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Abstract: With the advancement of robotics, the field of path planning is currently experiencing a
period of prosperity. Researchers strive to address this nonlinear problem and have achieved remark-
able results through the implementation of the Deep Reinforcement Learning (DRL) algorithm DQN
(Deep Q-Network). However, persistent challenges remain, including the curse of dimensionality,
difficulties of model convergence and sparsity in rewards. To tackle these problems, this paper
proposes an enhanced DDQN (Double DQN) path planning approach, in which the information after
dimensionality reduction is fed into a two-branch network that incorporates expert knowledge and
an optimized reward function to guide the training process. The data generated during the training
phase are initially discretized into corresponding low-dimensional spaces. An “expert experience”
module is introduced to facilitate the model’s early-stage training acceleration in the Epsilon–Greedy
algorithm. To tackle navigation and obstacle avoidance separately, a dual-branch network structure
is presented. We further optimize the reward function enabling intelligent agents to receive prompt
feedback from the environment after performing each action. Experiments conducted in both virtual
and real-world environments have demonstrated that the enhanced algorithm can accelerate model
convergence, improve training stability and generate a smooth, shorter and collision-free path.

Keywords: robot path planning; deep reinforcement learning; DDQN; expert experience

1. Introduction

There is an increasing emphasis on autonomous robot path planning as robots are
used in more and increasingly important applications [1]. In general, robot path planning
algorithms are divided into two categories: traditional methods and machine learning
methods [2]. Traditional methods may require extensive calculations that are difficult
to meet real-time requirements or result in locally optimal solutions that fail to produce
accurate paths [3]. Due to the development and popularity of Deep Learning (DL) and
Reinforcement Learning (RL), there is a tendency to solve complex problems in RL by
using DL’s deep network, and more academics are concentrating on DRL, especially in
high-dimensional path planning problems [4].

There have been numerous researchers who have made surprising progress in DRL-
based path planning algorithms [5–7]. The general idea is the robot iteratively explores
different behaviors in diverse situations, updates its network with reward values provided
by the environment and maximizes the total reward during a single path-finding process.
Jiya Yu et al. [8] investigated various DL-based computer vision methods and success-
fully deployed them on an embedded system for autonomous robot navigation. Keyu
Wu et al. [9] showed remarkable performance in real-time paths using an DNN-based
3D path planning algorithm. In 2016, Mihai Duguleana et al. [10] proposed a method to
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solve autonomous robot motion and validated it in Virtual Reality (VR) and real environ-
ments, respectively. Junjie Zeng et al. [11] successfully guided a robot’s moves through
continuous control signals in a dynamic environment by combining the Jump Point Search
(JPS) algorithm with the asynchronous advantage Actor–Critic (A3C) algorithm. Yinliang
Chen et al. [12] proposed an improved deep deterministic policy gradient (DDPG) path
planning algorithm incorporating sequential linear path planning (SLP) to address the
problem of robot avoidance of dynamic obstacles. In 2020, MG et al. [13] investigated
the problem of multi-intelligence collaboration. Jialun Cai et al. [14] proposed a path
planning method combining deep reinforcement learning and semantic information to
effectively improve the autonomous decision-making capability of robots. Tomoaki Naka-
mura et al. [15] proposed a local path planning method in narrow environments using
DQN. Mingyu Cai et al. [16] completed a continuous control of robots performing complex
tasks in large-scale chaotic environments using DRL.

A classical value-based reinforcement learning algorithm, DQN [17] uses a deep
neural network to approximate the Q value by feeding the model the current environment
value to obtain a prediction of the reward value for each action; however, the noise of
the model leads to a bias in the selection of the next action, and the greedy strategy of
DQN causes problems such as overvaluation, which is solved by introducing another DQN
network to separate the valuation from the selection of the action, namely DDQN [18].
However, as the dimensionality of both the environment and robot action state increases, the
number of parameters required for training grows exponentially. This results in significant
time and storage space consumption during training, ultimately leading to disastrous
dimensions. The robot often fails to receive rewards, which poses a significant challenge
for effective training. Specifically, in the context of the path planning problem, reward
sparsity arises as robots receive zero rewards regardless of their actions. Furthermore, the
myopic nature of the exploration strategy during early training stages poses a challenge to
efficient convergence, resulting in prolonged convergence time and potential entrapment
in local optima.

