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Abstract: Radar-based personal identification and fall detection have received considerable attention
in smart healthcare scenarios. Deep learning algorithms have been introduced to improve the
performance of non-contact radar sensing applications. However, the original Transformer network
is not suitable for multi-task radar-based applications to effectively extract temporal features from
time-series radar signals. This article proposes the Multi-task Learning Radar Transformer (MLRT):
a personal Identification and fall detection network based on IR-UWB radar. The proposed MLRT
utilizes the attention mechanism of Transformer as its core to automatically extract features for
personal identification and fall detection from radar time-series signals. Multi-task learning is
applied to exploit the correlation between the personal identification task and the fall detection
task, enhancing the performance of discrimination for both tasks. In order to suppress the impact
of noise and interference, a signal processing approach is employed including DC removal and
bandpass filtering, followed by clutter suppression using a RA method and Kalman filter-based
trajectory estimation. An indoor radar signal dataset is generated with 11 persons under one IR-UWB
radar, and the performance of MLRT is evaluated using this dataset. The measurement results
show that the accuracy of MLRT improves by 8.5% and 3.6% for personal identification and fall
detection, respectively, compared to state-of-the-art algorithms. The indoor radar signal dataset and
the proposed MLRT source code are publicly available.

Keywords: Impulse Radio Ultra-Wideband (IR-UWB) radar; personal identification; fall detection;
multi-task learning; Transformer

1. Introduction

Due to the rapidly increasing aging population and the COVID-19 pandemic, assisted
living systems with intelligent personal identification have become concerning issues
in IoT-based smart healthcare systems. Additionally, correctly identifying a person in-
volved in a falling incident and providing timely warnings to nursing workers can help
prevent severe injuries. Contact devices such as electrocardiogram (ECG) monitors and
photoplethysmograph (PPG)-based wearable devices are commonly used for person iden-
tification. However, these devices have limitations and low adaptability in daily living
conditions and movement [1,2] as they are placed close to the chest or directly on the skin.
On the other hand, vision sensor-based non-contact identification methods are susceptible
to lighting conditions and raise privacy concerns.

Radar fulfills these unobtrusiveness requirements as a non-contact sensor, which is
privacy-preserving and able to detect both body and cardiorespiratory movements. To
enable personal healthcare in an indoor environment, different radar-based methods have
been researched in recent years for personal identification. Ref. [3] designed the Mono-pole
UWB MIMO antenna to improve radar’s ability for short-range indoor applications. Some
researchers extract micro-Doppler features using the Short-Time Fourier Transform (STFT)
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of human gait [4] or cardiac motility [5] and employ Deep Convolutional Neural Networks
(DCNNs) for personal identification. In [6], Range-Doppler heat maps are extracted from
radar signals, and classical deep learning models such as AlexNet, VGGNet, GoogLeNet,
and ResNet are used for individual identification using millimeter-wave (MMW) radar. A
summary of recent advances in identification based on Doppler radar systems is provided
in [7]. However, these research studies often require participants to sit still or move in a
specific pattern to minimize motion interference, limiting their application in daily living
conditions. In our proposed method, we aim to remove signal distortions caused by
person’s motions without imposing restrictions on their movements.

As for fall detection, most existing radar-based methods rely on extracting a set
of features [8,9] from the radar signals and developing a supervised deep learning net-
work [10–12] to distinguish between fall and non-fall daily activities. However, these
artificially extracted features are highly dependent on the experimental environment, espe-
cially the recorded individuals, which affects their robustness. Recently, the Transformer
network has dominated in natural language processing (NLP) and has been extended to
other fields for its superior performance compared to traditional deep convolutional neural
networks. The core of the Transformer is the self-attention module, which takes the sums
of input embedding and positional encoding as input and maps them to produce query,
key, and value matrices for each word. The attention weights between any words can be
generated by dot-product query and key matrices.The weighted sum of value and attention
is the attention feature. This mechanism is well suited to dealing with time-series signal as
radar. Ref. [13] proposes an Transformer network named Radar Transformer which makes
full use of multimodal features information of the Automotive MMW radar point cloud to
realize object classification. It utilizes attention mechanism and adopts the combination of
vector attention and scalar attention to make full use of the spatial information, Doppler
information, and reflection intensity information of the 4-D radar point cloud to realize the
deep fusion of local attention features and global attention features. Their work enlight-
ens us to utilize Transformer in radar signal analysis to automatically explore temporal
correlation features for fall detection and personal identification.

