
Citation: Rathee, M.; Bačić, B.;
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Abstract: Recently, there has been a substantial increase in the development of sensor technology.
As enabling factors, computer vision (CV) combined with sensor technology have made progress
in applications intended to mitigate high rates of fatalities and the costs of traffic-related injuries.
Although past surveys and applications of CV have focused on subareas of road hazards, there is yet
to be one comprehensive and evidence-based systematic review that investigates CV applications for
Automated Road Defect and Anomaly Detection (ARDAD). To present ARDAD’s state-of-the-art, this
systematic review is focused on determining the research gaps, challenges, and future implications
from selected papers (N = 116) between 2000 and 2023, relying primarily on Scopus and Litmaps
services. The survey presents a selection of artefacts, including the most popular open-access datasets
(D = 18), research and technology trends that with reported performance can help accelerate the
application of rapidly advancing sensor technology in ARDAD and CV. The produced survey artefacts
can assist the scientific community in further improving traffic conditions and safety.

Keywords: on-road anomaly detection; structural damage detection; motorist safety; computer
vision; machine learning; deep learning; transfer learning; ARDAD

1. Introduction

Traffic accidents caused by road surface defects or unwanted objects lead to deaths,
injuries and billions of dollars in property damage [1–4]. According to Justo-Silva and
Ferreira [4], over 1.25 million lives are lost, and 20 to 50 million people are injured annually
in traffic accidents worldwide. Moreover, highway accidents are predicted to be the fifth-
highest cause of mortality by 2030. A 2019 survey based on approximately 166 countries by
Chen et al. [5] estimated that road injuries would cost the world economy USD 1.8 trillion
from 2015 to 2030, equivalent to a 0.12% annual tax on the global gross domestic product.
Mohammed et al. [6] found that road accidents are now one of the top three causes of
predicted deaths, posing a global threat to lives and economies. Among the multiple causes
of crashes reported by the American Association of State and Highway Transportation
Officials (AASHTO) [7], roadway factors such as road defects and anomalies account for
approximately 34% [4].

The scientific community’s aim to help reduce road accidents by detecting surface
defects and predicting anomalies has existed since the advent of high-speed roads. A
positive shift in momentum started with the advancements of sensor technology and the
application of computer vision (CV) combined with soft-computing approaches such as
machine learning (ML) and deep learning (DL) for adaptive automated road defect and
anomaly detection (ARDAD) systems. As a consumer-grade example, modern mobile
phones are equipped with features such as inertial sensors, high-speed video, and other
sensors such as light detection and ranging (LiDAR).
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The first contribution of this systematic review is the discovery of an upward trend in
surveillance automation since 2000, with a correlation between the scientific community’s
growing interest and technological advancement.

ARDAD systems can significantly ease the day-to-day maintenance process and reduce
the loss of life and costs associated with traffic-related injuries [3]. However, despite the
growing number of publications on ARDAD systems since 2020, most surveys focus on one
or two of many problem domains, such as (a) road surface cracks [8–10], (b) road surface
defects [10–12], (c) structural damage [13,14], or (d) anomaly detection [15–19].

As a second contribution, our systematic review uniquely combines all ARDAD
methods and focuses on traffic safety impacted by various on-road hazards (Figure 1).
Overview of automated anomaly/defect detection process. This approach distinguishes our
review from others in the field and provides a comprehensive analysis of the current state-
of-the-art ARDAD systems, making it a valuable resource for researchers and professionals
working in the field of traffic safety.
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Figure 1. Various types of roadside anomalies and defects, including (a) road maintenance objects and
construction debris, (b) debris fallen on-road, (c) road surface failure, (d) potholes, (e) maintenance
holes and pseudo potholes, (f) speed bumps, (g) farm animals on the road, a common on-road hazard
type, (h) landslide debris, and (i) wild animals jumping in front of a speeding car. (Source: All
pictures reproduced under paid licence with Canva, www.canva.com, accessed on 10 January 2023).

1.1. Background

Road surfaces are constructed using different materials, which degrade over time due
to wear, environmental effects, or external factors. Figure 2 provides a generally established
unifying process of automated anomaly/defect detection. To ensure safety and maintain
infrastructural integrity, various types of structural damage (Figure 3) must be regularly
monitored and addressed to determine the underlying causes. Structural damage caused

www.canva.com
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by poor construction techniques or external factors may take the form of potholes, cracks
(due to thermal action), debonding, stripping, ravelling, bleeding, shrinkage of road layers,
and swelling [20,21].

Potholes, for example, are random excavations caused by wear and tear on the affected
section of the road. If not attended to in time, they can cause further damage by collecting
water, which accelerates wear and tear [22]. According to Staniek [23], road surface cracks
in sections of roads supported by pillars can lead to regions falling off, posing a significant
risk to human life and vehicles. The debonding process caused by the loss of strength
in the adhesive used in road construction leads to structural degradation on roads [24].
The structural degradation identified as stripping is caused by the loss of bonds between
solid aggregations of road construction material [25]. Stripping begins from the bottom
layers of the roads and progresses upward, causing significant damage to the road surfaces.
Ravelling of road surface happens when stripping starts on the upper layers and goes
downward [26]. Road surface bleeding is another form of structural degradation on roads,
which occurs when asphalt rises from the lower concrete layers to the surface layer of the
road, leading to a shiny surface. The leading cause of bleeding on-road is hot weather,
poor-quality asphalt, and low space air void content. Timely structural damage detection on
roads supports taking necessary measures to repair or rebuild the damaged structures [27].
Regular assessments help to uphold motorists’ safety and save taxpayer money [14,28].

Scholars classify anomaly types into contextual, point, and collective anomalies [18].
Contextual anomalies are out-of-place objects such as fallen-off road cones [29] or animals
on the road [30]. Point anomalies on the road refer to specific locations where unusual
events or incidents occur, such as potholes or traffic accidents. Collective anomalies, on
the other hand, refer to broader patterns or trends in road data that deviate significantly
from the norm, such as a sudden increase in traffic volume or a rise in the number of
vehicle breakdowns. Common anomalies include unsecured objects and debris that fly
out of vehicles involved in accidents [31], small obstacles often overlooked such as speed
bumps [32] or abnormalities in road terrain overlay, affecting self-driving cars [33,34].
Figure 1 illustrates a collage of on-road hazards from around the globe that ARDAD
systems can help to mitigate.

CV-based ARDAD systems mostly employ data-driven ML algorithms that are trained
on captured data samples representing normal behaviour and the abnormal behaviour
and characteristics of the surveillance scene. The process typically uses supervised, semi-
supervised, or unsupervised learning [35]. In other words, the ARDAD methods use visual
observation that depends on the surveillance scene’s behaviour and characteristics. Hence,
ML algorithms’ performance also depends on data supplied for training.

As the survey’s third contribution, we summarise the most popular publicly available
datasets.

Due to the dynamic nature of road surveillance, ARDAD systems require expert
feedback in the form of expert labelling or categorising of data into finite sets, such as
roadside anomalies and defects (Figure 1), which could also result in re-training the model
with an updated dataset. Supervised, semi-supervised or unsupervised learning are
typically used in training such ARDAD frameworks [35]. Figure 2 illustrates the standard
methodology for ARDAD system training and operations.
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Over the last few decades, the emergence of DL has brought the End-to-End (E2E)
learning approach to the forefront of anomaly and defect detection modelling. Traditional
ML models often rely on domain knowledge or domain experts to design or improve data
pre-processing and feature extraction algorithms. E2E learning, on the other hand, reduces
this dependency on expert knowledge and simplifies the process of extracting features or
analysing discriminative properties from input data. Instead, the focus is on the input, such
as an image vector, and the intended classification result from the system output [37]. In
E2E learning, the model learns to extract invariant road features, recognise anomalies, or
extract different surface textures in defect recognition.

As the fourth contribution, the systematic review reports on the popular machine and
DL approaches and their performance applied to ARDAD systems.

1.2. Motivation and Contribution

The motivation for this systematic review lies in the understanding that road defects
and anomalies significantly impact traffic safety and the overall economy. In this systematic
review, studies from 2000 to 2023 are selected to capture the evolution of ARDAD methods
and technologies over the past two decades. The selected time frame covers crucial develop-
ments, including a mathematical morphological method at the turn of the millennium [38],
automated anomaly detection a decade later [39], and sophisticated surveillance techniques
employing UAV swarms by 2023 [40].

Identifying road defects and anomalies helps reduce drivers’ risks while supporting
road maintenance [12]. ARDAD systems can play a significant role in augmenting visual
surveillance to safeguard the public and private transportation of modern cities roads [41],
sub-urban and rural roads [42,43], animal hazard-prone hinterlands such as wilderness
roads [30], and avalanche-prone mountainous roads [44]. This systematic review is the
first in which the authors summarise the performance and accuracy of hazard detection
systems used in road infrastructure surveillance achieved globally. The review proposes
perspectives on existing technology, explores anomaly detection methods of the past three
decades, and presents examples of anomalies and methods applied to detect and predict
various static/dynamic anomalies and defects (Figure 3).
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Figure 3. Types and sub-types of on-road hazard categories in the context of anomaly and defect
detection using computer vision.

The survey analysed various processes based on environmental representation, fea-
tures, approaches, and ML models. The systematic review’s contributions are listed as fol-
lows:

• Selection criteria and resulting review of globally relevant articles uniquely combining
automated road defects and anomalies (ARDAD) peer-reviewed research since 2000.

• Discovery of the upward and exponentially growing trend of ARDAD surveillance
automation since 2000.

• Taxonomy of machine and DL approaches combined with CV, including data acquisi-
tion technology and algorithms.

• List of popular and current open access ARDAD datasets.
• Critical analysis of the current state-of-the-art ARDAD methods to highlight the

shortcomings that could be addressed in future research, including increasing envi-
ronmental awareness of connected/self-driving cars.

