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Abstract: A low-profile broadband dual-polarized antenna is investigated for base station applica-
tions. It consists of two orthogonal dipoles, fork-shaped feeding lines, an artificial magnetic conductor
(AMC), and parasitic strips. By utilizing the Brillouin dispersion diagram, the AMC is designed as
the antenna reflector. It has a wide in-phase reflection bandwidth of 54.7% (1.54-2.70 GHz) and a
surface-wave bound range of 0-2.65 GHz. This design effectively reduces the antenna profile by
over 50% compared to traditional antennas without an AMC. For demonstration, a prototype is
fabricated for 2G/3G/LTE base station applications. Good agreement between the simulations and
measurements is observed. The measured —10-dB impedance bandwidth of our antenna is 55.4%
(1.58-2.79 GHz), with a stable gain of 9.5 dBi and a high isolation of more than 30 dB across the
impedance passband. As a result, this antenna is an excellent candidate for miniaturized base station
antenna applications.

Keywords: dipole antenna; dual-polarized; low-profile; wideband artificial magnetic conductor

1. Introduction

As wireless communication networks expand, base station antennas are critical com-
ponents in these systems. However, they face challenges, such as large physical dimensions
and limited bandwidth [1]. Dual-polarized antennas have received great attention due to
their advantages in polarization diversity and high isolation, which can increase channel
capacity. Practically, various antenna designs can achieve dual polarization. Common
elements can include patch antennas [2,3], slot antennas [4], or dipole antennas [5-16].
However, they may suffer from either a limited bandwidth [2—4] or a high profile [5-7].
Achieving miniaturization and widening the bandwidth have emerged as the foremost
challenges in developing dual-polarized antennas.

Dual-polarized planar dipole antennas have attracted considerable attention because
of their wide bandwidth and pattern stability. Low-profile designs can be achieved using
bowtie-shaped crossed-dipole antennas and Huygens dipole antennas, with profiles of
0.088A¢ [8] and 0.0483A [9], respectively (where Ag represents the wavelength in free
space at the center frequency). However, they can provide narrow —10-dB impedance
bandwidths of only 15.6% [8] and 0.462% [9]. To enhance the antenna bandwidth, parasitic
elements are used in antenna design. The common parasitic element can be L-shaped
metal strips [10] or quadrangular loops [11,12]. They act as additional resonating elements,
creating a coupling effect [10] or adding a new resonant mode [11,12]. As a result, the
overall bandwidth significantly improved. The parasitic U-shaped grooves are also utilized
to broaden the bandwidth [13,14]. Grooves can modify the current distribution on the
main radiating element and, thus, improve the antenna impedance. However, the profile of
those dipole designs is around a quarter wavelength due to the conventional conductor
reflector. The profile is required to eliminate the effect of reflected electromagnetic waves
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from the reflector. This bulkiness increases the cost and may not be suitable for size-
constrained applications.

Frequency Selective Surfaces have recently obtained much attention due to their
unique properties in favor of antenna performance. A frequency selective surface (FSS)
is a periodic structure, typically a thin sheet or a grid, that has unique transmission and
reflection properties for different electromagnetic frequencies. These surfaces are designed
to either pass or block specific frequency ranges when subject to electromagnetic radiation.
The FSS is useful in antenna design, such as reducing decoupling [15,16] and increasing
gain [17,18]. FSSs are usually located on the top of the antenna radiation aperture to realize
some specific functions. This method is effective and straightforward. However, it will
introduce extra antenna length, which may limit its practical applications.

As a kind of FSS, the artificial magnetic conductor (AMC) is useful in addressing
antenna size problems. It can replace a traditional metal conductor as a new reflector
type for base station antennas. They exhibit properties of magnetic conductors with a
zero-degree phase shift upon reflection. The in-phase reflection avoids the 180-degree
phase change of the electromagnetic wave when it is reflected from the metal plate, thus,
eliminating the need to set the reflector back at 1/4 A from the radiator. As a result, this
characteristic enables them to reduce the antenna profile, leading to compact and low-
profile antenna designs. In [8], using a circle-typed AMC, the profile of a dipole antenna is
effectively reduced to 0.088Ay. However, its —10-dB impedance bandwidth is only 15.6%
(2.36-2.76 GHz). In [19], using mushroom-type AMC, a patch antenna has an impedance
bandwidth of 33% (24.05-33.52 GHz) with a profile of 0.053A.