In indoor environments, it is beneficial to determine the identities of different indi-
viduals while also detecting falls to enhance personalized monitoring performance. As a
result, several methods [14–16] have been proposed to achieve both personal identification
and timely fall detection within multi-task learning architectures. However, these methods
based on lidar, seismic, and camera technologies can be heavily affected by environmental
lighting conditions or vibrations, thereby limiting their applicability in daily living envi-
ronments. To the best of our knowledge, none of the previous works considering personal
identification and fall detection have been conducted using radar sensors, which offer
superior robustness compared to lidar or camera sensors.

Inspired by the Transformer and self-attention mechanisms, we propose the Multi-task
Learning Radar Transformer (MLRT): a personal Identification and fall detection network
based on IR-UWB radar as shown in Figure 1. The main contributions are listed as follows:

1. To deal with different persons in different environments, a multi-task learning radar
Transformer network is proposed for both personal identification and fall detection to utilize
the radar time-series signals. MLRT takes a “backbone-discriminator” multi-task learning
network to exploit the correlation between the personal identification task and the fall
detection task, thus enhancing the performance of discrimination. The proposed method is
more robust and has better performance on radar signals than state-of-the-art methods.

2. Considering the signal distortions from moving persons and background noises
which can affect the performance of MLRT, a signal processing method is applied on radar
signals before feeding forward into the network. After Direct Current (DC) removal and
bandpass filtering, a Running-Average (RA) method is applied for clutter suppression. A
Kalman filter is applied for trajectory estimation.

3. A dataset is generated with an IR-UWB radar for personal identification and
fall detection. The radar data are generated in the indoor environment with a total of
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11 persons × 10 min. The experiments are performed in the zone in front of the UWB radar
sensor, approximately 5 m× 5 m. Radar data are collected from a person who suddenly falls
while walking randomly. The proposed MLRT and other existing methods are evaluated
on this dataset. This dataset is now available at https://github.com/bupt-uwb/MLRT
(accessed on 23 March 2023).

Figure 1. Flowchart of the MLRT.

The rest of this paper is organized as follows. Section 2 presents the proposed MLRT
method. Section 3 gives an overview of the experimental set and generated dataset.
Section 4 discusses the results of the experiment. Section 5 presents the conclusions.

2. The Proposed MLRT Method
2.1. Radar Signal Model and Preprocessing

IR-UWB radar periodically transmits narrow impulse signals with wide bandwidth.
The received signal can be expressed as the sum of the channel’s response and variations
caused by vital signs:

r(t, τ) = ∑
i

ai p(τ − τi) + av p(τ − τd(t)), (1)

where t is the pulse accumulative time, τ is the pulse sampling time, p(τ) is the transmitted
pulse, ai is the amplitude of each multipath component and av is the amplitude of the vital
signs. τi and τd denote the time delay in the process of signal transmission and reception,
and τd(t) =

2dc(t)
c .

The received radar data are stored in the form of matrix R[n, m] after sampling:

R[n, m] = r
(

nTs, mTf

)
− 1

M

M

∑
i

r
(

nTs, iTf

)
, (2)

where Ts and Tf are the sampling intervals in slow time and fast time, respectively. Each
row of matrix R represents the n-th received frame with M fast time sampling points
(n = 1, 2, 3, . . . , N; m = 1, 2, 3, . . . , M). The signal propagation environment is static, and
the movements in the environment is caused by human activities. To distinguish the static
components of the radar signal from the dynamic components, the first step is to remove
the average value of the signal, also known as the DC offset, from the received signal.
This removes ambient static echoes that may interfere with the dynamic components of
the signal.

https://github.com/bupt-uwb/MLRT
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After subtracting the DC offset, the signal is then filtered with a band-pass filter
that matches the radar’s operating band, which is 6–8.5 GHz. The filter helps to remove
additional noise from the signal. To extract the human body signal from raw data signal
that may contain background noise and stationary clutter, the RA algorithm [17] is used.
This algorithm helps to generate a clutter-suppressed signal by subtracting the estimated
clutter from the received raw data signal. The estimated clutter signal can be expressed
as follows:

C[n, m] = αC[n− 1, m] + (1− α)R[n, m], (3)

where C[n, m] denotes the estimated clutter signal at the n-th slow time, and α is the gain
factor which can determine the renewing ratio of the clutter signal. The radar matrix R̂N×M
after preprocessing can be obtained by subtracting the estimated clutter signal.