• Compliance list adopted from the Preferred Reporting Items for Systematic reviews
and Meta-Analyses (PRISMA) (http://prisma-statement.org, accessed on 20 December
2022) and applied to the ARDAD research context.

The introduction section of this systematic review discusses the significance of ARDAD
methods and their development over the past two decades. Emphasis is placed on the role
of sensor technology, computer vision, and ML techniques in enhancing traffic safety. The
growing trend in surveillance automation is highlighted as a premise for the upcoming
sections focusing on the systematic review approach, dataset analysis, and a critical analysis
of ARDAD methods.

http://prisma-statement.org
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2. Research Questions and Review Approach

According to the systematic literature review guidelines [45–47], screening on-road
anomalies and defects addresses a problem that can be prevented by detection, leading to
the genesis of screening or intervention-type research questions. Furthermore, since the
problem’s solution also depends on early problem detection, the research questions address
the “preventive screening” problem. The research questions’ scope should be balanced
so as not to be too specific or too broad. A well-formulated question determines (a) the
criteria used to select studies, (b) the development of the search strategy; (c) the data to be
extracted. The research questions answered by the systematic review are as follows:

• What are the best ML methods for improving classification performance and creating
a robust detection and alert system?

• What implications does the up-to-date research have on motorists’ safety and future
applications to related contexts, such as improving the environmental awareness of
connected/self-driving cars?

The review process draws on empirical evidence from previous experiments, data
collection, and studies. Figure 4 illustrates (a) literature review types and (b) how a
systematic review of similar studies uses specific methods to identify, select, appraise, and
synthesise the results.
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Data Gathering and Inclusion–Exclusion Criteria

The leading search engines used during data-gathering are Scopus and Google Scholar,
linked by journal article search and subscription-based access from Auckland University of
Technology’s (AUT) library (Table 1). The Boolean search (1) for article selection includes
default settings for analysing titles, keywords, and abstracts.
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Table 1. Inclusion–exclusion criteria settings.

Criteria Included Excluded

Date Include the studies between 2000 and 2023
depending on the topic and availability

Exclude older versions if new versions of
studies are available

Topic Studies that focus on ML in the context of ARDAD
systems for motorist safety

Exclude studies that do not address detection
in terms of computer vision or motorist
safety

Source Scopus, IEEE, Science Direct, DOAJ, and Google
Scholar

Web search of non-peer-reviewed sources,
non-English publications and non-scholarly
work sources.

Peer review
Peer-reviewed conference papers, journal
articles, technical reports, and web-based
articles important to research questions

Studies include dissertations, thesis, posters,
short papers, and abstracts.

Research/study design Studies focusing on video and image processing,
visual defect/anomaly detection for motorist safety

Studies that do not deal with video and
image processing

Setting Outdoor/indoor conditions with varying lighting Permanent backgrounds or unvarying
lighting conditions in surveillance scenes

Reported Outcomes Precise classification and detection outcome with a
reasonable success rate

Unclear outcomes and below-average
success rate of detection accuracy

The criteria (Table 1) are defined and aligned with the research focus. The articles
were selected according to Equation (1). Once the refinement process was completed, a
total of 195 articles were excluded, and from the selected papers, 48 deal with structural
damage detection, another 47 deal with anomaly detection and the remaining 21 surveys.
In Figure 5, the scatter-plot distribution shows the relationship of the number of articles
reviewed on the various types of anomalies from January 2000 to May 2023 (i.e., date of
publication).

((anomaly ∨ defect ∨ crack) ∧ (road ∨motorway) ∧
(prediction ∨ classification ∨ detection) ∧ (year ≥ 2000))

(1)

A comprehensive selection process was conducted to identify relevant papers for
further review within the scope of this study. Out of the initial pool of 311 papers, a
total of 116 papers were chosen, which included 21 surveys and reviews (Figure 5). The
remaining six papers consisted of reports, citations to research tools, or other types of
valuable evidence that supported the review process. The criteria for advancing papers to
the subsequent review stage were established based on the predefined guidelines outlined
in Table 1.

Analysing the scatterplot data, we can observe approximate 18-month gaps between
peaks and a notable increase in publications during 2020, followed by a decline in subse-
quent years. However, it is vital to provide a more insightful interpretation considering
the impact of pandemic-induced lockdowns during 2020–2022, which resulted in reduced
traffic, data collection, and occurrences of road damage. Further research is needed to gain
deeper insights into the underlying factors driving these trends in ARDAD.
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research.

3. Datasets Reviewed

The research community can benefit from appropriate datasets when evaluating their
road anomaly and defect detection models. Table 2 briefly describes prevalent open-access
datasets for on-road anomalies and defect detection, which have been experimented on in
the related literature. The datasets cover on-road hazards from simple potholes to more
complex tunnels, concrete bridge defects, to avalanche debris flow affecting motorists’
safety. The motivation for assembling this diverse dataset is to provide unrestricted ac-
cess without login requirements or paywall barriers. This section reports a selection of
single-point, one-click access routes to frequently downloaded open access datasets for the
research community (Table 2). Our goal is to promote inclusivity and remove possible dis-
crimination, ensuring that researchers from all backgrounds can contribute to and benefit
from the advancements in the field of ARDAD. To verify unrestricted, all-inclusive access
and to promote privacy, we have tested the dataset access to ensure that all data are freely
accessible without needing a login or being restricted by paywalls.
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Table 2. Frequently downloaded open access on-road anomalies and defect image datasets (URLs in
the table accessed on 4 June 2023).

No. Dataset Link Purpose Configuration

1
Road surface anomalies
kaggle.com/datasets/
aminumusa/road-dataset

Detect potholes and improve road
maintenance; originated from Nigerian
highways

789 good surfaces, 670 potholes images,
Uniform 256 × 256 pixels

Paper of Origin/Use: https://tinyurl.com/ydbwp39f
Strength: Clear distinction between classes, real-world images
Limitations: Limited variety of images specific to Nigerian highways
Statistics: 14 downloads and 4 citations

2
Pothole image dataset
kaggle.com/datasets/
sachinpatel21/pothole-image-
dataset

Detect potholes on roads 600+ .jpg images of the potholes, web
scraped

Paper of Origin/Use: https://ieeexplore.ieee.org/abstract/document/9824637
Strength: Diverse dataset with pothole images from varied road surfaces
Limitations: The collection method may have resulted in noisy or duplicate images
Statistics: 3454 downloads and 2 citations

3
Debris flow data
zenodo.org/record/6679461
datahub.hku.hk/articles/
dataset/Dataset_and_
supplementary_movies_for_
geophysical_mass_flows_
against_a_flexible_ring_net_
barrier/20349192

Debris and rock avalanches 228 videos in total debris caused by an
avalanche

Paper of Origin/Use:
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022JF006870
Strength: Detailed and high-quality data covers a range of scenarios
Limitations: Some of the samples from the laboratory setting may not reflect real-world
conditions
Statistics: 145 downloads and 1 citation

4
Pothole and road images
kaggle.com/datasets/virenbr11/
pothole-and-plain-rode-images

Road defects and pothole detection 740 images of road potholes

Paper of Origin/Use: https://www.hindawi.com/journals/cin/2021/6262194/
Strength: A proper train-test split for potential applications in training ML models for
road maintenance, traffic management, and autonomous vehicle navigation systems
Limitations: Images scraped from the web may result in inconsistencies.
Statistics: 1528 downloads and 3 citations

5
On-road anomalies and obstacles
segmentmeifyoucan.com/
datasets

Providing pixel-level annotations for the
classification of anomalies and other
hazardous obstacles

467 labelled and unlabeled images of
on-road anomalies and obstacles

Paper of Origin/Use: https://datasets-benchmarks-proceedings.neurips.cc/paper/20
21/hash/d67d8ab4f4c10bf22aa353e27879133c-Abstract-round2.html
Strength: The dataset builds upon the popular Cityscapes dataset, making it useful for
training ML models for anomaly detection and obstacle identification in urban scenes
Limitations: Low anomaly diversity in datasets limits generalisation and may cause
overfitting
Statistics: Unknown number of downloads and 34 citations

6
Speed hump/bump dataset
data.mendeley.com/datasets/xt5
bjdhy5g/1

Detecting and classifying speed
humps/bumps in real-world conditions to
improve real-time applications such as
self-driving cars

Total 3000 .jpg images of
humps/bumps with varying
conditions, such as different types of
humps/bumps, illumination
conditions, and geographical locations

Paper of Origin/Use:
https://www.sciencedirect.com/science/article/pii/S1877050918320295
Strength: The dataset contains diverse speed humps and bumps under varied
conditions, improving model generalisation
Limitations: Limited public availability, geographical scope, manual labelling, and
potential biases affecting model performance
Statistics: 4530 downloads and 46 citations

kaggle.com/datasets/aminumusa/road-dataset
kaggle.com/datasets/aminumusa/road-dataset
https://tinyurl.com/ydbwp39f
kaggle.com/datasets/sachinpatel21/pothole-image-dataset
kaggle.com/datasets/sachinpatel21/pothole-image-dataset
kaggle.com/datasets/sachinpatel21/pothole-image-dataset
https://ieeexplore.ieee.org/abstract/document/9824637
zenodo.org/record/6679461
datahub.hku.hk/articles/dataset/Dataset_and_supplementary_movies_for_geophysical_mass_flows_against_a_flexible_ring_net_barrier/20349192
datahub.hku.hk/articles/dataset/Dataset_and_supplementary_movies_for_geophysical_mass_flows_against_a_flexible_ring_net_barrier/20349192
datahub.hku.hk/articles/dataset/Dataset_and_supplementary_movies_for_geophysical_mass_flows_against_a_flexible_ring_net_barrier/20349192
datahub.hku.hk/articles/dataset/Dataset_and_supplementary_movies_for_geophysical_mass_flows_against_a_flexible_ring_net_barrier/20349192
datahub.hku.hk/articles/dataset/Dataset_and_supplementary_movies_for_geophysical_mass_flows_against_a_flexible_ring_net_barrier/20349192
datahub.hku.hk/articles/dataset/Dataset_and_supplementary_movies_for_geophysical_mass_flows_against_a_flexible_ring_net_barrier/20349192
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2022JF006870
kaggle.com/datasets/virenbr11/pothole-and-plain-rode-images
kaggle.com/datasets/virenbr11/pothole-and-plain-rode-images
https://www.hindawi.com/journals/cin/2021/6262194/
segmentmeifyoucan.com/datasets
segmentmeifyoucan.com/datasets
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/d67d8ab4f4c10bf22aa353e27879133c-Abstract-round2.html
https://datasets-benchmarks-proceedings.neurips.cc/paper/2021/hash/d67d8ab4f4c10bf22aa353e27879133c-Abstract-round2.html
data.mendeley.com/datasets/xt5bjdhy5g/1
data.mendeley.com/datasets/xt5bjdhy5g/1
https://www.sciencedirect.com/science/article/pii/S1877050918320295
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Table 2. Cont.

