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Abstract: Reputation evaluation is an effective measure for maintaining secure Internet of Things
(IoT) ecosystems, but there are still several challenges when applied in IoT-enabled pumped storage
power stations (PSPSs), such as the limited resources of intelligent inspection devices and the threat
of single-point and collusion attacks. To address these challenges, in this paper we present ReIPS,
a secure cloud-based reputation evaluation system designed to manage intelligent inspection devices’
reputations in IoT-enabled PSPSs. Our ReIPS incorporates a resource-rich cloud platform to collect
various reputation evaluation indexes and perform complex evaluation operations. To resist single-
point attacks, we present a novel reputation evaluation model that combines backpropagation
neural networks (BPNNs) with a point reputation-weighted directed network model (PR-WDNM).
The BPNNs objectively evaluate device point reputations, which are further integrated into PR-
WDNM to detect malicious devices and obtain corrective global reputations. To resist collusion
attacks, we introduce a knowledge graph-based collusion device identification method that calculates
behavioral and semantic similarities to accurately identify collusion devices. Simulation results
show that our ReIPS outperforms existing systems regarding reputation evaluation performance,
particularly in single-point and collusion attack scenarios.

Keywords: pumped storage power stations (PSPSs); intelligent inspection devices; reputation evalu-
ation; cloud platform; internal attack detection

1. Introduction

Pumped storage power stations (PSPSs) are essential for energy storage and grid
stability [1]. These facilities efficiently store excess electricity during low-demand periods
and release it during high-demand periods [2,3]. Safety is a top priority in PSPSs for
prevention of accidents, equipment failures, and environmental risks. This necessitates
robust safety measures, reliable control systems, and diligent monitoring to ensure the
smooth operation and protection of both personnel and the surrounding ecosystem [4]. The
progress in Internet of Things (IoT) technology has significantly impacted PSPSs, where
intelligent inspection devices can seamlessly connect to offer managers valuable services,
such as efficient data collection and quick anomaly detection [5–7]. However, due to its
highly decentralized, open, and dynamic characteristics, the IoT network is vulnerable
to attacks from both external and internal sources, especially in PSPSs [8]. Although
authentication, firewall, and cryptography technologies effectively defend against external
attacks, they are ineffective against internal attacks launched by verified but misbehaving
devices within the IoT network [9–11]. Therefore, it is essential to design a reliable solution
that can detect internal attacks and isolate malicious devices to ensure the security of
IoT-enabled PSPSs.
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To provide secure and high-quality inspection services, intelligent inspection devices
can rely on trust relationships for information sharing, thus avoiding interaction with mali-
cious devices [12,13]. Reputation evaluation mechanisms enable each device to evaluate
another device’s point reputation based on their interactions [14]. The point reputation
serves as a reference for other devices to determine whether the target device is trustworthy
for future interactions. Moreover, each device’s point reputations evaluated by multiple
peers can be further aggregated into a global reputation for malicious device detection [15].
Therefore, reputation evaluation mechanisms can promote healthy interactions between
devices and identify malicious ones.

However, there are still several unique challenges to be addressed when applying
reputation evaluation in IoT-enabled PSPSs: (1) the limited computational and storage
resources of intelligent inspection devices hinder the collection of adequate reputation
evaluation indexes, hampering accurate and objective reputation calculations. (2) IoT-
enabled PSPSs are susceptible to single-point attacks, where a single malicious device
assigns false point reputations to well-behaved devices, thereby misleading others in their
trustworthy judgments. (3) Collusion attacks pose a significant threat in IoT-enabled PSPSs,
as multiple malicious devices can collaborate to invalidate malicious device detection. This
can be achieved by slandering well-behaved devices‘ reputations or exaggerating partners’
reputations.

Our contributions. In this paper, we propose ReIPS, a secure cloud-based reputation
evaluation system, to address the above-mentioned challenges of resource limitations and
detection of malicious devices that launch single-point or collusion attacks. Our research
aims to enhance the security and accuracy of reputation evaluation in IoT-enabled PSPSs.
In particular, a cloud platform is introduced to enable complex reputation evaluation oper-
ations and behavioral analysis in IoT-enabled PSPSs, including point reputation evaluation,
global reputation calculation, and collusion device identification. The main contributions
of this paper are as follows.

• To improve the accuracy and objectivity of point reputation evaluation, we propose a
multidimensional evaluation index system and a point reputation evaluation model
based on backpropagation neural networks (BPNNs) that establishes nonlinear map-
pings from the indexes to corresponding point reputations.