When a person moves randomly in the room, the distance between the target and
the radar is constantly changing. The target’s motion follows an integral random walk
in daily living environments. Based on the radar matrix R̂N×M after preprocessing, the
initial target location Trt is determined by identifying the maximum energy in the range
dimension of the signal matrix. Subsequently, the location estimation is updated using the
Kalman filter [18] based on the minimum mean square error (MMSE) approach. Firstly, the
covariance matrix of the error Pt is determined from the following:

Pt = Pt−1 + Q

Kt+1 = (Pt + Q)/(Pt + Q + R)

Tut+1 = (1− Kt+1)Tut + Kt+1Trt+1

(4)

where Q is a constant that affects the weight of the predicted value. R is the variance of
the noise. The Kalman gain factor Kt is determined by the constant Q and R. Pt and Kt are
updated iteratively over time. The updated trajectory Tu is determined by the last estimate
and the measured value, which is shown in Figure 2. The signal intensity values along the
trajectory are preserved and others are set to zero in order to the remove interference.

Figure 2. The trajectory optimization based on Kalman filter.
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2.2. Transformer Multi-Head Attention Network for Radar Signals

To enhance the performance of radar-based personal identification and fall detection,
it is crucial to utilize the temporal and spatial features present in radar echo signals, namely
the slow-time and fast-time components mentioned earlier. While traditional CNN-based
networks excel at extracting spatial features from various data modalities such as images
and remote sensing signals, they struggle to effectively capture temporal features as they
are inherently time-independent. On the other hand, Recurrent Neural Networks (RNNs)
and their variants, such as Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU), are specifically designed to model and retain temporal correlations in time-series
signals. However, these networks operate sequentially, which can result in information
loss for long sequences and hinder parallel computation. Transformer networks, on the
other hand, overcome this limitation by leveraging self-attention mechanisms, which
have gained recognition for their ability to handle time-series data. However, directly
applying Transformer networks to radar signals may yield suboptimal results. Therefore, it
is essential to adapt the architecture of Transformer networks to suit the characteristics of
radar signals and their specific applications.

The fast-time dimension, which represents the spatial dimension of the radar signal
matrix, covers a wide range of distances. However, the echo signals reflected from the
target person only occupy a relatively small portion of this dimension, indicating that some
unnecessary or redundant features may be extracted. To address this, a CNN layer can
be employed to compress information along the fast-time dimension and extract spatial
features simultaneously. To preserve the time-dependent features along the slow-time
dimension of radar signals, the same convolutional operations with identical parameters
need to be applied to each individual fast-time slice, which corresponds to each row of the
radar signal matrix. To achieve this, a Time-distributed CNN layer is proposed. This layer
consists of a 1D Convolutional layer, which performs convolution calculations on each
row of the radar signal matrix independently in time. Along the slow-time dimension, the
parameters of the convolutional kernel remain unchanged until the entire time-series radar
signal is processed. To extract effective spatial features from the radar signal, the size of the
convolutional kernel should be close to or slightly smaller than the size of the target to be
detected. In the experimental settings of this article, one person occupies approximately
30 columns in the radar signal matrix. Hence, a 1D Convolutional layer with a kernel size
of 20 and padding of 2 is utilized in the Time-distributed CNN layer.