No. Dataset Link Purpose Configuration

7
Crack-forest dataset
github.com/cuilimeng/
CrackForest-dataset
kaggle.com/datasets/
mahendrachouhanml/
crackforest

Annotated road crack image database for
developing and evaluating automatic road
crack detection
algorithms

Collection of 118 annotated images
with ground truth labelling of cracks
and background pixels, used for
training and testing crack detection
models

Paper of Origin/Use: https://ieeexplore.ieee.org/abstract/document/7471507
Strength: A diverse set of annotated road crack images randomly shuffled with
80%-20% splits, respectively, for training and testing crack detection models
Limitations: Limited number of images
Statistics: 423 downloads and 749 citations

8
Pothole dataset
drive.google.com/drive/folders/
1vUmCvdW3-2
lMrhsMbXdMWeLcEz__Ocuy
https://www.kaggle.com/
datasets/felipemuller5/nienaber-
potholes-1-simplex

Pothole detection Two sets of 650 annotated pothole
images, with variations in complexity
and some overlapping files

Paper of Origin/Use: https://ieeexplore.ieee.org/abstract/document/7376642
Strength: Realistic pothole images with varying real-world scenarios and
comprehensive annotations in two papers for pothole detection models
Limitations: The possibility of duplicate image names can be problematic
Statistics: 645 downloads and 102 citations

9
Road damage dataset
paperswithcode.com/dataset/
rdd-2020
data.mendeley.com/datasets/
5ty2wb6gvg/1

Damaged road surface detection A total of 26,620 .jpg images of 31,000
instances of road damage from multiple
countries using smartphones

Paper of Origin/Use: https://arxiv.org/abs/2008.13101
Strength: A large, diverse dataset with annotations helpful in developing deep
learning models
Limitations: NA
Statistics: 2346 downloads and 76 citations

10
Road anomalies
epfl.ch/labs/cvlab/data/road-
anomaly

Dynamic anomaly detection 120 images with associated per-pixel
labelled unusual on-road entities such
as animals, rocks, traffic cones and
other obstacles

Paper of Origin/Use: https://arxiv.org/abs/2008.13101
Strength: Realistic representation of road hazards, per-pixel labels for training, and the
benchmark for evaluation
Limitations: The dataset is designed for a specific purpose and may not be suitable for
other applications or research topics
Statistics: Unknown number of downloads and 84 citations

11
Road surface potholes
sites.google.com/view/pothole-
600/dataset

Pothole detection and classification 600 RGB images and pixel-level
annotations collected using a ZED
stereo camera; the road disparity
images were estimated using
Perspective Transformation—Search
Range Propagation (PT-SRP)

Paper of Origin/Use:
https://link.springer.com/chapter/10.1007/978-3-030-66823-5_17
Strength: Contains annotated images that can be used for training and testing pothole
detection algorithms. Stereo camera use allows for the estimation of disparity images,
which helps improve the accuracy of pothole detection
Limitations: The dataset was collected using a single camera setup, which may limit its
generalisability to other camera setups
Statistics: Unknown number of downloads and 28 citations

github.com/cuilimeng/CrackForest-dataset
github.com/cuilimeng/CrackForest-dataset
kaggle.com/datasets/mahendrachouhanml/crackforest
kaggle.com/datasets/mahendrachouhanml/crackforest
kaggle.com/datasets/mahendrachouhanml/crackforest
https://ieeexplore.ieee.org/abstract/document/7471507
drive.google.com/drive/folders/1vUmCvdW3-2lMrhsMbXdMWeLcEz__Ocuy
drive.google.com/drive/folders/1vUmCvdW3-2lMrhsMbXdMWeLcEz__Ocuy
drive.google.com/drive/folders/1vUmCvdW3-2lMrhsMbXdMWeLcEz__Ocuy
https://www.kaggle.com/datasets/felipemuller5/nienaber-potholes-1-simplex
https://www.kaggle.com/datasets/felipemuller5/nienaber-potholes-1-simplex
https://www.kaggle.com/datasets/felipemuller5/nienaber-potholes-1-simplex
https://ieeexplore.ieee.org/abstract/document/7376642
paperswithcode.com/dataset/rdd-2020
paperswithcode.com/dataset/rdd-2020
data.mendeley.com/datasets/5ty2wb6gvg/1
data.mendeley.com/datasets/5ty2wb6gvg/1
https://arxiv.org/abs/2008.13101
epfl.ch/labs/cvlab/data/road-anomaly
epfl.ch/labs/cvlab/data/road-anomaly
https://arxiv.org/abs/2008.13101
sites.google.com/view/pothole-600/dataset
sites.google.com/view/pothole-600/dataset
https://link.springer.com/chapter/10.1007/978-3-030-66823-5_17
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Table 2. Cont.

No. Dataset Link Purpose Configuration

12
Labelled pothole dataset
public.roboflow.com/object-
detection/pothole
kaggle.com/datasets/chitholian/
annotated-potholes-dataset

Fully annotated image dataset for pothole
detection

665 images with a total of 1740
annotated potholes. 532 (80%) training
images, 133 (20%) test images.

Paper of Origin/Use:
https://link.springer.com/chapter/10.1007/978-981-16-6636-0_44
Strength: It is a fully bounding box with annotated images of potholes and
damaged roads
Limitations: 57.1% of images are web scraped, potentially consisting of duplicate
images
Statistics: 2222 downloads and 1 citation

13
Pothole detection dataset
kaggle.com/datasets/
atulyakumar98/pothole-
detection-dataset

Road surface pothole detection 352 undamaged road images and
329 pothole images

Paper of Origin/Use: https://ieeexplore.ieee.org/abstract/document/9850988
Strength: Diverse dataset with annotations helpful in developing deep
learning models
Limitations: The small size of the dataset and class imbalance may limit the
generalisability of the models trained on this dataset
Statistics: 4530 downloads and 8 citations

14
Road infrastructure defect dataset
kaggle.com/datasets/
aniruddhsharma/structural-
defects-network-concrete-crack-
images

Detecting cracks in the bridge decks, walls,
and concrete pavements

56,000 images of cracked and
non-cracked surfaces

Paper of Origin/Use: https://www.mdpi.com/2412-3811/7/9/107
Strength: Provides a variety of obstructions, such as shadows, surface roughness,
scaling, edges, holes, and background debris
Limitations: Limited to surface cracks only
Statistics: 2438 downloads and 14 citations

15
Concrete bridge defects
zenodo.org/record/2620293

Concrete bridge surface defect detection 6900 images of the defective concrete
surface of 30 unique bridges, including
cracks (2507), spallation (1898),
efflorescence (833), exposed bars (1507)
and corrosion stain (1559)

Paper of Origin/Use: https://arxiv.org/abs/1904.08486
Strength: High-resolution images with defects in the context of 30 unique bridges and
the use of a multi-stage annotation process resulting in a multilabel dataset with six
categories of defects
Limitations: Varied aspect ratios, scales, and resolutions of defects and even
bounding boxes overlap
Statistics: 27,510 downloads and 80 citations

16
Road anomaly benchmark
github.com/adynathos/road-
anomaly-benchmark

Anomalous object detection in autonomous
driving and road
traffic safety

552 high-definition images of road
anomalies and obstacles

Paper of Origin/Use: https://arxiv.org/abs/2104.14812
Strength: Provides pixel-level annotations for identifying unseen anomalous
objects and hazardous obstacles within diverse scenes
Limitations: NA
Statistics: Unknown number of downloads and 34 citations

17
Pothole detection datasets
github.com/ruirangerfan/
stereo_pothole_datasets

Pothole detection 220 images of potholes captured using
ZED stereo camera

Paper of Origin/Use: https://ieeexplore.ieee.org/abstract/document/8809907
Strength: Contains four datasets with disparity maps, designed for pothole detection
and published in a reputable journal
Limitations: NA
Statistics: Unknown number of downloads and 107 citations

public.roboflow.com/object-detection/pothole
public.roboflow.com/object-detection/pothole
kaggle.com/datasets/chitholian/annotated-potholes-dataset
kaggle.com/datasets/chitholian/annotated-potholes-dataset
https://link.springer.com/chapter/10.1007/978-981-16-6636-0_44
kaggle.com/datasets/atulyakumar98/pothole-detection-dataset
kaggle.com/datasets/atulyakumar98/pothole-detection-dataset
kaggle.com/datasets/atulyakumar98/pothole-detection-dataset
https://ieeexplore.ieee.org/abstract/document/9850988
kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
kaggle.com/datasets/aniruddhsharma/structural-defects-network-concrete-crack-images
https://www.mdpi.com/2412-3811/7/9/107
zenodo.org/record/2620293
https://arxiv.org/abs/1904.08486
github.com/adynathos/road-anomaly-benchmark
github.com/adynathos/road-anomaly-benchmark
https://arxiv.org/abs/2104.14812
github.com/ruirangerfan/stereo_pothole_datasets
github.com/ruirangerfan/stereo_pothole_datasets
https://ieeexplore.ieee.org/abstract/document/8809907
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Table 2. Cont.

