant C  in (35) is also taken as 2 after 
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Figure 13. Reconstructed signals of channel 1 with AE when SNR values are close to 40 and 20,
respectively: (a) SNR = 40.5403; (b) SNR = 20.0039.

Meanwhile, Table 8 shows the calculation efficiency of the Fast DCS-Laplace under
different CR and LR. It can be discovered that the algorithm has a short computational time
even for large-scale accelerations with low sparsity, and a single task can be completed
basically within 300 s. Unlike Case 1, the positive correlation between the average running
time and the reconstruction quality is not significant in this case, especially when CR = 1,
LR = 10%.

Table 8. Computational time of Fast DCS-Laplace in Case 2.

Alg. 3-1 Alg. 3-2 Alg. 3-3 Alg. 3-4 Alg. 3-5

CR = 1, LR = 10% 306.0228 s 293.1825 s 284.9227 s 249.9455 s 188.6743 s
CR = 1, LR = 40% 102.7295 s 100.3038 s 133.1828 s 129.5480 s 114.7767 s
CR = 2, LR = 10% 49.4826 s 47.9823 s 111.7089 s 135.2697 s 124.3077 s

3.2.2. Performance Comparison of CS and DCS Methods

Additional simulations are carried out to verify the superiority of DCS over CS and
compare the performance between the OMP and the Laplace method. In this case, the
DCS-Laplace with λ = 1 is chosen, and the constant C in (35) is also taken as 2 after trials.
The rest of the experimental conditions remain the same as in Section 3.1.2. The tested
algorithms are listed as follows:

Algorithm 4-1 (Alg. 4-1): DCS-Laplace with λ = 1
Algorithm 4-2 (Alg. 4-2): DCS-SOMP
Algorithm 4-3 (Alg. 4-3): CS-Laplace with λ = 1
Algorithm 4-4 (Alg. 4-4): CS-OMP

Figure 14 shows the SNR-LR curves of DCS Algorithm 4-1 to Algorithm 4-2 and CS
Algorithm 4-3 to Algorithm 4-4 at different CR and LR. Only the curves from channel 2 are
provided to avoid duplicate outcomes. The results indicate that SNR values from DCS and
Laplace are always higher than those from CS and OMP, respectively, at the same CR and
LR. Meanwhile, the decrease in reconstruction accuracy due to the redundancy reduction in
the RD matrix is reflected in both DCS and CS, especially in CS Algorithm 4-3 to Algorithm
4-4. Tables 9 and 10 provide the average running time and nonzero element of the DCS
Algorithm 4-1 to Algorithm 4-2 for different numbers of channels at CR = 1, LR = 25%.
It can be found that the DCS-Laplace and DCS-SOMP have approximate computation
efficiency: with a similar quantity of nonzero components, the running times of the two
algorithms are close to each other. By comparing the results in Case 1, it can be speculated
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that different types of vibration signals can affect the computing efficiency of the DCS
algorithms. Although beyond the scope of this study, future work could be conducted
on this phenomenon. Tables 11 and 12 exhibit the simulated non-uniform transmission
scenarios and the comparison results of the DCS Algorithm 4-1 to Algorithm 4-2, which
again demonstrates the strong applicability of DCS-Laplace in practical engineering.
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Figure 14. The SNR values of recovered signals from channel 2 under different CR and LR with CS
and DCS algorithms: (a) DCS vs. CS from left to right with CR = 1; (b) DCS vs. CS from left to right
with CR = 2.

Table 9. Running Times of DCS Algorithms with varying L when CR = 1, LR = 25%.

Alg. 4-1 Alg. 4-2 Alg. 4-3

Alg. 1. 41.1258 s 107.1045 s 176.9771 s
Alg. 2. 44.1580 s 88.0031 s 133.1687 s

Table 10. Average Nonzeros of DCS Algorithms for each task in Table 9.

L = 1 L = 2 L = 3

Alg. 1. 41.1258 s 107.1045 s 176.9771 s
Alg. 2. 44.1580 s 88.0031 s 133.1687 s
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Table 11. Simulated Non-uniform Transmission Scenarios with Multi-channel Signals in Case 2.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

CR LR CR LR CR LR CR LR

Chan. 1 1 10 1 10 1 50 2 10
Chan. 2 1 30 1 30 1 30 1 30
Chan. 3 1 50 1 10 1 50 1 50

Table 12. Comparison Results of DCS Algorithm 4-1 to Algorithm 4-2.

Algorithm Scenario
SNR (dB)

Chan. 1 Chan. 2 Chan. 3

DCS-Laplace
(λ = 1)

1 47.3511 38.7360 26.1259
2 47.2862 39.2743 47.3993
3 25.1775 37.1179 25.9793
4 21.4098 36.0167 24.6136

DCS-SOMP

1 43.4824 34.4658 20.2063
2 43.6761 34.9629 43.7085
3 19.1648 31.5436 20.0736
4 16.5773 30.7059 19.3118

In Table 11, the unit of LR is “%”; the orange background represents the changed CR
or LR value referring to Scenario 1.

4. Conclusions

In this work, a comprehensive DCS framework for wireless signal transmission in SHM
is constructed, incorporating the process of data compression and transmission loss together.
Considering that common priors in the Bayesian framework can be set flexibly to facilitate
multi-task information sharing, a hierarchical Bayesian model is developed for multi-channel
signal reconstruction. To strengthen the sparsity constraint on vibration signals, Laplace
priors are imposed on the sparse vectors. In addition, an efficient iterative algorithm based
on a modified sparse regression model, called Fast DCS-Laplace, is adopted to guarantee
its applicability in the face of large-scale problems. The reconstruction performance of the
algorithm is tested using vibration data (e.g., dynamic displacement, accelerations) collected
in real-world SHM systems and compared with the DCS-SOMP algorithm that has recently
been applied in SHM. The main conclusions drawn are as follows:

• Facing multi-channel signals with similar sparse patterns, the DCS method can achieve
joint recovery by exploiting the inter-correlation among channels, thus effectively
improving the reconstruction performance. Even with a small number of channels
(Case 2), DCS can still significantly improve the reconstruction quality and enhance
the robustness of data compression and transmission loss compared with the single-
channel CS approach. In addition, the proposed DCS framework also provides great
flexibility and independence for single channels by using a unique sensing matrix
in each task. The compression strategies of each channel can be adjusted according
to its own characteristics to reach a compromise among the transmission energy
consumption, the tolerance of data loss, and reconstruction accuracy, which is of high
practical value in wireless signal transmission.

• DCS-Laplace is an adaptive algorithm that can actively adapt to different types of
vibration signals by adjusting the constraints on sparsity to ensure the best reconstruction
performance. In general, compared with the RMV-based hierarchical Bayesian model,
imposing Laplace priors can achieve a higher reconstruction accuracy; the Fast DCS-
Laplace algorithm can maintain a high operational efficiency in the face of large-scale
vibration signals; the Laplace method has advantages over the OMP method in terms
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of reconstruction performance (especially for the reconstruction accuracy of moderately
distorted signals) and applicability, which is a better choice in practical applications.

The proposed DCS framework can provide a flexible and practical multi-channel
wireless transmission strategy for real-life SHM systems. The adopted DCS-Laplace al-
gorithm plays an important role in the stages of data reconstruction, which can improve
the robustness of SHM systems to data loss while facilitating data compression to reduce
transmission demands.
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