After the Time-distributed CNN layer and a dropout layer to address overfitting
concerns, the attention mechanism from Transformer is employed to assign appropriate
weights to the time-series radar signal, highlighting its temporal features. In contrast
to traditional manual feature extraction methods, the attention mechanism effectively
concentrates on valuable features, allowing neural networks to focus on subsets of features
that are most informative. The multi-head attention mechanism is derived from the encoder
module in Transformer. It captures time-related information from the features and finds
widespread application in machine translation, natural language processing, and other
domains. This mechanism resolves the issue of the model excessively attending to its own
position when encoding information about the current position. The module is formed
through the combination of several self-attention operations. The key is matrix Query (Q),
Key (K) and Value (V). The three matrices are obtained by linear transformation through
the same input. Then, the attention score is calculated as

Score(Q, K) = softmax
(

QKT
√

dk

)
(5)

where dk is the column number of Q. The final output is obtained by multiplying the score
matrix and V.
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Multi-head attention can get information from different representation subspaces at
different positions. Each head is similar to the Self-Attention given by

headi = Score(Qi, Ki)Vi = softmax
(

QKT
√

dk

)
Vi (6)

Then, the Multi-head attention concatenates all the heads and obtains the output
through a linear transformation. It can be expressed as

Multi-head(Q, K, V) = Concat(head1, . . . , headn)Wo, (7)

where Wo is a weight matrix which is used for linear transformation.
Finally, after linear mapping and concating, the space and temporal features from

radar signals are all extracted by the backbone network as shown in Figure 1. These features
can be utilized in the subsequent discrimination tasks.

2.3. Multi-Task Learning-Based Personal Identification and Fall Detection

Considering that each person has a fixed activity pattern that includes walking and
falling, it is natural to simultaneously address both fall detection and personal identifica-
tion tasks. Multi-task learning is well-suited for handling multiple interconnected tasks
simultaneously. When training a neural network with a relatively small dataset, multi-
task learning maximizes the utilization of information provided by multiple labels, which
helps mitigate overfitting and improves the network’s generalization ability. Additionally,
multi-task learning enables data augmentation, taking into account the presence of dif-
ferent noises across different tasks. By leveraging the assumption that these noises tend
to differ in direction, multi-task learning can reduce the impact of noise and enhance the
network’s robustness.

In recent research on multi-task learning, the widely accepted approach is to use a
“backbone-head” architecture. The “backbone” refers to shared layers that extract features
from the input data, which are then used by the “head” to accomplish the specific goals of
each task, such as regression or classification. In the case of MLRT (Multi-task Learning
Radar Transformer), a similar architecture called “backbone-discriminator” is employed.
This architecture is used because both personal identification and fall detection tasks
involve classification, but with different numbers of classes.

To apply multi-learning on both fall detection and personal identification, a joint loss
function should be designed. The joint loss function of two classification tasks can be
expressed as:

losswhole = loss1 + λ ∗ loss2 (8)

where λ is the weight factors between two tasks.
The value of λ can be affected by the relative loss values of each task and balancing the

importance of two tasks. In MLRT, personal identification and fall detection are considered
equally significant. Therefore, the value of λ mainly depends on relative loss values of each
task. In the experimental setup of this article, personal identification is a task involving
11-class discrimination, while fall detection is a task involving 2-class discrimination. When
using CrossEntropy Loss as the loss function, the relative loss value between the two tasks
is approximately 1:1.15. Therefore, to achieve a balance, the parameter λ should be set
to 1.15.

The whole architecture and parameters of MLRT is shown as Table 1.
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Table 1. The detailed parameters of the MLRT.

Backbone Parameters Channel Output Size
Input / 1 200× 1× 543

Time-distributed CNN kernel size: 20 & 1, stride: 2, ReLU 1 200× 1× 262
Dropout rate: 0.2 / 200× 1× 262

Transformer Encoder num head: 2 1 200× 1× 262
linear output nodes: 64 200 200× 1× 64

Dropout rate: 0.2 / 200× 1× 64
Flatten / / 1 × 12,800

Personal Identification
FC output nodes: 1024, ReLU / 1024
FC output nodes: 13 / 13