No. Dataset Link Purpose Configuration

18
pNEUMA Vision Dataset
zenodo.org/record/7426506

On-road anomaly detection Urban trajectory 35K video frames
captured using 18 swarm drones

Paper of Origin/Use:
https://www.sciencedirect.com/science/article/pii/S0968090X22003795
Strength: Extensive urban trajectory data to investigate traffic phenomena at different
scales; provides comprehensive urban trajectory data
Limitations: Trajectory data are limited to vehicle movement and do not include other
factors such as weather, road conditions, or pedestrian behaviour
Statistics: 417 downloads and 1 citation

In summary, Table 2 provides an exhaustive review of 18 selected open access datasets
pertinent to anomaly and defect detection, including potholes, debris flow, animals on the
road, tunnel defects, and concrete bridge defects. As added parameters, each dataset is
characterised by its purpose, configuration, origin or citation, strengths, limitations, and
usage statistics.

Apart from the datasets provided in Table 2, the systematic review inspected datasets
used by the studies that are not open access. This leads to identifying datasets available
upon request or needing a paid subscription. For instance, the research on pavement
crack detection [48] makes the CFD dataset, Crack500 dataset, and a customised dataset
called CrackSC available on request. In another study [49], a wide variety of road obstacle
datasets are available on request. The road anomaly detection study [50] provides multiple
datasets; however, login access is needed to download them. The research on the Adaboost
algorithm for pavement distress detection [51] provides access to the dataset through the
journal’s website for readers with paper access. The research on thermal image analysis for
defect detection [52] provided the dataset upon request.

4. Literature Review

The review summarises perspectives on existing detection technologies and presents
examples of methods developed since 2000 for applications to detect and predict static/
dynamic anomalies and defects. Unlike the subjective nature of topic-oriented narrative
literature reviews, the systematic literature review approach represents an opportunity for
repeatable article selection and synthesis of follow-up reviews. As no detection system can
be applied globally, Figure 3 illustrates a review-based breakdown of on-road hazards to
motorist safety.

Image processing-based ARDAD systems play a significant role in enhancing traffic
safety through visual surveillance [53]. Images of road sections are taken and analysed
to detect structural variations and anomalies from time to time. In addition to image
processing, CV combines artificial intelligence (AI) approaches to derive meaningful infor-
mation from images and videos [54]. When merged with Global Positioning Systems (GPS),
telescopes, binoculars, closed-circuit television (CCTV), vehicle-mounted video recorders
and cameras, and low-cost mobile cameras, image processing-based visual surveillance
can significantly increase the efficiency of ARDAD systems [18,40,55–57]. Maya et al. [58]
proposed a delayed long short-term memory (dLSTM)-based technique that is trained in a
normal state and predicts abnormalities depending on the m-score defined in Equation (2).
Here, the m-score is the normalised anomaly score R(t) within the abnormal state, and if in
a dataset, the T2 anomaly occurs at time t1, the resultant m-score value is as follows:

m-score = mediani∈[t1,t1+1,...,T2]
R(i) (2)

Based on expert feedback, the anomaly is detected if the m-score is above the set
threshold. The method is reported to be flexible when combined with other anomaly
prediction models. The U.S. Department of Transportation (USDOT) devised a convention

zenodo.org/record/7426506
https://www.sciencedirect.com/science/article/pii/S0968090X22003795
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to rank road surface distress [59], as shown in Equation (3). The pavement condition index
(PCI) is generated using a weighted sum of surface condition rating (SCR) and roughness
condition index (RCI).

PCI = 0.6·SCR + 0.4·RCI (3)

Structural damage on roads is caused by thermal action, external conditions and
physical strain exerted by vehicles. Various anomalies and surface defects such as cracks
and potholes are caused mainly by deformities such as debonding, stripping, ravelling,
bleeding, shrinkage of road layers and swelling of road layers [60,61]. A wide range
of datasets are produced to derive meaning from images of surfaces with such defects
and identify the underlying conditions of the roads. According to Bhatt et al. [10], three
distress categories are used to classify anomalies: cracking, visco-plastic deformations, and
surface defects.

Thus, the current research mainly focuses on surface damage detection, anomaly
detection, analysis and prediction using computer vision in association with traditional ML
and DL technologies. The literature review of surveys between 2000 and 2023 shows that
most of these can be classified into road surface defects or on-road anomalies (Table 3).

Table 3. Prior surveys covering structural defects and anomaly detection.

Research Focus Research Areas and
Applications Reference

Inspection, defect detection,
structural damage, crack
detection, ML

Surface defect and
damage detection [8–10,13,14,28,62]

Statistical learning, DL,
intelligent environments

Anomaly detection, analysis and
prediction [12,16–18,20,37,63–70]

Image processing based on traditional methods (statistical and classical ML) has been
used to analyse road sections’ images to detect defects [10]. Examples of applied methods
in image processing include logical and linear regression [60], naïve Bayes [71], support
vector machine (SVM) [57], random forest (RF) [61] and more. Statistical and traditional
ML-based image processing might be inefficient due to known difficulties in handling
noise in previously unseen images, complex textures in different backgrounds or variations
in lighting conditions of surfaces. The shortcomings of statistical and traditional ML
motivated researchers to investigate new approaches. Other anomaly and defect detection
development suggests the following three main approaches: feature extraction-based image
processing using DL, ML and ensemble learning models [72,73]. Different works have also
used 3D imaging and LiDAR-based anomaly and defect detection methods [19].

4.1. ML-Based ARDAD

Li et al. [74] developed the defects detection and localisation network (DDLNet),
a vision-based method for detecting, classifying, and geolocating defects using region-
growing, edge detection, and threshold segmentation techniques. The DDLNet achieved
80.7% detection and 86% localisation accuracy. Cha et al. [75] proposed the utilisation of
traditional Canny and Sobel edge detection methods, achieving an impressive accuracy
of 98% in detecting block edges, edge cracks, and longitudinal and transverse cracks.
For visco-plastic deformations, edge detection can efficiently detect pothole edges [76],
depressions, stripping, and ravelling with high accuracy of 99.11% [77]. In some cases, edge
detection is achieved using Prewitt, Canny, and Sobel operators [78]. Each operator impacts
the detected edges within an image differently based on each operator’s ability. Chatterjee
and Saeedfar [79] proposed an improved Canny edge detection method that incorporates
genetic algorithms and enhances the blurred edges using the Mallat Wavelet transform
with an average detection accuracy of 91%. Vigneshwar et al. [80] proposed the binary
conversion of greyscale images for anomaly detection. They set a threshold, compared
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pixels for background or target area identification, and used threshold segmentation, edge
detection, and K-Means clustering for crack and defect detection with an average accuracy
of 80.60%, 90.19%, and 82.47%, respectively.

Table 4 presents a comprehensive overview of recent studies employing ML algorithms
to detect road anomalies, showcasing a range of accuracy rates between 86.3% and 97.8%.
While these studies significantly contribute to the advancement of traffic safety, autonomous
driving, and urban planning, critical evaluation reveals limitations. These limitations
include concerns about data accuracy, constrained feature applicability, and challenges in
domain adaptation, which warrant further investigation and development.

Table 4. Recent feature extraction-based ML techniques for detecting road anomalies and defects.

Ref. Detection
Origin

Data
Acquisition Algorithm Evaluation

Method
Acc.
(%)

Future
Implications Strength Limitations

Kim,
Anagnos-
topoulos
[40]

On-road
anomaly

Cameras
mounted
on a swarm
of
drones

Butterworth
filter,
pNEUMA
Vision
(Dataset 18)

Binary clas-
sification,
neural
network
optimisa-
tion,
precision
evaluation

91.8

Improved traffic
flow models,
enhanced safety
analytics, and
lane-change
detection

Enhanced
features,
diverse
urban
traffic
use-cases

Bounding
box errors,
disrupted
visibility,
tracking
failures

Julio-
Rodríguez,
Rojas-Ruiz
[49]

Road
surface
defects

Vehicle-
mounted
sensors

KNN, SVM,
and RF

Real-world
tests on
prediction
time and
classifica-
tion
score

93.20

Improved
autonomous
driving, energy
optimisation, and
enhanced vehicle
safety

A novel
method,
real-world
tests

Limited
feature ap-
plicability,
idealised
scenarios
unsuitable
for
real-time

Ferjani
et al., 2022
[50]

Road
surface
anomalies

Lab simula-
tions and
vehicle
accelerome-
ter axis
data

SVM,
decision
tree, and
MLP

Efficacy of
the ML
approach
using
practical,
real-world
data

94.00

Improved road
monitoring,
enhanced traffic
safety, and
reduced accidents

Thorough
analysis,
practical
advice,
peer-
reviewed,
impactful

Feature
sensitivity,
limited
generalis-
ability,
domain
separation
inefficiency

Bustamante
et al., 2022
[81]

Road
anomalies

GPS,
accelerome-
ter,
gyroscope,
camera

Supervised
KNN and
ANN

Fog-
computing,
V2I
network
using ML
algorithms,
comparing
roughness
against a
flat
reference

95.55

5G-based scalable
smart
urban mobility,
and public
spending
efficiency

Innovative,
data-
driven,
sustainable
urban
mobility
solution

Data
accuracy,
privacy and
security
concerns
due to
sensors
installed
inside
vehicles
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Table 4. Cont.