Air gap technology has obtained much attention due to its ease of fabrication and high
performance in antenna applications [20]. Adding an air gap in AMC can expand the in-
phase bandwidth of AMC. In [21,22], dual-polarized dipole antennas using AMC reflectors
have heights of 0.13A¢ and 0.15Ag. These antennas have a wide AMC bandwidth of more
than 40%. However, both designs suffer from strong surface waves, leading to decreased
antenna gain [21] or high cross-polarization at big angles [22]. Therefore, designing a
wideband AMC that can suppress surface waves is highly desired.

In this paper, a low-profile broadband dual-polarized dipole antenna using a novel
AMC reflector is investigated. Using the Brillouin dispersion diagram, the AMC is de-
signed to suppress the surface-wave effect and decrease the antenna height. As a result,
the proposed antenna has a high efficiency and low antenna profile. The fork-shaped lines
feed the antenna without a direct connection, giving a broad impedance bandwidth. The
parasitic strips reduce cross-polarization. The evolution of the proposed AMC and dipole
antenna is analyzed using equivalent circuits and Smith charts. A prototype that operates
in 2G/3G/LTE base station applications was designed and fabricated. The reflection coeftfi-
cient, radiation pattern, antenna gain, and antenna efficiency are measured. Reasonable
agreement between the measured and simulated results is obtained.

2. Antenna Design and Configuration

Figure 1 shows the configuration of the wideband dual-polarized antenna. With refer-
ence to Figure 1a,b, this antenna comprises crossed-dipoles, double-layer AMC, fork-shaped
feeding structures, and parasitic strips. Two crossed dipoles are positioned perpendicularly
with slant angles of ¢ = £45° and are represented as dipoles 1 and 2. Figure 1c shows the
exploded view of the proposed antenna. It can be seen from the figure that the feeding
lines and crossed dipoles are printed on Layers 1 and 2 of Substrate 1 (Sub. 1), respectively.
Figure 1d zooms in view of the arms of dipoles and feeding structures. As can be seen from
the figure, each arm of the dipole is a hexagonal ring with a width of w; = 3.6 mm and four
mirror-symmetrical etched slots. It should be mentioned that one of the dipole arms Is
soldered directly to the feeding structures, while the other arm is fed via space coupling.
This method is designed to obtain a wide —15-dB impedance matching bandwidth. The
novel AMC consists of two metal layers, one substrate, and air layers. Periodic patches are
its first metal layer printed on Layer 3 of Sub. 2, with the interval gap of ¢ = 2 mm and
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patch width of w = 13 mm. The second metal layer is aluminum ground. Sub. 1 and Sub. 2
are FR4 substrates (g, = 4.4, tand = 0.02). Crossed dipoles are placed at a height of 5.5 mm
from the AMC surface. Plastic pins are used to locate layers precisely. Figure 2 shows the
different layers of the dual-polarized antenna. With reference to the figure, our parasitic
strips are printed on Layer 2 of Substrate 1 to reduce cross-polarization.
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Figure 1. Configuration of the dual-polarized antenna. (a) Perspective view, (b) side view, (c) exploded
view, and (d) zoomed view of crossed-dipole antenna. Hy = 17.5 mm, H, = 12 mm, w; = 3.6 mm,
wy =7.3 mm, wz = 1.65 mm, wy =4 mm, [ =23.5 mm, [j =52 mm, [; =4.8 mm, [, =5 mm, /3= 2 mm,
l4 =08 mm,fo =14 mm,f1 =105 mm,f2 =0.83 mm.