This paper introduces an enhanced DDQN path planning algorithm, which solves the
problem of the high dimensionality of data by discretizing the input high-dimensional Li-
DAR data into a state space to reduce redundant information. The training process adopts a
two-branch network structure, which combines expert experience with the Epsilon–Greedy
algorithm to accelerate model convergence speed. Then, a well-designed reward function
utilizing the “reward shaping” technique is implemented to provide timely feedback and
overcome the issue of sparse rewards for the robot. Finally, we develop multiple simula-
tion scenarios in ROS to facilitate training and testing prior to real-world implementation.
The experimental results demonstrate the efficacy of our proposed method in enhancing
training efficiency and generating optimal paths.

2. Related Work

DRL is an artificial intelligence technique that utilizes trial–and–error iterations with
the environment to acquire feedback information (reward) and optimize strategies, without
relying on prior knowledge, as depicted in Figure 1.
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Figure 1. A brief process of reinforcement learning. 

The Markov Decision Process (MDP) [19] serves as the mathematical foundational 

framework and modeling tool for RL, with a particular emphasis on how the current state 

influences future outcomes. MDP can be represented as a quaternion < 𝑆, 𝐴, 𝑃, 𝑅 >, where 

𝑆 denotes the state space, 𝐴 denotes the action space, 𝑃 represents the environmental 

state transition matrix and 𝑅 represents the reward value provided by the environment. 

Moreover, it can learn online autonomously, which makes it a promising candidate for 

serving as a research hot for robot path planning in unfamiliar environments. 

𝑈𝑡 = 𝑅𝑡 + 𝛾𝑅𝑡+1+𝛾1𝑅𝑡+2+𝛾2𝑅𝑡+3 + ⋯ (1) 

The DRL system commences with a robot’s action, and the environment transmits 

the state utilizing the action while providing a reward to the robot. The robot then uses 

the reward to update its neural network and maximizes 𝑈𝑡, which represents the cumu-

lative rewards obtained throughout each round [20], as shown in Equation (1), where γ 

represents the discount rate (0 < γ < 1), which indicates that rewards are given less consid-

eration as they become farther away from the present moment. Subsequently, a new ac-

tion is obtained through the updated network and the next state 𝑆𝑡+1 is provided by the 

environment until the end of the round. 

2.1. Epsilon–Greedy 

To maximize the reward value 𝑈𝑡, the researcher utilizes the action value function 

𝑄𝜋(𝑠𝑡 , 𝑎𝑡) (shown in Equation (2)) to estimate the reward for executing strategy 𝜋 after 

taking action 𝑎𝑡 in state 𝑠𝑡. The optimal action–value function 𝑄∗(𝑠𝑡, 𝑎𝑡) (shown in Equa-

tion (3)) is obtained by maximizing the elimination strategy 𝜋, which represents the max-

imum reward for executing the optimal strategy after taking action 𝑎𝑡 in state 𝑠𝑡. The 

function 𝑄∗ estimates the maximum expected cumulative reward for each action in the 

current state, guiding the robot to select the action with the highest expected rewards. As 

a result, the DRL algorithm based on value employs a deep neural network to approxi-

mate the optimal action–value function. 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑈𝑡|𝑆𝑡 = 𝑠𝑡 , 𝐴𝑡 = 𝑎𝑡] (2) 

𝑄∗(𝑠𝑡, 𝑎𝑡) = 𝑚𝑎𝑥
𝜋

𝑄𝜋(𝑠𝑡, 𝑎𝑡) (3) 

  𝑎𝑐𝑡𝑖𝑜𝑛 =  {
  𝑎𝑟𝑔_𝑚𝑎𝑥(𝑄_𝑁𝑒𝑡(𝑠𝑡𝑎𝑡𝑒))

𝑟𝑎𝑛𝑑𝑜𝑚𝑎𝑐𝑡𝑖𝑜𝑛    ,

,         𝐸𝑝𝑠𝑖𝑙𝑜𝑛

       1 − 𝐸𝑝𝑠𝑖𝑙𝑜𝑛
      (4) 

By employing the greedy method, the model may easily fall into a locally optimal 

solution. Therefore, it is advisable to encourage the model to explore more at the begin-

ning of training rather than being restricted to selecting the action with the highest reward. 

During training, the possibility of the robot executing the action given by the model is 

𝐸𝑝𝑠𝑖𝑙𝑜𝑛, whereas the probability of taking a random action is 1 − 𝐸𝑝𝑠𝑖𝑙𝑜𝑛, as shown in 

Equation (4). In the initial stage, due to the small value, the robot is in a state of random 

Figure 1. A brief process of reinforcement learning.