Ref. Detection
Origin

Data
Acquisition Algorithm Evaluation

Method
Acc.
(%)

Future
Implications Strength Limitations

Zhou et al.,
2022 [82]

Road
Surface
Condition

Smartphone
camera,
accelerator
and
gyroscope

SVM, KNN,
naïve
Bayes,
decision
tree, and
RF

Average
precision,
loss, recall,
F1-
measure,
and
accuracy

86.3

Crowdsourcing-
based
detection system
based on
motorist feedbacks

High
efficiency,
low cost,
and easy
collection
of data

Lower
accuracy
than profes-
sional
equipment
and is
affected by
shadows,
road
markings,
reflections,
and driving
habits

Alam et al.,
2021 [31]

Debris
object
detection

Unmanned
aerial
vehicle
(UAV)-
mounted
cameras

SSD and
R-CNN

Mean
average
precision
(mAP) and
mean
average
recall
(mAR)
scores

88.3

A UAV-based fast
and
affordable debris
detection model
for urban planning

The
UAV-based
method
improves
road debris
clean-up,
optimises
traffic
safety
operations

Negative
drone
distance
impact,
limited
road type
scope,
detection
accuracy
affected by
environ-
mental
factors

Alipour
et al., 2020
[83]

Crack
detection

Images of
diverse
road
surfaces
based on
material

ResNet
18-layer,
ensemble
learning

Accuracy,
precision,
recall, true
negative
rate, and F1
score
calculated
from a
confusion
matrix

97.8

Construction
material
independent crack
detection model

Robustness
of DL
methods
across
various
road
surface
materials

Limited
defect
types,
domain
adaptation
challenges

The AdaBoost algorithm, proposed by Wang et al. [51], utilises supervised data for
detecting surface defects such as ravelling and bleeding. The algorithm consists of a
decision tree with elements categorised as root, leaf, and decision nodes. The collected
data are passed through the root node and classified at each layer of the decision tree
until it cannot be further classified. The sample data are divided into subsets for precise
and optimal classification results. Each subset of the training data is assigned a leaf node,
which should also have an associated class. Fan et al. [84] proposed three different decision
trees in the AdaBoost algorithm for detecting road surface defects. Among these, the C4.5
decision tree continually prunes leaf nodes and adopts the root node as the new leaf node.
The CART decision tree’s pruning process, unlike that of C4.5, uses a verification data set
to prevent data overfitting. The ID3 decision tree calculates the maximum gain of all the
sample value data and assigns features to nodes. The recursive generation of decision trees
occurs using these features as leaf nodes [85].

Feature extraction-based ML methods are considered advantageous for their simplicity,
according to Avci et al. [13]. By performing feature extraction and classification, these
techniques can be made more generic and effective in detecting structural damage. Hoang
and Nguyen have developed various ML methods to detect different classes of static
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anomalies and structural damages within roads [86] that include support vector machines
(SVM), random forest (RF), and artificial neural networks (ANN) using both labelled and
unlabeled datasets. The supervised approaches relying on labelled training data in road
anomaly detection are naïve Bayesian, RF, SVM, ANN, and logistic regression. Artificial
neural networks and RF facilitate efficient visco-plastic deformations and cracking defect
detection. Fakhri and Saadatseresht [87] proposed a model based on the random-forest
supervised data model to detect cracks whilst overcoming the challenge of uneven edges
of the cracks and cracks existing in complex topologies. Table 5 highlights the evolution
of ARDAD methods, demonstrating a shift from traditional ML and statistical techniques
to DL approaches. While both categories have contributed to automating defect detection
and enhancing road safety, they exhibit limitations such as dependency on image quality
and environmental conditions.

Table 5. Crack and defect detection methods sorted by publishing date to offer context into the
evolution of ARDAD methods.

Taxonomy Research
Focus Year Ref. Acc.

(%)
Research Areas
and Applications Implications Limitations

Traditional
ML and
statistical
methods

Road surface
crack, white
line, joint
detection

2000 [38] 92.8%

Morphology
operations for
detecting road
surface detects to
safeguard traffic
safety

Automating defect
detection

Depend on image
quality and require
setting parameters

Lane
curvature
detection for
motorist
assistance

2003 [88] 99%

Lane curve and
edge detection
using a novel
image-processing
algorithm

Lane departure
warning and
lateral control
system for vehicle
control

The proposed
algorithm is not
effective for road
elevations over 2%

Mobile robot
for tunnel
crack
detection

2007 [89] NA

Image processing,
edge detection,
graph search,
Dijkstra’s
algorithm, expert
feedback based

A semi-automated
platform for future
research in defect
detection

Validated in indoor
experimental
settings with
limited application

Road surface
condition
recognition

2009 [90] 90%

Road surface
condition
identification
system for
motorist safety

Enhancing vehicle
active safety
features by
identifying road
surface conditions

Requires extensive
vehicle testing for
index distribution
on road surfaces

Pavement
crack
detection

2010 [78] NA

Pavement edge
detection, Canny
operator, Mallat
wavelet transform,
quadratic
optimisation

Improving
pavement edge
detection for faster
road repairs to
increase road
safety

Interference from
pavement
markings needs
further research to
counter noise

Road surface
crack
detection

2018 [79] 90.87%

ML-based 2D road
surface image
analysis from the
driver’s viewpoint,
crack detection,
surface defect
detection

A platform for
cost-efficient,
scalable road
inspection systems
to improve traffic
safety

Inefficient in
handling varied
lighting, shadows,
texture, and
surface types in
image analysis
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Table 5. Cont.

Taxonomy Research
Focus Year Ref. Acc.

(%)
Research Areas
and Applications Implications Limitations

Pavement
crack
detection

2022 [91] 86%

Tile-based image
processing method
to automate the
detection of cracks
from 2D and 3D
images of
pavement and
asphalt concrete
surface

A platform for
an automated
pavement distress
assessment system,
reducing costs and
improving the
integrity

Limited crack
detection, 3D
image
inconsistencies,
false positives,
threshold reliance,
and width
measurement
issues

Deep
learning

Automatic
crack
detection
on a concrete
bridge
surface

2011 [35] 90.25%

Image processing,
backpropagation
neural network,
construction
safety and
management

Automated crack
detection system
for efficient
analysis and
visualisation of
concrete surface
cracks

Performed under
similar
environmental
conditions and
needs further
evaluation; the
accuracy score
could be improved

Road survey
for crack
detection

2016 [55] 89.65%

ConvNet trained
on square image
patches,
handcrafted
feature extraction
methods

A platform to
build a low-cost,
real-time road
crack detection
system

Misclassification
errors in detecting
cracks in some of
the methods

Unsupervised
multi-scale
image fusion

2018 [74] 80.7%

Automated airport
runaway
inspection using
crack detection by
multi-scale image
fusion

Efficient
maintenance of
road
infrastructures
through
integration within
intelligent
autonomous
inspection systems

Issues with
identical
infrastructures,
GPS integration
and lack of
real-time
application
support

Road surface
cracks and
defect
detection

2020 [92] 91.99%

Transposed
convolution layer,
connectivity of
pixels, and densely
connected layers

An automated
solution for
detecting cracks in
roads and bridges

Poor performance
with low-speed
cameras; low light
conditions affect
performance

Detection of
long and
complicated
pavement
cracks

2023 [48] 94.60%

Swin-transformer-
based semantic
segmentation
method with
multi-layer
perceptron

Improved
pavement crack
detection, leading
to effective
maintenance
strategies and
traffic
infrastructure
systems

Heavy noise and
fallen leaves
coupling effect;
limited
experimental
real-world data

In detecting on-road anomalies, unsupervised learning models hold potential ad-
vantages as they do not rely on labelled data for sample classification, unlike supervised
learning models, which depend on subjective human input [93,94]. As a result, the output
of unsupervised learning models is not predetermined, allowing computers to indepen-
dently discern anomalies in the data through classification processes [95]. Ishtiak et al. [43]
proposed a system for identifying and categorising various road conditions, including
visco-plastic deformities and defects. This approach uses a statistical analysis method and
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a scoring function considering several factors, such as road colour, material, and image
quality. Despite the model’s high accuracy, ranging from 77% to 89% across diverse road
conditions, it has shown limitations in distinguishing shadows from road anomalies and
analysing roads with water on the surface. Chatterjee et al. [79] proposed a machine-
learning approach for crack detection, relying on feature extraction from image superpixels.
The approach involves extracting 40 features, including variance, skewness, six Grey Level
Co-occurrence Matrix (GLCM) features, and 32 Variance-of-Gabor (VoG) features. The
study compared four classifiers, with gradient boosting (GB) being the most accurate at
92.77%, followed by random forest (RF), artificial neural network (ANN), and linear sup-
port vector machine (L-SVM). Naddaf-Sh et al. [96] proposed a novel model for detecting
visco-plastic deformations and cracks, leveraging a multivariate statistical hypothesis and
a minimum intensity path window for anomaly extraction. Despite a competitive F1 score
of 56%, increased inference time during real-time prediction and transferred augmentation
policies might hinder the model’s performance. Mahadevan et al. [97] proposed a model
that detects abnormalities in crowded scenes by considering temporal and spatial normalcy
using a mixture of dynamic textures. The algorithms tested in the study show varying
performance (25% to 42%) regarding an equal error rate and anomaly localisation, with
MDT outperforming the others with a detection rate of 45%. Table 6 presents diverse,
evolving methodologies in road defect detection, from simple image processing to sophis-
ticated deep-learning models. These research efforts have led to accuracy rates ranging
from 54% to over 99%, indicating a promising trend in the field. These studies collec-
tively demonstrate evolving methodologies, from simple image processing to sophisticated
deep-learning models.

Table 6. Analysis of various research studies on ARDAD, highlighting their implications for cost-
effective rehabilitation decisions and increased traffic safety.