Figure 2. Cont.
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(c) (d)

Figure 2. Different layers of the dual-polarized antenna: (a) Substrate 1 Layer 1, (b) Substrate 1 Layer 2,
(c) Substrate 2 Layer 3, and (d) aluminum ground. /5 = 65 mm, w = 13 mm, g =2 mm, S; = 10 mm,
Sy =2mm, P =96 mm, P, =90 mm, P3 =72 mm.

3. Analysis and Discussion
3.1. In-Phase Reflection Bandwidth of the AMC Unit

Figure 3 shows the configurations and reflection coefficients of different AMC units.
The proposed AMC is a patch-type with a patch length and width of w = 13 mm, a substrate-
layer height of I; = 1.2 mm (0.0088A¢), and an air-layer height of i, = 12 mm (0.088A).
AMC; and AMC,, which are conventional AMCs with the same patch size and gap width
but different substrate-layer heights (h;; = 1.2 mm, h;, = 9.5 mm), were simulated for
comparison. Generally, the in-phase reflection bandwidth is the frequency range in which the
reflection phase is between —7t/2 and 7t/2. With reference to the figure, the in-phase reflection
bandwidths are 9.8%, 39.4%, and 54.7% for AMC; (4.57-5.04 GHz), AMC, (1.67-2.49 GHz), and
the proposed AMC (1.54-2.70 GHz), respectively. Compared with the proposed AMC,
AMC; lacks the air layer, giving a zero-phase reflection frequency of 4.82 GHz that is out of
the operating bandwidth of 2G/3G/LTE. It is worth mentioning that AMC, has almost
the same zero-phase reflection frequency, however, it has a narrower in-phase bandwidth
and a worse reflection coefficient than the proposed AMC. Therefore, our AMC is a good
alternative to the metal ground due to its wideband.
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Figure 3. Reflection coefficients and configurations of different AMC units. The pink area is the
in-phase reflection bandwidth.



Sensors 2023, 23, 5647

5o0f 14

The proposed AMC unit can be equivalent to an LC parallel resonant circuit using
the equivalent circuit analysis method (ECM) [23,24], as illustrated in Figure 4. Periodical
patches provide the grid inductance L,. Another inductance L; is created by the total
substrate, including the air and the dielectric. Gaps between adjacent patches form a
grid capacitance Cp. As a result, the resonant frequency and bandwidth of the proposed
AMC can be represented by Equations (1) and (2), which show the relationship between
parameters on the resonant frequency and bandwidth coefficient.

f= ! , 1)
271, /(Lp + Lg)Cp

_ T LP + La x Ly )2
8o Cp Ly+Lg" '

BW )
where 179 = +/1o/€g is the wave impedance in free space. Compared with AMC; and
AMC,, the proposed AMC has higher profiles and, thus, a larger dielectric inductance
L. Since the derivative of Equation (2) with respect to L; is positive, the bandwidth is
positively related to the dielectric inductance L;. Therefore, AMC; and the proposed AMC
have a wider bandwidth. In addition, the dielectric substrate of AMGC, is thicker, which
increases dielectric losses and manufacturing costs. The proposed AMC has the widest
bandwidth. The surface impedance of AMC can be represented by:

1— (27f)’L,yCy

ns(f) = j2rfLq : ®)
1— (27f)*(Ly + Ly)Cp
Metal FR4

o Frar] L,

)

Ly
C it
Ly

Zin
Figure 4. Equivalent circuit model of the proposed AMC unit.

At the parallel resonant frequency (using Equation (1)), the denominator of Equation (3)
is equal to zero, and thus, the surface impedance 75 tends to infinity. The reflection
coefficient of AMC can be calculated by I' = (175 — 170) /(s + 10), where 17y equals the
impedance of air. Therefore, the reflection coefficient equals one, and the reflection phase is
zero. AMC achieves the in-phase reflection at the resonant frequency.