Fall Detection
FC output nodes: 1024, ReLU / 1024

Dropout rate: 0.2 / 1024
FC output nodes: 2 / 2

3. Experiment Set

In the experiment, a Xethru X4M03 radar (NOVELDA Oslo Co. Ltd., Oslo, Norway)
is used for data collection. Figure 3 shows the equipment and system deployment of
our experiments. The IR-UWB radar operates in 6.0–8.5 GHz and has a sampling rate of
23.328 GHz, providing a high spatial resolution of 0.0067 m at a distance from 0.2 to 9.9 m.
The experiments are performed in the zone in front of the radar sensor, approximately a
5 m × 5 m area. In addition, the metal lift doors and the metal tubes in the test hall produce
signals from multipath reflection. The radar is placed 1.3 m above the floor level. Due to
the requirement to cover the area of fall on the ground, the radar has a depression angle
of 15 degrees in the vertical direction. The radar signal frames are collected at a rate of
20 frames/s. The processing terminal of the experiment is a laptop equipped with Intel
i7-11800H CPU (main frequency 2.3 GHz, 16 cores), NVIDIA RTX3060 graphics card (video
memory 6 GB, 192 bit width) and 16 GB memory.

Figure 3. Experimental environment.
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The experiments include identification and fall activities running in parallel, as seen in
Figure 3. Overall, experiments are performed with 11 healthy subjects including different
genders and body sizes. The gender distribution is almost equal (female n = 6, male n = 5).
The height of the subjects ranges from 160 to 187 cm and the weight of the subjects ranges
from 51 to 85 kg. The age of the subjects ranges from 23 to 28 years old. The relevant
information about the participants in the experiments is shown in Table 2.

Table 2. The participants in the experiments.

Targets 1 2 3 4 5 6 7 8 9 10 11

Gender F F F F F F M M M M M
Age (year) 24 23 24 23 24 23 23 24 24 28 23

Height (cm) 163 171 155 160 158 167 187 170 185 174 176
Weight (kg) 54 56 50 53 52 53 83 52 72 68 76

The experiments are divided into three parts: fall events, non-fall events, and daily
activities. During a 20-s fall event, the target subject freely walks for the first 10 s and then
falls down perpendicular to the radar line of sight at a distance of 2 m from the radar. Each
event has a duration of approximately 20 s, and the fall occurs randomly within the last
10 s of the event.

Personal identification and fall detection are performed simultaneously from the
moment the target enters the experiment zone until the end of the experiment. In non-fall
events, the target subject walks randomly for 20 s without falling.

Each person’s experiment is repeated 30 times, including 15 fall events and 15 non-fall
events. Additionally, to further evaluate the method’s effectiveness in real scenarios, five
specific daily activities are included: squatting down, sitting, turning around (the target
continuously rotates), waving arms (the target raises and rotates the arms freely), and lying
down. The locations and movements of the targets are not fixed during data collection, and
the targets maintain slight random body movements to simulate normal human behavior.
These daily living activities consist of a total of 160 samples. Each sample has a duration
of 20 s, similar to the falling samples, and the activity occurs randomly within the last ten
seconds of each sample.

A sliding window approach is applied to each 20-s sample with a window length of
10 s and a step size of 0.5 s. The signals within each window are preprocessed as described
in Section 2 and input into the proposed MLRT network.

4. Result and Analysis

To demonstrate the effectiveness of the proposed MLRT in identification, compar-
isons with other methods are carried out on the dataset in this article. One is the LSTM
network based on LIDAR [14]. A two-layer LSTM network combined with CNN is pro-
posed to conduct both the fall detection and the personal identification. In another study
using camera-based Multi-Task Convolutional Neural Network (MTCNN) [16], a MTCNN
network architecture is used to conduct personal identification, object identification and
unusual behaviour identification including falling. The parameters of the two above net-
works are slightly modified to adapt to the radar signals in dataset. Moreover, in order
to verify the effectiveness of the multi-task learning, the personal identification and fall
detection network from the proposed MLRT is trained and evaluated separately, which
is called MLRT_PI and MLRT_FD. The Adam algorithm is selected as the optimizer and
CrossEntrop Loss as the loss function for discrimination tasks. The initial learning rate is
set to 1 × 10−3. All the methods are trained for 50 epochs equally with a batch size of 64.