Sensors 2023, 23, 5622 3 of 23

The Markov Decision Process (MDP) [19] serves as the mathematical foundational
framework and modeling tool for RL, with a particular emphasis on how the current state
influences future outcomes. MDP can be represented as a quaternion < S, A, P, R >, where
S denotes the state space, A denotes the action space, P represents the environmental
state transition matrix and R represents the reward value provided by the environment.
Moreover, it can learn online autonomously, which makes it a promising candidate for
serving as a research hot for robot path planning in unfamiliar environments.

Ut = Rt + γRt+1+γ1Rt+2+γ2Rt+3 + · · · (1)

The DRL system commences with a robot’s action, and the environment transmits the
state utilizing the action while providing a reward to the robot. The robot then uses the
reward to update its neural network and maximizes Ut, which represents the cumulative
rewards obtained throughout each round [20], as shown in Equation (1), where γ represents
the discount rate (0 < γ < 1), which indicates that rewards are given less consideration as
they become farther away from the present moment. Subsequently, a new action is obtained
through the updated network and the next state St+1 is provided by the environment until
the end of the round.

2.1. Epsilon–Greedy

To maximize the reward value Ut, the researcher utilizes the action value function
Qπ(st, at) (shown in Equation (2)) to estimate the reward for executing strategy π after tak-
ing action at in state st. The optimal action–value function Q∗(st, at) (shown in Equation (3))
is obtained by maximizing the elimination strategy π, which represents the maximum
reward for executing the optimal strategy after taking action at in state st. The function Q∗
estimates the maximum expected cumulative reward for each action in the current state,
guiding the robot to select the action with the highest expected rewards. As a result, the
DRL algorithm based on value employs a deep neural network to approximate the optimal
action–value function.

Qπ(st, at) = E[Ut|St = st, At = at] (2)

Q∗(st, at) = max
π

Qπ(st, at) (3)

action =

{
arg_max(Q_Net(state)), Epsilon

randomaction, 1− Epsilon
(4)

By employing the greedy method, the model may easily fall into a locally optimal
solution. Therefore, it is advisable to encourage the model to explore more at the beginning
of training rather than being restricted to selecting the action with the highest reward.
During training, the possibility of the robot executing the action given by the model is
Epsilon, whereas the probability of taking a random action is 1− Epsilon, as shown in
Equation (4). In the initial stage, due to the small value, the robot is in a state of random
exploration [21]. This approach can accelerate the convergence of the model and reduce
the risk of becoming trapped in a local optimum.

2.2. Prioritized Experience Replay

During the training process, the robot–environment interaction data are typically
stored in a quaternion (shown in Equation (5)) in the experience replay queue for future
utilization. In the subsequent training process, a batch of data is extracted from the
queue and input into the model, thereby significantly enhancing data utilization. Tom
Schaul et al. [21] introduced Prioritized Experience Replay, as depicted in Figure 2.

< state, action, reward, next_state > (5)
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Since each interactive data have a different impact on model enhancement, to improve
the efficiency of data utilization, it is necessary to train the data that greatly improve
the model. This means that model performance should be enhanced by selectively sam-
pling data with a high TD error (representing the difference between the model output
and the true value), while reducing the amount of low-quality data. To achieve this,
Equations (6) and (7) were used to calculate the priority and sampling rate of each piece
of data, where δi represents the TD-error value of the data; to prevent the sampling rate
from being too small, ε is added. α is an indicator that regulates the effect of priority on the
probability of adoption, when α equals 0 it is traditional uniform sampling, and if α equals
1 it is exactly the priority-based sampling approach.

pi = |δi|+ ε (6)

P(i) =
pα

i
∑k pα

k
(7)

Since the use of the priority-based sample method is biased to the original distribution
and will affect the convergence of the model, adjustments should be made in the calculation
related to gradient descent. The gradient should be modified as ωi·δi when performing
backpropagation as shown in Equation (8), where β equals to 1, and then the update of
the network is unbiased. In typical reinforcement learning scenarios, the unbiased nature
of the updates is most important near convergence at the end of training. In practice, it is
common to linearly anneal β from its initial value 0 to 1 [21].