3.2. Brillouin Dispersion Diagram of the AMC Unit

Generally, a surface wave will be excited when electromagnetic waves reflect from
the ground, deteriorating antenna performance. Figure 5 shows the dispersion curves of
the proposed AMC unit. With reference to the figure, the electromagnetic wave under
2.65 GHz served as a slow wave and bounded in the AMC surface. However, as the
frequency increases beyond 2.65 GHz, the electromagnetic wave gradually becomes a fast
wave and leaks into free space. Consequently, antennas loading the proposed AMC and
the conventional metal ground have nearly the same realized gain before 2.65 GHz, as
shown in Figure 6a. Figure 6b shows the simulated S-parameters of the antenna. It can be
seen from the figure that both the reflection coefficient and isolation are improved by using
the AMC. It should be mentioned that the proposed antenna can effectively decrease the
antenna profile from 0.25A¢ to 0.13A.
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Figure 5. The dispersion curves of the proposed AMC unit. The illustrations are the electric field
distributions. The blue arrow indicates the direction of propagating wave.
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Figure 6. Comparison between crossed-dipole antenna with AMC and that with conventional metal
ground. (a) Simulated realized gain, (b) simulated S-parameters.

3.3. Evolution of the Antenna

Figure 7 shows the design evolution of the crossed dipole and compares the sim-
ulated reflected coefficient of Dipole I, II, and III. Figure 8 provides electrical current
distributions of different dipoles at their respective resonant frequencies. With reference
to Figure 7, Dipole I is a conventional rectangular dipole with only one resonant mode
(seen in Figure 8a), having a —10-dB impedance bandwidth of 29.9% (1.88-2.54 GHz).
Dipole Il is obtained by cutting the arm corners and centers of Dipole I, which introduces
a new resonant mode f; in the lower-frequency band. Therefore, Dipole II has a wide
—10-dB impedance bandwidth of 41.7% (1.67-2.55 GHz). This can be well-demonstrated
by Figure 8b. The surface current distribution at f;; and f,;3 is the same.

Dipole III is obtained by adding rectangular slots on Dipole II. The introduced rectan-
gular slots effectively make two different resonant modes close (seen in Figure 8c), resulting
in a wide-impedance passband of 55.4% (1.58-2.79 GHz).

Figure 9 also shows the Smith charts of antennas with different dipoles. The Smith
chart of Dipole I has no resonant loop, while the Smith charts of Dipole II and Dipole III
have 1 and 2 resonant loops, respectively. Dipole III achieves a wider impedance bandwidth
by cutting arm corners and centers and adding rectangular slots.
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Figure 7. Schematic diagrams and simulated reflection coefficients of Dipole I, Dipole II, and Dipole
III. Dipole I (a conventional crossed-dipole antenna), Dipole II (Dipole I with corners and centers cut),
and Dipole III (crossed dipole in proposed antenna).
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Figure 8. Electrical current distributions of (a) Dipole I, (b) Dipole II, and (c) Dipole III.
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- === Dipole 1 Dipole 111

Figure 9. Smith charts of antennas of Dipole I, Dipole II, and Dipole III.

The equivalent circuit model of Dipole III is shown in Figure 10a. According to
previous studies [25,26], the feeding structure is modeled as a parallel LC resonator circuit
(Lf and Cp and a m-shaped network (C¢1, Cg11, and Cqg2). Dipole Il is obtained by cutting
corners and opening rectangular slots in Dipole I. Dipole I can be expressed as a parallel
RLC resonator circuit (Ry3, Ly;, and Cy1). The corners and rectangular slots can be expressed
as a parallel RLC resonator circuit (Rg;, Ls7, and Cg7). When one loop dipole is excited, the
other acts as a coupled loop resonator. Consequently, they are configured in parallel within
the circuit. The adjacent gaps between two dipoles are modeled as a 7-shaped network
(Cq2, Cg21, and Cgp)).