• We introduce the point reputation-weighted directed network model (PR-WDNM)
to visualize the reputation evaluation relationships between devices. Based on PR-
WDNM, we propose a new weighted averaging method for point reputations, where
device credibility is used as an adaptive weight to obtain the corrective global rep-
utation. Additionally, device credibility serves as a metric for effectively detecting
malicious devices that launch single-point attacks.

• To accurately identify malicious devices involved in collusion attacks, we propose
a knowledge graph-based collusion device identification method. Based on the con-
structed knowledge graph, we can calculate and fuse behavioral and semantic similar-
ities to identify collusion devices with the same attributes and malicious behaviors.

• Extensive simulation results demonstrate that our ReIPS outperforms existing bench-
marks in terms of reputation evaluation performance under both single-point and
collusion attack scenarios.

Organization. The remainder of this paper is organized as follows. Section 2 describes
the status of the relevant research. Section 3 illustrates the system model of our ReIPS
and the threat model. Sections 4 and 5 present the details of our proposed reputation
evaluation method and collusion device identification method, respectively. Simulation
results and discussions are shown in Section 6. Section 7 concludes this paper and provides
suggestions for future research directions.

2. Related Work

Reputation evaluation is an effective security measure for protecting IoT networks
against internal attacks. Unlike traditional security measures that focus solely on external
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attacks, reputations enable each IoT device to identify trustworthy devices for interaction
and service acquisition, thereby reducing the risk of attacks within IoT networks [16–18].

Point reputation refers to an IoT device’s reputation evaluated by another device
based on their interactions. IoT devices can be considered as nodes in IoT networks.
Zhao et al. [19] proposed an exponential-based reputation evaluation system that considers
the number of interactions as the evaluation index. Rongfei et al. [20] calculated the proba-
bility of a node successfully interacting with others and used it as the index to measure the
node’s reputation. However, these approaches only consider a single reputation evaluation
index, making it difficult to comprehensively and accurately reflect the actual reputation
status of nodes in the network.

To strengthen the credibility and applicability of reputations, recent studies have
proposed global reputation evaluation approaches that evaluate the global reputation of
each IoT device by aggregating its point reputations from multiple peers. Basu et al. [21]
defined the global reputation of a transponder as the average of the reputations given by
other nodes in the network. Wang et al. [22] used global reputation to measure a user’s
trustworthiness, defined as the average of all feedback obtained from the user’s interactions.
Okba et al. [23] proposed that a service provider’s global reputation depends on the
evaluations provided by all clients for service quality. However, these approaches ignore
that posting false point reputations may positively or negatively bias other normal nodes’
global reputations, making it difficult to detect individual malicious nodes or collusive
groups in the network. To resist collusion attacks on reputation evaluation, Liu et al. [24]
proposed an unfair rater detection approach based on rating behavior similarity. However,
the approach failed to address the issue of sparse rating data in actual networks, leading
to low accuracy in calculating behavioral similarity and an inability to discover covert
collusion nodes. Therefore, it is crucial for IoT-enabled PSPSs to establish a secure and
reliable reputation evaluation process that yields accurate and objective results.

Moreover, we note that applying emerging technologies such as cloud computing and
knowledge graphs to reputation evaluation systems has significant potential to improve
efficiency and accuracy. The authors in [25,26] have emphasized the integration of external
resources, such as cloud servers and edge infrastructures, to support a wide range of IoT
services. This integration provides a practical solution for conducting complex reputation
evaluation operations and behavioral analysis in resource-constrained PSPSs. A knowledge
graph can map out the reputation evaluation relationships between devices in IoT-enabled
PSPSs, assisting in detecting collusion attacks targeted at the reputation evaluation system.
Mature software, databases, and algorithms are already available to support ontology
construction, graph storage, and knowledge vectorization in knowledge graphs, such as
Protégé, Neo4j, and Translating Embeddings (TransE). Protégé provides convenient tools
such as class, relationship, and property models for users, who can create and modify
ontologies using a visual interface [27]. Neo4j is a graph database suitable for mapping
entities and relationships, handling highly connected data, and providing excellent query
and storage performance [28]. TransE is a typical knowledge graph embedding algorithm
that maps entities and relationships to a low-dimensional vector space, enabling the com-
putation of the behavioral similarity between entities [29]. Therefore, we will design a
secure reputation evaluation system for IoT-enabled PSPSs, considering the support of
these emerging technologies regarding resources and efficiency.