The personal identification accuracy is calculated using ten-fold cross-validation in
which the training set and test set are divided by a certain ratio randomly. The performances
are investigated to distinguish 11 persons with different proportions of training sets which
are presented in Figure 4. When 80% of the data is used for training and 20% for testing
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as is commonly used in machine learning based research, MLRT has the highest average
accuracy which is 98.7%. When the proportion of the training set rises up to 50%, the
proposed MLRT maintains the highest performance on accuracy among the tested networks.
These results indicate that MLRT is able to effectively extract useful features for personal
identification from radar signals, surpassing the performance of networks designed for
other signal types. The personal identification network in MLRT achieves an accuracy of
93.3%, which outperforms LSTM and MTCNN but is slightly inferior to MLRT itself. This
demonstrates the effectiveness of the Transformer multi-head attention network and the
multi-task learning approach.

Figure 5 presents the confusion matrix obtained from the test set, which consists
of the identification of 11 persons with 10 samples for each person. The results show
that the accuracy of the predictions for the 11 persons remains consistent, with only
Target 9 occasionally exhibiting relatively poor performance. The mean error falls within
the range of 0 to 2 samples, indicating that MLRT achieves robust performance across
different individuals.
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Figure 4. Identification results from different networks.

Figure 5. The confusion matrix for the identification.

Table 3 shows the metrics of fall detection with different methods. The sensitivity
gives the proportion of actual positive events that are correctly identified as positives
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(SE = TP/(TP + FN)) and the specificity gives the proportion of actual negative events
that are correctly identified as negatives (SP = TN/(FP + TN)), where true positive (TP)
is an outcome where the system correctly predicts the fall class; true negative (TN) is
an outcome where the system correctly predicts the non-fall class; false positive (FP) is
an outcome where the system incorrectly predicts the fall class; false negative (FN) is an
outcome where the system incorrectly predicts the non-fall class. 300 examples are used to
calculate the average inference time. The table reveals that LSTM and MTCNN methods
also achieve high accuracy values, with MTCNN exhibiting the lowest inference time due
to its shallow network architecture. However, MLRT outperforms both LSTM and MTCNN
in terms of accuracy, SE, and SP, even without utilizing multi-task learning. Additionally,
MLRT employs a Transformer Multi-Head Attention Encoder to extract temporal features,
leading to faster training compared to LSTM-based networks. This aspect proves beneficial
for online learning applications, enabling parameter fine-tuning with lower latency.

Table 3. The Performance of fall detection.

Metrics

Methods Accuracy SE SP Inference

MLRT 96.5% 96.6% 96.3% 0.29 s
MLRT_FD 93.6% 95.0% 91.5% 0.30 s

LSTM 92.9% 94.3% 90.8% 0.274 s
MTCNN 90.6% 91.2% 89.6% 0.201 s

5. Conclusions

This article introduces the MLRT method for personal identification and fall detection
in indoor living environments. It addresses challenges posed by signal distortions from
moving individuals and background noise through signal processing techniques. Prepro-
cessing steps include DC removal, bandpass filtering, clutter suppression using RA, and
trajectory estimation with a Kalman filter. This mitigates interference and enhances signal
quality. The MLRT framework utilizes a multi-task learning radar Transformer network
that handles personal identification and fall detection tasks simultaneously. It adopts a
“backbone-discriminator” architecture to leverage the inherent correlation between these
tasks. Experimental results using a dataset from 11 individuals in an indoor environment
demonstrate outstanding performance. MLRT achieves an average personal identification
accuracy of 98.7%, surpassing state-of-the-art methods. Fall detection accuracy with MLRT
is 96.5%, outperforming other approaches. These results validate MLRT’s effectiveness
in accurately identifying individuals and detecting falls. Future work will extend MLRT
to incorporate vital signs monitoring for personalized healthcare. Additionally, research
efforts will focus on recognizing human activities and gestures.
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Abbreviations
The following abbreviations are used in this manuscript:

IR-UWB Impulse Radio Ultra-Wideband
ECG Electrocardiogram
PPG Photoplethysmograph
DC Direct Current
STFT Short-Time Fourier Transform
MMW Millimeter Wave
RA Running-Average
NLP Natural Language Processing
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
RNN Recurrent Neural Network
LSTM Long Short-Term Memory
GRU Gated Recurrent Unit
MTCNN Multi-Task Convolutional Neural Network
FC Fully Connected
MMSE minimum mean square error
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