By utilizing the proposed equivalent circuit and circuit analysis software, we can
expedite the design process of the proposed antenna, particularly when attempting to
bring two resonant modes into proximity. The values of circuit parameters can be obtained
by using a curve-fitting method. The extracted results are Ly = 1.73 nH, C; = 0.10 pF,
Cg1 = 3.48 pF, Cg11 = 0.43 pF, Cg12 = 417 pF, Ry = 99.9 ), Ly = 1.07 nH, Cy; = 0.36 pF,
Rg1 =5.02.Q), Ly = 1.07 nH, Cy; = 2.23 pF, Cg = 245 pF, Cg1 = 0.43 pF, Cgpp = 4.17 pF,
Ry =524 0, L =035nH, Cpp =318 pE Ryp =524 O, L = 0.35 nH, C;p = 293 pF.
Figure 10b shows the reflection coefficient derived from the equivalent circuit model and
that from the HFSS.

One loop dipole is excited

Figure 10. Cont.
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Figure 10. (a) Equivalent circuit model of Dipole III. (b) Reflection coefficient of Dipole III obtained
from the equivalent circuit model and that from the HFSS.

AMC is employed to replace the traditional metal ground, thereby increasing the
antenna gain and maintaining a low profile. Therefore, it becomes crucial to select an
appropriate quantity of AMC units. This strategic selection aims to ensure that the antenna
exhibits a broad, high-gain bandwidth, adequately covering the frequency ranges of 2G
(1.71-1.92 GHz), 3G (1.88-2.17 GHz), and LTE (2.3-2.4 GHz and 2.5-2.69 GHz) networks.
Figure 11 shows the simulated realized gains of the proposed antenna with different
numbers (m x m) of AMC units. With reference to Figure 11, when the number of elements

is 11 x 11, the proposed antenna has the highest average gain across the bandwidth of
1.71-2.69 GHz. Therefore, the number 11 x 11 is chosen for AMC design.

Realized Gain (dBi)

12 -

1.71 - 2.69 GHz (2G/3G/LTE)

i — — - AMC 9%9
4

o \

Lo 1S

| —-=-AMC 10x10 Lo b

| —— AMC 11x11 i W

7L 1 AMC 12x12 h R y

1 ==~ AMC 1313 | \
i ! o Vi
0 1 (LI . 1 1 1 . 1 . Y ) WY ™

16 1.8 20 22 24 26 28
Frequency (GHz)

Figure 11. Simulated realized gain for proposed antenna under different numbers (m x m) of AMC
units. The blue region is the commercial bands for 2G, 3G, and LTE.

Figure 12 shows the comparison of simulated radiation patterns between the crossed-
dipole antenna with/without four parasitic strips. With reference to the figure, significant
improvements in both E- and H-plane radiation patterns can be obtained by the loading

strips. It is worth mentioning that, using this method, the cross-polar fields in the two
principal cutting planes decrease by more than 12 dB.
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Figure 12. Comparison of simulated radiation patterns between the antennas with/without parasitic strips.

4. Results

To verify the idea, a prototype of the proposed antenna was fabricated, as shown
in Figure 13. Figure 14 shows the measured and simulated S-parameter of our antenna.
With reference to Figure 14a, the measured and simulated —10-dB impedance bandwidths
(15111 < —10 dB) are 54.05% (1.62-2.82 GHz) and 55.37% (1.58-2.79 GHz), respectively. As
shown in Figure 14b, the isolations in both the simulation and measurement are almost
greater than 30 dB across the impedance-matching passband. As can be observed from
Figure 14, reasonable agreement between the measured and simulated results is observed.
Acceptable errors are caused by slight deformation due to uneven structural support. The
designed antenna exhibits good broadband characteristics and high isolation.

Figure 13. Photograph of proposed antenna. (a) Top view, (b) side view.

Figure 15a presents simulated and measured realized gains of the proposed antenna
at 6 = 0°. With reference to the figure, reasonable agreement can be found between the
simulated and measured results. The ripple in measurement is less than 1 dB caused
by experimental imperfections. The measured gain varies between 8.3 and 10.8 dB over
the frequency range (1.62-2.82 GHz) shown in Figure 15a. Figure 15b shows the mea-
sured antenna efficiency of the low-profile crossed-dipole antenna. As can be observed
from Figure 15b, the measured antenna efficiency is higher than 90% across the entire
operating band.
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Figure 14. Measured and simulated S-parameters of proposed antenna.
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Figure 15. Measurements and simulations of proposed antenna. (a) Realized gain; (b)antenna efficiency.