ωi =

(
1
N
· 1
P(i)

)β

(8)

The determination of priority p is contingent upon the TD error; however, computing
p for all samples and subsequently sorting them can be prohibitively expensive [22]. To
achieve a high-speed, high-priority sampling method with a high sampling rate, the
“sumTree” data structure is utilized as depicted in Figure 3a. There are four leaf nodes
representing the priority of each data respectively, which must be sampled according to its
priority. The “sumTree” structure can be approximated as a line as shown in Figure 3b, on
which a point is randomly sampled. Therefore, the “sumTree” structure does not need to
sort data. The “sumTree” data structure is used to sort the improvement level of the model
for each data. The data that significantly improve the model will be sampled and the goal
of sampling will be realized by priority. This approach greatly enhances both the training
efficiency and speed of convergence of the model in comparison to experience replay.
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2.3. Double DQN

In Figure 4, Mnih et al. [17] proposed a reinforcement learning model using deep Q net-
works. This network model combines neural networks and Q-learning to address the curse
of dimensionality in Q-learning by replacing Q value tables with neural networks. The
DQN network takes the surrounding state as input and outputs the maximum expected re-
ward for each action after passing through the neural network. Consequently, in the current
state, the model selects the action with the highest reward value as its optimal response.
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Figure 4. Brief structure of the DQN model.

The DQN network’s greedy strategy and the interference of noise can lead to over-
estimation in the model. Compared to using the same network for both maximum value
judgment and estimated value calculation, Hado van Hasselt et al. [18] proposed the DDQN
network (shown in Figure 5), which introduces an additional network to decouple selection
from the calculation, effectively addressing overestimation issues caused by DQN.
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Despite these surprising achievements, there are still several problems in implement-
ing DRL-based path planning algorithms, some of which are listed below:

1. As the training environment becomes more complex, the number of parameters
required by the model increases [3]. This may trigger a dimensional catastrophe,
leading to a significant increase in computational effort ultimately extending the
training time.

2. Traditional algorithms do not solve the problem of reward sparsity in path plan-
ning [23]. This is one of the reasons why DRL training is locally optimal.

3. Reinforcement learning is very sensitive to the initial values of the training model,
poor initial values of the model may lead to a slow convergence rate or even to a local
optimum [24].

3. Materials and Methods

In this paper, we present an enhanced DRL-based path planning algorithm. We
first performed preprocessing to reduce the dimensionality of the data, and then fed the
resulting lower-dimensional data into a new two-branch deep network for training. In
addition, we introduced the combination of “expert experience” with the Epsilon–Greedy
algorithm and the Prioritized Experience Replay algorithm for model training. Finally,
we optimized the reward function to address the issue of reward sparsity in training. In
this section, we introduce four enhancements to the traditional DDQN algorithm, namely
dimensional discretization, two-branch network architecture, expert knowledge integration
and reward function design.

3.1. Dimensional Discretization

If unprocessed sensor-generated data are input into the network during training,
it may result in issues such as slow training and challenge model convergence due to
high data dimensionality, significant data correlation and increased data redundancy. The
target locations associated with the robot’s forward direction were categorized into five
intervals: [−20, 20), [20, 80), [80, 180), [180, −80) and [−80, −20) as shown in Table 1 and
Figure 6. In the obstacle avoidance section, we only considered obstacles located within the
robot’s forward direction between [–90, 90] degrees and divided them into four quadrants
based on a 180 degree range, obtaining the positional information of each part from the
nearest obstacle (we only consider the information of the closest obstacle), as illustrated
in Figure 7. Meanwhile, the robot’s continuous operation was partitioned into five states,
significantly reducing computational complexity and adhering to the robot’s movement
rule as presented in Table 2.

3.2. Two-Branch Network Structure

Imitating the design of DDQN, we designed a dual branch network structure on the
basis of it to decouple obstacle avoidance and navigation, in which obstacle relative position
and discrete target point relative position were respectively fed into the navigation module
and obstacle avoidance module of the network. In the dual-branch network structure, we
partitioned data into the obstacle avoidance module and the navigation module. The former
requires obstacle information while the latter necessitates relative target point position.
We input the four discrete values of the four distinct regions into the obstacle avoidance
module and input the three parameters (the distance from the robot to the target point, its
steering angle and target point position) into the navigation module. The inputs were then
fed into a fully connected neural network, which generated 64 dimensions per network
and a total of 128 dimensions when combined. The two-branch network was integrated
separately into the fully connected neural network (FCN), and subsequently, the model
output estimations for each action, as illustrated in Figure 8.
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Table 1. The relative position of the target point to the robot.

Relative Location Discrete Values

[−20, 20) 1
[20, 80) 2
[80, 180) 3

[180, −80) 4
[−80, −20) 5
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Table 2. Discrete a continuous action to a lower dimensional space.