Research
Focus Year Ref. Acc. (%) Research Areas and

Application Implications Limitations

Automatic
crack detection
and
classification

2009 [98]
94.8%
and
95.6%

Entropy, road crack
segmentation and
dynamic image
thresholding

A platform for
improved defect
detection with
cost-effective, objective
rehabilitation decision
support to increase
traffic safety

Potential for
improvements in
dynamic thresholding
accuracy and processing
of variance in pixel
intensity

Image
processing for
pothole
detecting

2015 [99] 77.9%

Pothole detection using
simple real-world
images,
Canny filter and
contour detection

A device for vehicles that
detect potholes, alerts
drivers, and log pothole
locations for road
maintenance agencies

Limited detection range,
potential for absorption
of potholes into outer
borders, and inability to
detect potholes with no
visible edges

Crack detection
on
two-
dimensional
pavement
images

2016 [100] 83%

Crack detection,
minimal path, Dijkstra
algorithm,
road surface condition
analysis

An unsupervised
learning algorithm for
effective assessments in
road
in road maintenance

Potential bias due to the
use of the same Dijkstra
algorithm and high
computation time
requiring optimisation
for faster processing

Road defect
detection 2016 [101] 54% to

91%

Road defect detection,
image processing,
computer vision

A real-time road
defect detection system
for timely road repair
and traffic safety

Issues with road colour
affecting accuracy rates,
real-time constraints,
difficulty detecting thin
cracks
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Table 6. Cont.

Research
Focus Year Ref. Acc. (%) Research Areas and

Application Implications Limitations

Road condition
detection
system

2018 [43] 87%

Road Weather
Information System
(RWiS), Intelligent
Transportation System
(ITS)

Improving traffic safety
by enabling autonomous
cars to avoid road
anomalies
and control speed based
on road condition

Issues with background
noise filtering resulting
in object shadows being
detected as cracks

Automatic road
crack
segmentation

2020 [77] 99.11%
Morphological filter
dynamic thresholding,
entropy thresholding

A high-performance
model for crack detection

The model presented
does not address
characterising crack
severity

Table 6 provides a comprehensive overview of road defect detection and classification
research, offering a roadmap for further advancements towards safer and more efficient
transportation systems.

A computer vision-based approach by Cha et al. [75] summarised that DL, as a power-
ful approach for object detection, image segmentation, and classification, has been used to
detect anomalies and defects such as cracks, surface defects, visco-plastic deformations,
and traffic anomalies. As a case in point, their CNN-based approach achieved accura-
cies of 98.22% out of 32K images and 97.95% out of 8K images in training and validation,
respectively. The proposed CNN method showed very robust performance compared to tra-
ditional edge detection methods. Opara et al. [71] proposed a DL approach involving binary
and multi-class classifications to detect anomalies in the RGB images (2400 × 2000 pixels)
with a high F1 value of approximately 60% at 18,000 iterations. The study utilised a loss
function that included terms for localisation, confidence, and classification errors to detect
objects more accurately and effectively. Non-maximum suppression was applied to select
the appropriate bounding box from the many predictions. On the other hand, multi-class
classification is suggested for analysing road sections with multiple anomalies. At the
same time, the authors also provided insights on performance trade-offs by adjusting
hyperparameters and achieved state-of-the-art performance with an F1 score of up to 94.4%
on three benchmark datasets [102].

The pixel segmentation method for pavement damage detection using a thermal-RGB
fusion image-based model achieved high accuracy with a pre-trained EfficientNet B4 back-
bone architecture and an argument dataset with a detection accuracy of up to 98.34% [52].
To detect visco-plastic deformation, surface defects and cracks, Minhas et al. [103] proposed
an efficient pixel segmentation model (F1 score 0.89) with four convolutional layers, three
layers for segmenting the sample image directly connected to the input, and two for max-
imum pooling. To achieve optimal results, pixel segmentation models are divided into
decoder and encoder layers [104]. The encoder layer is used to map the image features,
while the decoder layer establishes feature vectors of images during the segmentation
process. The decoder layer also develops a probability distribution of every pixel identified
within the images. However, the object detection approach, which identifies and binds
objects with boxes within captured images, has limited usability. Table 7 summarises vari-
ous studies, including wildlife–vehicle collision analysis, pothole detection, road surface
monitoring, and anomaly detection for autonomous vehicles. While the studies propose
different methods ranging from traditional statistical analysis to ML and edge AI-based
approaches, each method has limitations, including limited data, reliance on manual la-
belling, lack of road roughness estimation, and potential false positives. Nonetheless, these
studies demonstrate the potential for technology to improve road safety and maintenance.
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Table 7. Various deep-learning-based research in yearly ascending order for reference to give context
into the evolution of ARDAD methods.

Research
Focus Year Acc. (%) Ref. Research Areas

and Application Implications Limitations

Wildlife-vehicle
collision analysis
and hotspot
prediction

2006 High p-value
0.463 [1]

Linear nearest
neighbour analysis,
Ripley’s K analysis,
visual analysis

Identifying
hotspots to aid
transportation
agencies to mitigate
wildlife-vehicle
collision

Limited collision
hotspot data for the
initial method
improvement

Detection and
counting of
potholes

2016 83.18% [80]

K-means
clustering-based
segmentation,
image processing,
edge detection,
identification,
segmentation

A standalone
application for
pothole detection
using hybrid
classifiers

The study provides
an analysis but no
solution for pothole
detection

Detecting road
hazards to help
self-driving
vehicles

2016 TPR of 63% [29]

DBSCAN, image
processing using
stereo-based
baseline methods,
clustering

Improving
self-driving
vehicles to detect
small road hazards
and help decrease
accidents caused by
road debris could
be reduced

Limited to
stereo-based
methods and
specific datasets,
missing real-world
scenarios

Pothole and hump
detection 2018 NA [76]

Internet of Things
(IoT)-based
road-monitoring
system, honeybee
optimisation
(HBO), cloud-based
real-time image
processing

Improving traffic
safety via timely
alerts for motorists
and facilitation of
road maintenance

Study only tested
two-speed
scenarios (40 km
and 60 km);
real-world
implementation not
assessed

Road anomaly
detection 2020 F1 of 66.7% to

92.1% [94]

Threshold
detection, sliding
window, KNN
dynamic time
warping

Large-scale data
integration to
create city-wide
anomaly maps

Sensitive to noise,
does not fully
represent diverse
road conditions

Video surveillance,
anomaly detection 2011 F1 of 55% [39]

Particle-based
tracking,
a cascade of HMM
and HDP-HMM
models

A solution working
on less structured
CCTV footage,
such as videos of
metro systems

Manual parameter
setting, inability to
distinguish
pedestrian and
vehicle activities

Real-world
surveillance video
anomaly detection

2018 Approx. 95%
(Accidents) [105]

Multiple instance
learning (MIL),
deep MIL ranking
model, temporal
segmentation

Improved anomaly
detection by
reduced reliance on
manual
annotations and
enhanced
real-world
anomalous activity
recognition
capabilities

Potential false
positives, reliance
on weakly labelled
data,
computational
complexity, and
dataset diversity
constraints
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Table 7. Cont.

Research
Focus Year Acc. (%) Ref. Research Areas

and Application Implications Limitations

Road surface
monitoring 2018 97% [54]

Support vector
machine, hidden
Markov model
(HMM) and
residual network
(ResNet)

Enhanced road
monitoring and
maintenance
through
smartphone-based
data collection and
analysis

Limited dataset,
manual labelling,
vehicle and
smartphone
variability, lack of
road roughness
estimation

Anomalies
detection for
autonomous
vehicles

2021 99.21% [106]

Image processing,
AI-based edge
computing for
vehicular ad hoc
network (VANET)

The scalable edge
computing
AI-based
framework could
improve traffic
safety and
autonomous
driving by
providing real-time
road information

Limited dataset
collected from
online sources and
the need to
incorporate more
types of road
anomalies

The selection of the appropriate neural network for a given problem depends on
various factors, including the complexity of the intended solution, computing resources,
and data availability [70]. Traditional ML methods can be advantageous when the dataset
is small or limited, but their performance may plateau with more data. In contrast, deep
neural networks tend to perform better with a large amount of data, enabling the iden-
tification of subtle dependencies through more dense layers. Oliveira and Correia [98]
have reported that less sophisticated traditional machine-learning methods can be effective
in the case of small datasets, particularly in dynamic anomaly detection systems. How-
ever, the performance of deep neural networks can improve with more data and complex
architectures [37].

Neural networks’ complexity increases with the need to process large amounts of data.
Shallow neural networks typically have fewer layers and may not use backpropagation
algorithms. However, deep neural networks usually perform better with enough data and
sufficient computing resources than the traditional approach. However, according to Cui
et al. [107], traditional machine-learning methods, such as support vector machines, usually
perform better at anomaly detection and generally require fewer computing resources for
data processing.

Due to their high efficiency in local filtering, noise detection, and overall transforming
domain and non-local mean filters, convolutional neural networks (CNNs) have been
increasingly used in anomaly detection and denoising images from sections containing
anomalies [108]. Akagic et al. [109] proposed a two-step CNN model for road anomaly
detection. Different images are fed into 32 by 32 CNN layers during the first step to
train the model. Greyscaling is performed, followed by thresholding to detect identifiable
anomalies within the image. According to Chambon and Moliard [28], CNN datasets are
trained using various data such as different target anomaly types, road width, weather
and lighting condition patterns, condition of the road surface, and the height of elevated
road supports such as pillars of natural elevators. In another study by Li et al. [74], a Deep
Dual Localisation Network (DDLNet) is proposed for defects detection and geolocalisation
in a unified model. The model combines a novel defects RPN and a NetVLAD module
for detection and geolocalisation. The authors also propose a novel data augmentation
method and hard negative mining strategy to improve detection accuracy and reduce the
possibility of triggering false alarms.