Figure 16 shows the measured and simulated normalized radiation patterns in two
principal cutting planes. Reasonable agreement can be found between simulations and
measurements. As shown in the figure, stable radiation patterns can be found at three
different frequencies. The simulated cross-polar field is almost lower than —30 dB. It can
be observed from the figure that the co-polar field is 10 dB higher than the cross-polar field
over a wide range of angles (—60° < f < 60°) in the measurements. Results of Port 1 are
only shown due to the geometric symmetry of our crossed-dipole antenna.

Table 1 compares our antenna with the reported crossed-dipole antennas. With ref-
erence to the table, the antennas in [8,9] have an extremely low antenna height but a
narrow bandwidth and low gain. The designs in references [11-14] have a higher profile.
The antennas in references [14,21] have similar profiles, but their antenna gains are lower
than the proposed antenna. Our wideband dual-polarized antenna has the highest an-
tenna efficiency due to the proposed AMC. Compared with listed base-station antennas,
the proposed antenna outperforms in overall performance. It is a good candidate for
base-station applications.

Table 1. Comparison of crossed-dipole antennas.

—10-dB Impedance Isolation Antenna

Ref. Bandwidth Gain (dBi) (dB) Efficiency L rofile (o)

8] 15.6% (2.36-2.76 GHz)  4.6-7.2 >22 65.0% 0.09

[9] 0.46% (1.48-1.55 GHz) <2 >26 61.3% 0.05
52.2% (1.70-2.90 GHz)

[11] (VEWR <1.5) 8.2-9.4 >26 N.A. 0.26

[12] 48.7% (1.66-2.73 GHz) 7.8-8.5 >34 85.0% 0.23
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Table 1. Cont.

Ref. _misiixli’;g‘ance Gain (dBi) IS‘:?]?)” Q;‘::;‘C‘; Profile (Ag)
[13] 65.3% (1.67-329 GHz)  7.8-8.8 >32 90% 0.26
[14] 749% (131-2.88 GHz)  7.8~9.1 ~30 NA. 0.35
[21] 56.3% (1.67-298 GHz)  6.7-7.6 25 80% 0.13
[22] 49.4% (1.69-280 GHz)  6.8-9.8 27 86% 0.15
This work  55.4% (1.58-2.79 GHz)  83-10.8 >30 90% 0.13
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(a)
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(p=-135°) 180° (p=459) (p=135°) 180° (p=-459)
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Figure 16. Measured and simulated radiation patterns of proposed antenna Port 1. (a) 1.6 GHz,
(b) 2.1 GHz, and (c) 2.6 GHz. Results of Port 1 are only shown due to the geometric symmetry of our
crossed-dipole antenna.
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5. Conclusions

A wideband low-profile crossed-dipole antenna with a novel AMC has been investi-
gated. By introducing the AMC as antenna ground, the profile can be effectively decreased
to 0.12Ag. In addition, four parasitic metal strips have been introduced to reduce the cross-
polar field and, thus, increase the antenna gain in its high-frequency impedance passband.
To verify the idea, a prototype has been simulated, fabricated, and measured. A mea-
sured overlapping bandwidth of 55.4% (1.58-2.79 GHz) has been obtained. Its maximum
measured realized gain is 10.8 dB at 2.6 GHz. Additionally, a stable gain and radiation
pattern have been observed. The prototype has a measured isolation of ~30 dB. It should be
mentioned that its cross-polarization level is more than —10 dB over a wide range of angles
(—60° < 0 < 60°). Finally, these advantages enable the proposed antenna to be potentially
applied to the integrated design of 2G/3G/LTE base station antennas.
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