Value Action Linear Velocity Angular Velocity

−2 Turn Right (big angle) 0.05 −1.5
−1 Turn Right (small angle) 0.1 −0.75
0 Go Straight 0.7 0
1 Turn Left (small angle) 0.1 0.75
2 Turn Left (big angle) 0.05 1.5
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3.3. Expert Experience

The original Epsilon–Greedy algorithm encourages the intelligence to explore at the
beginning of training and take the next step randomly to learn from experience and update
the network parameters. The original Epsilon–Greedy algorithm promotes exploration
during the initial stages of training, where the next step is taken randomly to facilitate
experiential learning and update network parameters.

In this paper, the initial random exploration during training was replaced by the
imitation of “Expert Experience” generated from discrete low-dimensional data, allow-
ing for robot behavior to follow “expert experience” with a certain probability. “Expert
experience” is not the optimal solution for path-finding; thus, its proportion gradually
diminishes during training, resulting in the model being more inclined towards utilizing
traditional random exploration strategies. The “Expert Experience” strategy proposed in
this paper mitigated the issues of high variance and instability during the initial stages of
model training.

expaction =


exp _ang + exp _col, −2 < exp _ang + exp _col < 2

2, exp _ang + exp _col ≥ 2
−2, exp _ang + exp _col ≤ −2

(9)

Discrete values assigned to the navigation and obstacle avoidance modules were based
on expert experiences to guide the robot’s movement considering the relative position of
the robot and the target point. Each relative position corresponded to the expert experience
of only the navigation module. Similarly, the relative positions of the robot and the
obstacles were considered to guide the movement of the robot, and each relative position
corresponded to the expert experience of the obstacle avoidance module, as shown in
Tables 3 and 4. The expression is shown in Equation (9); thus, we can leverage the total
expert experience to effectively guide the robot’s movement.
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Table 3. Navigation Module Expert Experience.

Navigation Module Values Expert Experience

(−20, 20) 0
(20, 80) −1
(80, 180) −2

(180, 280) 2
(280, 340) 1

Table 4. Obstacle Avoidance Module Expert Experience.

Obstacle Avoidance Module Value Expert Experience

(L2, dis < 0.1) −1
(L1, 0.5 < dis <= 0.1) −1

(L1, dis < 0.1) −2
(R1, dis < 0.1) 2

(R1, 0.5 < dis <= 0.1) 1
(R2, dis < 0.1) 1

Other 0

As shown in Figure 9, in this case, we specified the robot forward direction to be
0 degrees, considering the obstacle avoidance module and the navigation module, re-
spectively. Since the angle of the target point relative to the robot forward direction was
between [20, 80], the expert experience of the navigation module provided “−1” to guide
the motion. The nearest obstacle was located in the L1 area, and the distance was <0.1 m,
so the expert experience of the obstacle avoidance module provided “−2” to guide the
motion. According to Equation (9), the total sum of expert experience was “−2”. Using the
expert experience, the robot motion could be guided directly, which corresponded to the
discrete action value of “−2” (Turn Right with big angle).
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3.4. Reward Function

The reward function only provides feedback on the achievement of a target point or
collision with an obstacle, resulting in Sparsity of rewards and potentially leading to blind
exploration, thereby complicating training. In this paper, we proposed a reward feedback
system with continuous monitoring to ensure that the robot received precise and consistent
rewards at each step. For many practical problems, defining a good reward function is
nontrivial [25].
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There are usually three methods to solve the reward sparsity problem, which are
Reward Shaping [26], Intrinsic Curiosity Module (ICM) [27] and Reverse Curriculum
Learning [28]. Reward Shaping guides training by designing a more reasonable reward
function and ICM improves learning efficiency and performance by increasing curiosity
module, while Reverse Curriculum Learning designs a reasonable training process for
robots to train from easy to difficult. In this paper, Reward Shaping was used to improve
the reward function.

The robot receives a reward of +300 when it reaches the target point, and a reward
of −300 when it collides with an obstacle. In the noncollision and nonaccomplishment
phase, we gave it a continuous reward by guiding it to become closer to the target and
away from the obstacle at the same time. We divided the rewards into four parts: distance
rewards, avoidance rewards, deviation angle rewards, and retention punishment, as shown
in Equation (9).