The twice-threshold segmentation method demonstrates higher accuracy of up to 98%
in detecting cracks in runway images containing road markings, outperforming traditional
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threshold segmentation algorithms such as Otsu (40%) while maintaining adaptability
for various applications [110]. Amhaz and Chambon [100] proposed the Minimum Path
Selection (MPS) algorithm for crack detection with a Dice Similarity Coefficient (DSC) of
0.77 on 2D pavement images. However, further advancements in computation time and
adaptability to 3D imaging systems are necessary for broader applications. The Dijkstra
algorithm is then used to estimate the minimal path between the two points, which can be
manually corrected if a false minimal path intersects with the crack. The post-processing
method is then applied to estimate the crack’s thickness and provide the complete crack
pattern. Shankar and Wang [111] proposed a Fully Convolutional Neural Network (FCNN)
model for anomaly detection, while Ishtiak and Ahmed [43] utilised a two-step image
classification approach in their FCNN model. The first step involved feeding road surface
images into the FCNN, with the model achieving 87% accuracy for all classes. In the second
step, the model was trained with threshold images to establish cutoff levels for anomalies
and structural damage detection.

4.2. Ensemble Learning for Improved Anomaly and Defect Detection

Doshi and Yilmaz [112] propose ensemble learning to improve the efficiency of differ-
ent ML approaches used in static anomalies and structural damage detection. The ensemble
model (EM) approach uses various trained models to predict the three proposed static
anomaly approaches. The EM uses a variety of trained models for static anomaly predic-
tion. Ensemble learning improves the accuracy of training the ML models. The ensemble
prediction (EP) approach utilises images generated from the test time augmentation (TTA)
and ensembles the anomaly predictions derived from these images. The hybrid approach
uses EM and EP models to conduct anomaly predictions. Hegde et al. [42] proposed a DL
approach for road damage detection and classification using YOLO and ensemble learning,
achieving an F1 score of up to 0.67, demonstrating the potential of these methods for smart
city applications.

Alipour et al. [83] investigated the use of ensemble learning for crack detection and
proposed a method that combines pre-trained models developed for specific types of
materials. To achieve this, the softmax operator was utilised to extract the probability of
each prediction, where Sj(x) represents the observation probability of class j, and n_class is
equal to two for the binary crack vs. non-crack problem. The proposed method leverages
the knowledge stored in both material-specific models to make a single prediction for each
future image regardless of the material. The softmax operator is shown in Equation (4),
where the denominator’s last variable l in the exponent exl represents the class label.

Sj(x) =
ex

j

∑n_class
l=1 exl

(4)

A hybrid algorithm, such as the non-maximum suppression (NMS) algorithm, derives
a single output from these outputs [42]. The algorithm works by filtering out the overlap-
ping or duplicate predictions from the predictions pool. All the images captured from road
surfaces are then passed through the models for state prediction by applying the NMS. In
EMs, the one-stage detector models include the ultralytics-You Only Look Once (u-YOLO)
model, so it is possible to combine various u-YOLO models. In order to train a u-YOLO
model, different input parameters to these models are tuned [113]. Different trained models
are achieved by selecting different combinations of data for tuning. A favourable subset
of these models is chosen for use, although the choice is based on the available training
data in such cases. All the images captured from road surfaces are then passed through the
models for state prediction by applying the NMS. Ensemble learning significantly reduces
the prediction variance, making the approach highly accurate. The hybrid approach applies
the EP model approach to each EM model. After every test image has been transformed
through TTA, each EM model is given an input of the augmented images. The models
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output bounding boxes once NMS is applied to derive a prediction. The corresponding
structural damage or anomaly on the road section is determined from the bounding boxes.

Based on the availability of computing resources and data volume, both ML and DL
have their uses and potential for future technologies (Table 8).

Table 8. Soft-computing approaches: traditional ML vs. DL systems.

Traditional ML Deep Learning

Strength

(i) Learning is possible even with a
small dataset

(ii) It does not require high
computational power or resources

(iii) Working architecture is relatively
easy to interpret

(iv) Works well with structured data

(i) Works well with unstructured
data (e.g., audio, video and
multi-time series)

(ii) Possibility for automated feature
extraction from data

(iii) Can provide end-to-end solutions

Weakness

(i) Domain expertise may be
required in handcrafting of
feature extraction algorithms

(ii) Problems often need to be broken
down to find solutions for the
subproblems and the outcomes
produced may need to be
combined

(i) Requirement of large datasets in
learning

(ii) The working architecture is
complex containing typically a
large number of parameters

(iii) Training data set size and
computing resources required for
model training

4.3. Detection Based on 3D Imaging Methods

Traditional anomaly detection methods have predominantly relied on 2D imaging
techniques, such as Bidimensional Empirical Mode Decomposition (BEMD), used for
pavement crack detection [114]. However, with the development of range-based sensors
and stereo cameras, 3D imaging methods have become more efficient. In addition, 3D
stereo vision is particularly effective in estimating the depths of cracks and visco-plastic
deformations with a precision score of up to 90% [115]. Microsoft Kinect and laser-imaging
techniques are used in traditional methods and DL neural networks as a new research
direction, including CrackNet, CrackNet II, and CrackNet V.

Table 9 shows that these methods have demonstrated significant potential in object
recognition, pose estimation, and autonomous navigation applications. However, the
accuracy and reliability of 3D imaging methods heavily depend on factors such as sensor
resolution, calibration accuracy, and environmental conditions. Nonetheless, the continual
development of 3D imaging technologies presents promising opportunities for enhancing
the capabilities of various applications in fields such as robotics, autonomous driving, and
industrial automation.

Chen et al. [30] proposed a cost-effective approach for detecting deer crossing roads
using 360◦ LiDAR sensors. The proposed algorithm can detect deer with a maximum
radius of 37.74 m around the LiDAR sensor, which can trigger warning signs for drivers.
While the method has limitations in detecting small animals and tracking individual deer,
it shows promise for improving traffic safety and analysing wildlife behaviour.
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Table 9. Literature since 2018 on ARDAD systems based on or future directions towards 3D imaging,
laser or LiDAR sensors.

Research Focus Year Ref. Acc. (%) Research Area and
Application Implications Limitations

Pavement surface
reconstruction for
crack recognition

2018 [116] 78.27% Microsoft Kinect
fusion for crack
detection, surface
reconstruction
for pavement
serviceability
analysis

Upgraded Kinect
hardware and
expanded data sources
for enhanced
pavement assessments
and traffic safety

Limited hardware
capabilities and
Kinect field-of-view
constraints hinder
capabilities

Road crack and
pothole detection

2018 [21] 98.93% Using texture-based
features to
differentiate between
crack surfaces and
sound roads

Enhanced road
monitoring and
maintenance, reduced
accidents, and
improved navigation
for autonomous
vehicles

Inefficient restoration
patches detection,
issues with shadow,
occlusions, and
camera resolution
limitations

Road anomaly
detection

2018 [117] 82.51% Principal component
analysis, Fi-Ware,
data mining,
collaborative mobile
sensing

Improve data
acquisition
standardisation, sensor
diversity, and merging
long/short bump
classes to enhance
real-world
performance

Decreased
performance in
real-world
conditions, data
standardisation and
complexity reduction
not effective

Speed bump
detection

2019 [118] 97.14% Self-driving cars,
artificial vision, GPS
tracking

Real-time road surface
monitoring, smart
route optimisation,
reduced fuel
consumption, and
continuous updates of
road quality

Model uses both
accelerometer and
gyro data; improved
performance with
only one source not
yet achieved

Anomaly detection 2019 [17] NA Smart objects,
intelligent
transportation
systems,
industrial systems

Prediction/prevention
and exploring data
fusion techniques

Limited data access,
focus on normal
behaviour,
high-dimensionality
issues

Asphalt pavement
crack
classification

2019 [86] 87.50% Asphalt pavement,
crack classification,
image processing,
steerable filters

Image processing
methods to assess crack
properties, including
depth and severity

Limited crack types,
small image dataset,
unexplored crack
properties

Road crack detection 2019 [84] 98.70% Deep learning and
adaptive image
segmentation

A deep neural network
trained to segment
positive images into
semantically
meaningful regions,
i.e., cracks and road
surface

Difficulty in properly
segmenting colour
images with a large
number of noisy
pixels

Low-cost pavement
condition health
monitoring

2020 [119] 93.55% Automated detection
of road pavement
distresses, low-cost
DL technologies

Platform for an
integrated approach
towards optimising
urban pavement
management systems

Region-specific
model with manual
data collection
dependence, no
detailed quantitative
assessments
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Table 9. Cont.

Research Focus Year Ref. Acc. (%) Research Area and
Application Implications Limitations

Road damage
detection

2020 [96] 56.5% EfficientDet model
for crack and object
detection

Improving results by
setting ground rules
for annotating and
expanding datasets by
installing cameras with
optimal orientation

Limitations of the
study include false
positive and negative
detections,
misclassifications
between diagonal
crack classes

Road surface
monitoring and
pothole detection

2020 [22] 85% and
93%

Deep learning, road
surface monitoring,
pothole detection,
crowd sensing

Adaptive method to
analyse the additional
type of road surfaces
and apply end-user
driving profiles

Limited road surfaces
analysed, controlled
scenarios in related
works, incomplete
automatic threshold
adjustments

Asphalt pavement
crack detection

2020 [71] 70% YOLOV3-based
asphalt pavement
crack and pothole
detection

Improving road
maintenance efficiency
and reduce
infrastructure costs
using AI-driven
analysis

Limited by data
geographical scope
and weather
variations, human
judgment
discrepancy affecting
model performance

Pavement distress
and health
monitoring

2020 [103] 89.14%,
97.66%

Road pavement
distresses detection,
minimal annotations
learning

Suggested trends and
future work include
exploring activation
functions, selective
layer freezing, transfer
learning and different
CNN architectures

Limited real-world
anomalous samples
and potential impact
of activation function
choice in transfer
learning

Modern Pothole
detection technique

2020 [104] NA TensorFlow API,
transfer learning,
road inspection
automation

Improved CNN
architectures,
GPS-enabled systems
and Android apps,
deployment on
Raspberry Pi or
Android devices

Limited detection in
varying conditions,
computational
complexity,
generalisability
issues and
integration
challenges

Object and anomaly
detection

2020 [111] 59.11% Amazon Rekognition,
Azure Cognitive
Services and Google
Vision

Choosing cloud
platforms and edge
devices for IoT
applications based on
performance and cost
trade-offs for improved
traffic safety

Limited number of
tested platforms and
the lack of real-world
deployment

Crack detection of
concrete pavement

2020 [120] 90.1% Crack detection,
cross-entropy loss
function,
VGG16 network,
crack classification

Integration of
algorithms with other
technologies, such as
drones and robots for
automated inspection
and maintenance

Lack of external
validity in terms of
deploying the
proposed algorithm
in real-world
scenarios
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Table 9. Cont.