The distanceValue is the difference of the distance between the robot and the target
point in St+1 and St stages. The longer the distance the robot moves toward the target point,
the higher the reward will be; on the contrary, the higher the degree of deviation from the
target point, the greater the penalty will be. At the same time, when the robot avoids the
obstacle, we should also encourage it to continue to do so next time. colValue is the distance
between the robot and the nearest obstacle in stage St+1 and stage St. The robot’s direction
is also important for it to reach the target place smoothly. We hoped that the orientation
of the robot would be close to the target point without considering obstacles, so angValue
was set. We gave a fixed reward to the robot when its forward direction was close to the
target point, and conversely, we gave it a fixed penalty if its forward direction was far from
the target point, where the fixed penalty is equal to two. In order to reduce the effect of
motion on the angle during the robot movement, we stipulated that this reward would not
be considered when the angle change was less than 10 degrees.

To prevent the robot from performing a negative path planning strategy, we gave it a
stalling penalty (b) at each step to motivate it to find a faster path planning solution.

Reward =


300, arrive
−300, collide

k ∗ distanceValue + µ ∗ colValue + ρ ∗ angValue + b, otherwise
(10)

Each part was multiplied by its weight respectively to form the sum of rewards. We
adjusted the weight value respectively to balance each part to achieve a better guidance
effect. After conducting multiple trials, we determined that utilizing the values of k = −2,
µ = 0.03, ρ = 0.07 and b = −0.05 could facilitate rapid convergence of the model.

4. Results

To validate the feasibility of implementing the algorithm proposed in this paper, we
initially constructed a simulation environment with randomly distributed obstacles, which
measures 17 m in length and 13 m in width based on Gazebo’s simulation environment
within the Robot Operating System (ROS), while leveraging NVIDIA GeForce RTX 2070
SUPER server for computational support. We used Ubuntu 20.04.5 LST and installed
ROS-Noetic 1.15.15 for our simulation experiments.

The parameters for the enhanced algorithm are presented in Table 5, followed by
migration of the trained model from simulation environment to real environment for
testing its viability purposes.
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Table 5. Experimental parameters.

Parameters Value

Memory Capacity 5000
α 0.8

Learning Rate 3 × 10−5

ε 0.99~0.05
β 0.4~1.0

4.1. Experimental Procedure

Navigation and obstacle avoidance model use radar sensors to detect surrounding
obstacles. Training data are generated by controlling the movement of the robot and
its interaction with the environment, which is then stored in a priority queue using the
“sumTree” data structure for sampling.

The robot commences from the current coordinates, and the Gazebo environment
publishes a random target point position to the parameter server. The robot retrieves goal
point and radar output data from the parameter server, which are then fed into the network
model that generates action instructions for controlling the robot’s movements.

Subsequently, the Gazebo environment evaluates the current system state and de-
termines whether to initiate a reset or provide an appropriate reward. Upon reaching
the target point, a new one should be designated after reward issuance to commence
subsequent training rounds, as depicted in Figure 10.
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4.2. Simulation Experiments

The simulation experiments were conducted using three different training methods
for comparison. Method I utilized the original deep reinforcement learning approach
without any enhancements (DDQN). Method II enhanced the approach of Method I by
incorporating dimensional discretization, a two-branch network and a continuous reward
function into the training process. Method III was trained through the incorporation of
“Expert Experience” into Method II. For each approach, we conducted separate evaluations
on the episode return, success rate over nearly 100 trials, training time, and training stability.

For Method I, the reward information obtained from 100 rounds of training and
the success rate of nearly 100 rounds is depicted in Figure 11. It is evident that the
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training process is characterized by slow convergence and susceptibility to local optima,
resulting in prolonged model training time. The training times were very long and it was
difficult to converge the training duration for 5000 cycles in the gazebo environment with
10× acceleration reduced to 50 h. Additionally, the success rate remained at a mere 5%
throughout nearly 100 rounds.
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According to the kernel density graph in Figure 12 and the bar heat map in Figure 13,
it is evident that a majority of reward values are concentrated around −300 with only
a handful successfully reaching the target point, indicating an unfavorable outcome of
training. The training process is notably marked by slow convergence and vulnerability to
local optima, leading to extended model training duration.
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Method II builds upon Method I by incorporating dimensional discretization, a two-
branch network and a continuous reward function for training. This results in improved
training efficacy and successful convergence of the model, enabling it to effectively navigate
path planning and obstacle-avoidance tasks following a period of training.

The reward information and average success rate obtained by Method II after training
over approximately 100 rounds are illustrated in Figure 14. Due to the robot’s random
exploration approach and imperfect model, its success rate is initially low during the
early stages of training; however, as training progresses, the accuracy rate can reach up
to 80% for almost 100 rounds. The kernel density plot and the bar heat map are shown
in Figures 15 and 16. It can be observed that during the early stages of training, the robot
predominantly receives low reward values (−300); however, as the model progresses, there
is a gradual improvement in reward distribution. At this juncture, the robot acquires
obstacle-avoidance capability and successfully reaches the target point to obtain a high
reward of +300. The training duration for 5000 cycles in the gazebo environment with 10×
acceleration is reduced to 20 h, which enhances model stability and convergence compared
to Method I.
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Figure 16. Bar Heat Map of Method II.

Figure 17 depicts the reward information and success rate of nearly 100 training rounds
using Method III, where “ep” denotes the proportion of expert experience incorporated
by the model. We observe an increase in the average reward value by using Method III,
accompanied by a corresponding rise in the proportion of “expert experience” as training
progresses. As the training progresses, the robot’s reliance on “expert experience” decreases
and it starts to choose more autonomous planning paths. This leads to a slight decrease
in average reward but an increase in stability. The robot model also begins to learn from
“reverse experience,” resulting in an increase in average reward value and eventually
obtaining navigation and obstacle avoidance abilities. With a 10× acceleration setting in
Gazebo, 3500 cycles of training can be completed within just 4 h, the model convergence
speed and training stability are significantly improved. The training model using Method
III consistently yields high reward values throughout the entire process, with only a slight
dip in the middle of training. Overall, the training is stable and this is demonstrated by
both the kernel density plot (Figure 18) and bar hotspot chart (Figure 19) for Method III.
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Moreover, all three methods are compared in terms of data distribution histograms
and numerical analysis, respectively. Figure 20 compares the reward level distributions for
the three techniques. Compared to Method I, the reward values of Method II and Method III
exhibit a higher degree of concentration around +300. Moreover, when compared to Method
II, Method III exhibits a higher tendency to receive rewards valued at +300, resulting in a
reward value distribution that is more closely aligned with this particular value.
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Table 6 shows the results of the three kinds of numerical analysis, respectively, compar-
ing the mean value, variance and quantile of the rewards obtained in the training process.
Combined with Figure 18, the distribution and dispersion degree of the reward values
obtained by the three different methods can be intuitively seen. Obviously, Method I has
a low success rate and cannot converge. Compared with Method II, the average reward
value of Method III is higher, and the standard deviation and variance are lower, indicating
that the data concentration degree is higher, the model convergence speed is faster, and the
stability is higher.

Table 6. Data analysis of experimental results.

Parameters Method I Method II Method III

Mean −296.59856 10.83118 101.8214
Standard Deviation 56.62857 302.85006 289.28139

Lower 95% CI of Mean −297.97611 2.84957 92.23436
Upper 95% CI of Mean −295.221 18.81279 111.40845

Variance 3206.79515 91,718.15644 83,683.72419
1st Quartile (Q1) −304.03949 −294.79913 −286.58769

Median −301.76303 3.75054 309.77573
3rd Quartile (Q3) −299.86398 317.04965 316.77985

Therefore, the improved training methods proposed in this paper (Method II and
Method III) exhibit superior performance compared to the traditional training method
(Method I), including faster training time, higher stability and quicker model convergence.

In order to further verify the advantages of the improved algorithm proposed in this
paper in the training process, this paper uses DQN, DDQN, and Improvement DDQN
(Method III) for training under the same environment and analyzes the reward value
obtained in each round, as shown in Figure 21 (using Whittaker Smoother fitting to create a
smoother curve). We can see that the improved algorithm proposed in this paper results in
more positive rewards in the training stage and higher overall rewards than the other two
algorithms, as shown in Figure 22.
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In order to verify the feasibility of the improved algorithm and briefly analyze its
interpretability, we used Method III to conduct a complete path planning process in the
simulation environment and recorded the Q values of the actions that could be taken in
each step, as shown in Figure 23. It can be seen that in the early stage of path planning,
due to the farther distance from the target point, each Q value was relatively low. With the
progress of the path finding process, at five steps and 13 steps, the overall reward is low
due to the existence of obstacles around the robot, indicating that there may be dangers.
Finally, after 20 steps, the target point is approaching, and the reward value becomes larger
and larger until the target point is reached. The arrival of the target point will obtain a
+300 reward; thus, it can be seen that taking different actions at the upcoming target point
makes a big difference in the reward value.
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Moreover, we set up simple environment and complex environment, respectively, in
the gazebo and carried out path planning by using models trained by different algorithms
to evaluate the effect of the improved algorithm. Due to the poor stability, long time,