Research Focus Year Ref. Acc. (%) Research Area and
Application Implications Limitations

Road damage
detection

2020 [42] 66% Ensemble learning,
object detection,
urban street analysis

An automated solution
for road damage
detection and
classification using
image analysis for
smart city applications

Lack of diversity in
the training dataset
and limited
evaluation of
real-world scenarios

Road damage
detection

2020 [112] 63.58% Image classification,
object detection, and
ensemble models

Improving road safety
and developing better
road damage detection
systems using
smartphone and
vehicle-mounted
cameras

The need for
high-quality data and
the impact of input
image size on
detection
performance

Predicting the
accuracy of asphalt
concrete pavement

2021 [51] NA AdaBoost regression,
International
Roughness Index
(IRI),
Mechanistic-
Empirical Pavement
Design Guide
(MEPDG)

Improving pavement
design, understanding
of influencing factors
(including reported
variables analysis) and
optimising costs of
road maintenance

Limitations include
data bias, overfitting,
lack of
interpretability, and
generalisation to new
contexts

Zhang et al. [116] proposed a CNN model that utilises 3D imaging methods that
represent different 3D view data of images into one compact shape descriptor. Such
models extract 3D data from the images and pass it to an ML model to detect anomalies
and structural damages [102]. The 3D data are then used to train classifiers. The spatial
information of road surfaces, such as width, length and depth, is represented by the 3D
data [121]. Medina et al. [122] proposed a 3D imaging method based on laser imaging that
models road surfaces using dense networks of 3D points.

Frequency analysis, mostly Fourier transformation, is applied to distinguish between
the different anomalies. Akarsu et al. [101] proposed an improved Fourier transformation
model such that the model takes into account non-uniform illuminations on surfaces. The
method differs from the mentioned method because it utilises probabilistic relaxation and
is the only effective 3D imaging method to detect road surface defects such as bleeding
and ravelling. Furthermore, it also detects likely occurrences of visco-plastic deformations
and cracks.

Figure 6 depicts the volume of literature reviewed based on detection origins divided
by the ML methods’ taxonomy. Deep learning (34%) is the most popular method, followed
by traditional ML (26%) and ensemble learning (26%). In comparison, 3D image-based
techniques (14%) are the least represented by the reviewed ARDAD systems. Considering
the timeframe of the literature reviewed, recent advancements in ML techniques may
impact the overall taxonomy distribution and the road defect detection landscape. The
growing popularity of DL approaches is likely due to their ability to process large datasets
and automatically extract relevant features. However, traditional ML and ensemble learn-
ing methods are still widely used across ARDAD systems. However, in discussing the
benefits and drawbacks of each taxonomy, it is essential to acknowledge the gaps in the
literature and encourage further research to explore underrepresented ML methods or road
defect types.
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ML methods.

5. Gaps, Challenges, and Limitations

The road surveillance research domain is highly dynamic; the road surface and sup-
porting infrastructure defects do not appear in uniform shapes or sizes, nor do the anomalies
follow a uniform pattern, which leads to multiple challenges. An example of a significant
gap and future opportunity is that the current detection methods do not evaluate or provide
implications on how the defect or anomaly can directly affect motorists’ safety.

While the review provides insights into the state-of-the-art ARDAD methods, it has
some limitations. First, the review primarily covers peer-reviewed articles written in
English, which may exclude valuable information from other sources such as technical
reports, some conference proceedings, commercial product documentations and patents.
Second, the inclusion and exclusion criteria rely on ARDAD-associated terminology and
concepts, which may not include relevant studies that use different terminology or naming
conventions. To address these limitations, future reviews could consider broadening
the search criteria to include additional sources of information and exploring alternative
terminologies or approaches.

Reportedly, supervised techniques usually perform better when labelled data are avail-
able [69] because using labelled data during training allows supervised learning methods
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to detect boundaries and classify normal or anomalous classes. However, sometimes the
training data do not include all types of anomalies, which leads to supervised approaches
overfitting and performing poorly on new anomaly data. Hence, the availability of labelled
anomaly data (or rather lack of it) creates an opportunity for applications and advance-
ments in semi-supervised and unsupervised ML techniques. To address this observation,
within the scope of this survey, we have provided a list of frequently downloaded open
access on-road anomalies and defect image datasets.

Developing a robust ARDAD system is challenging; when summing up the body of
literature on the topic, the main challenges and opportunities are as follows:

• Despite setting the inclusion parameters for publishing dates between 2000 and 2023,
the literature search yielded only 311 papers. Due to the focused selection criteria, the
systematic review included only 116 papers (Table 1).

• Contrary to our expectations, the number of computer vision-based studies directly
impacting motorist safety was lower than expected.

For research replication, we adapted the PRISMA (http://prisma-statement.org, ac-
cessed on 20 December 2022) checklist, which is common for systematic reviews in health
science. The adapted PRISMA checklist extension is important for future systematic re-
views of ARDAD (and similar CV contexts). The PRISMA checklist extension is provided
in the Supplementary Materials.

6. Conclusions and Future Work

Motivated by the need to accelerate technological advancements that can improve traf-
fic safety and reduce incidents, this systematic review analyses the literature on automated
road defects and anomaly detection (ARDAD) systems from 2000 to 2023. As a result, the
systematic review covers peer-reviewed articles (N = 116) associated with types of roadside
anomalies and defects that are jointly intended to help prevent the loss of lives, injuries
and infrastructure damage, ensuring on-road and structural integrity.

In the context of augmenting on-road surveillance for ease of maintenance, such as
structural damage detection and hazard prevention via predictive monitoring, the review
summarises the ARDAD methods, including the achieved performance using traditional
ML, and DL, combined with sensor technology. Notably, it quantifies the achieved per-
formance of these methods, providing insights into their effectiveness. Additionally, the
review provides a taxonomy of ARDAD methods and descriptions, including a list of
frequently downloaded open access on-road anomalies and defect image datasets (D = 18),
facilitating future research and benchmarking.

Considering the current publication trends, the advancements in video technology,
availability of sensors and computing resources in general, there is an exponential growth in
ARDAD research publications from 2000 to the present day. As anomaly detection intersects
with automatic road traffic surveillance, this survey can also be a valuable resource for
interested researchers working on related contexts.

Due to the impact of the global pandemic and lockdowns from 2020 to 2022, there was
less traffic and opportunities for new data collection compared to the previous years. The
exponentially growing trend in the number of research publications during the period from
2015 to 2020 could be explained by earlier data collections prior to the global pandemic
(Figure 5). In the authors’ view, the growing trend surrounding ARDAD technologies and
research is likely to reach its peak, aligning itself with the “Innovation Trigger” stage of
“Gartner’s technology adoption hype cycle framework” [123]. As such, future work on
ARDAD technologies is likely to consider Gartner’s framework for a better understanding
of a current project position on the hype cycle, to project the adaptation and maturity
levels (of ARDAD technologies), to identify practical aspects of technology transfer such as
self-driving vehicles and to identify the possible impact on society.

Considering the state-of-the-art ARDAD methods, we conclude that the latest IoT, 5G
and 6G communication technologies, swarm drones, satellite imagery, cloud computing
and GPS have the potential for near-future research and further expansion of related

http://prisma-statement.org
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research contexts. The benefits of ARDAD methods to humanity include the utilisation
and advancements of AI, CV, and semi and self-learning techniques to support intelligent
vehicles, urban planning, intelligent transportation systems, connected or self-driving
vehicles, improved road surveillance, reduced road maintenance costs, and increased
traffic safety.

In order to enhance future research in the field of ARDAD systems, there is a crucial
need for more comprehensive performance/meta-analyses that can evaluate the efficacy
and efficiency of various ARDAD methods in real-world settings. While not a full meta-
analysis, our systematic review provides a strong foundation, serving as a platform for
future research. This potential conversion would enable quantitative data synthesis, further
advancing our understanding of ARDAD technologies and facilitating evidence-based
decision-making. Additionally, quantifying the societal and stakeholder impacts resulting
from the implementation of ARDAD systems would offer valuable insights for policymak-
ers and industry professionals.

Overall, this systematic review is a significant milestone in ARDAD systems, bridging
a crucial research gap with its comprehensive analysis of traffic hazards ranging from
urban cities to the wild hinterlands. Our commitment to inclusivity is evident in examining
often-overlooked road hazards such as avalanches or cattle on the road, showcasing our
genuine belief in uncovering hidden knowledge from future data or previously unseen
or untested datasets. This systematic review establishes a foundation for future research
endeavours in ARDAD systems and highlights the potential of emerging technologies to
drive advancements in traffic safety and road maintenance. Our research findings inspire
optimism based on emerging technologies’ potential to facilitate advancements aimed at
improving safety and saving lives and making a positive impact on global society.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23125656/s1, A Modified PRISMA Checklist for Systematic
Reviews in ARDAD Research. Reference [124] is cited in the Supplementary Materials.
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