Sensors 2023, 23, 5622 19 of 23

and poor training effect of the training model using the traditional method, this paper
only uses the improved algorithm for testing experiments. Figures 24 and 25 show the
trajectories obtained by using Method II and Method III for path planning of different
target points, respectively, in a simple environment. It can be seen that the trajectories
obtained using Method III are smoother, and the planned paths are shorter and more rea-
sonable. Figures 26 and 27 show the trajectories obtained by using Method II and Method
III, respectively, for path planning of different target points in a complex environment. To
eliminate the effect of different initial positions on the path planning, we use two methods
to navigate at different initial positions separately, as shown in Figures 28 and 29. We also
conducted multiple experiments on the same path planning problem (with the same initial
point and target point) using Method II and Method III on large-scale maps, as shown in
Figures 30 and 31. It can be seen that the trajectory obtained using Method III is better.
Through simulation experiments, it can be seen that using the improvement proposed in
this paper (Method III) can obtain a smoother path with a shorter distance.
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4.3. Realistic Experiments 
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m long and 5 m wide platform, equipped with randomly placed obstacles. After transfer-
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signed target point location information into the program. The robot (mobile robot) then 

executed corresponding actions based on instructions provided by the model. Since 

Method I of this paper is the most primitive method with only theoretical possibilities, the 

training process is very difficult and can easily become trapped in local optima, so only 

Method II and Method III are used for comparison in the real-world setting. 

As shown in Figure 33, the robot in our real-world experimental environment can 

move from the initial point to the target point on command with no collision and a smooth 

path. After conducting multiple experiments in a realistic environment, utilizing the 
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4.3. Realistic Experiments

To verify the feasibility of the algorithm in a real environment, we use a real robot as
shown in Figure 32 to execute the trained model-guided motion and we constructed a 5 m
long and 5 m wide platform, equipped with randomly placed obstacles. After transferring
the trained model from the simulation environment to the physical robot, we designed
target point location information into the program. The robot (mobile robot) then executed
corresponding actions based on instructions provided by the model. Since Method I of
this paper is the most primitive method with only theoretical possibilities, the training
process is very difficult and can easily become trapped in local optima, so only Method II
and Method III are used for comparison in the real-world setting.
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Figure 32. A mobile robot with LIDAR used in the experiment.

As shown in Figure 33, the robot in our real-world experimental environment can
move from the initial point to the target point on command with no collision and a smooth
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path. After conducting multiple experiments in a realistic environment, utilizing the model
trained by Method III to guide robot actions, it was demonstrated that the proposed im-
proved deep reinforcement learning path planning algorithm can efficiently and accurately
construct collision-free paths.
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Figure 33. The robot is guided to move from the initial position to the specified position in the real
environment.

5. Conclusions

We present an enhanced deep reinforcement learning approach for path planning
in this paper. The proposed improved algorithm returns a specific action value that
the robot should perform by receiving information from the LiDAR sensor. With these
action values, the model will guide the robot to reach the target area while avoiding
obstacles. First, the training data are discretized into a low-dimensional space. Second, we
propose a two-branch network structure by segmenting the input from the navigation and
obstacle-avoidance modules. Additionally, we introduce “expert experience” combining
the Epsilon–Greedy algorithm with a prioritized experience replay strategy. Finally, we
have improved the reward mechanism of traditional deep reinforcement learning to enable
the robot to promptly receive feedback from the environment after each action. The
experimental results in both real-world and virtual simulation scenarios that demonstrate
that this enhanced approach accelerates model convergence, optimizes training stability
and facilitates obstacle-free navigation.

In order to further enhance the effectiveness of reinforcement learning-based path
planning in unknown environments, we intend to conduct subsequent research focusing
on the following aspects:

1. Introduce the ICM module and Reverse Curriculum Learning module to explore more
through curiosity mechanisms and design a reasonable step-by-step training process
for distributed training of the model. It is believed that this will further improve the
training speed and stability.

2. The dimensional discretization module is further improved to retain more information
in the original data as far as possible under the premise of ensuring the speed and
stability of the algorithm, so as to achieve better dimensional discretization.

Author Contributions: Conceptualization, H.X.; methodology, H.H.; software, H.H. and J.W.; re-
sources, X.H.; writing—review and editing, H.H.; visualization, J.W. and L.K. All authors have read
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