3. System Model

In this section, we provide details of the system framework of our ReIPS and the threat
model considered in this paper.

3.1. System Framework

The system framework of our ReIPS is illustrated in Figure 1, designed to enable
efficient reputation evaluation and behavioral analysis for intelligent inspection devices
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in IoT-enabled PSPSs. The framework comprises two layers: the device layer and the
cloud layer.

…

…

Evaluation

indexes
Point
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Credibility &

Global reputations

Behavioral similarities 
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BPNN model PR-WDNM

Knowledge graph

Cloud layer
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Single-point 

attack

Collusion attack

IoT-enabled PSPSs

Figure 1. System framework of our ReIPS.

(1) Device Layer: This layer comprises various intelligent inspection devices, such as
surveillance cameras, wheeled robots, and laptops. They work collaboratively to perform
functions such as comprehensive information collection, status analysis, and anomaly
recognition of energy facilities in PSPSs. The devices upload multidimensional evaluation
indexes to the cloud platform for reputation evaluation.

(2) Cloud Layer: The cloud layer comprises a centralized cloud server that provides
sufficient computing and storage resources for reputation evaluation and behavioral analy-
sis in IoT-enabled PSPSs. It utilizes a BPNN model to obtain point reputations of mutual
evaluations between devices. These point reputations are then aggregated using our
PR-WDNM to obtain each device’s credibility and global reputation, assisting the ad-
ministrator in detecting single-point attacks within IoT-enabled PSPSs. Furthermore, the
cloud platform constructs a knowledge graph by incorporating device attributes, interac-
tion relationships, and reputations. This knowledge graph can assist the administrator
in calculating behavioral and semantic similarities between devices for collusion attack
detection.

3.2. Threat Model

In this paper, we consider two typical types of attacks on the reputation evaluation
system in IoT-enabled PSPSs: single-point attacks and collusion attacks. Their descriptions
are as follows.

• Single-Point Attacks: This type of attack involves a single malicious device providing
false point reputations to other well-behaved devices to influence their trustworthiness
in future interactions and global reputations.

• Collusion Attacks: In this type of attack, multiple malicious devices collaborate
to slander the point reputations of well-behaved devices or exaggerate the point
reputations of their partners. The goal of collusion attacks is to disrupt the detection
of malicious devices and influence global reputations.
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4. Reputation Evaluation Model

This section presents our proposed reputation evaluation model for point and global
reputation based on BPNNs and PR-WDNM. Our model employs nonlinear mapping
and adaptive weighted aggregation to improve the reliability and accuracy of reputation
evaluation while effectively detecting malicious devices that launch single-point attacks.

4.1. Evaluation Index System

In our ReIPS, we present a multidimensional reputation evaluation index system
to ensure comprehensive, objective, and accurate reputation evaluations for each device.
This system includes two categories of evaluation indexes: inherent attribute indexes
and performance attribute indexes. The inherent attribute indexes capture the relevance
of the services provided by the device, encompassing the specification, agreement, and
description of the services. On the other hand, the performance attribute indexes assess
the characteristics exhibited by the device during interactions, such as response time,
throughput, latency, link success rate, availability, and reliability. To provide a formal
understanding of these reputation evaluation indexes, we present their specific definitions
in Table 1. These indexes will be used as input terms to our designed BPNN model to
obtain target point reputation through nonlinear mappings.

Table 1. Definitions of reputation evaluation indexes.

Index Definition

Specification The degree to which the service description language document conforms to
the specification of the service description language.

Agreement The degree to which the service follows the network service agreement
profile.

Description The metric for service description language documentation.
Response time The time span between when a device makes an interaction request and

when it receives a response.
Throughput The maximum number of requests processed in a given unit of time.
Latency The time required to process the given request.
Link success rate The ratio of the number of response messages to the number of request

messages.
Availability The ratio of the number of successful calls to the total number of calls.
Reliability The ratio of the number of correct messages to the total number of messages.

4.2. Point Reputation Evaluation Method

We propose a point reputation evaluation method based on BPNNs for intelligent
inspection devices deployed in IoT-enabled PSPSs. The point reputation evaluation is a
complex and dynamic process that depends on multiple indexes, making it challenging to
represent the mapping relationship between these indexes and the corresponding point
reputation using a specific mathematical function. Therefore, our proposed method uses the
BPNN model to establish clear and nonlinear mappings from multidimensional evaluation
indexes to the point reputation.

The point reputation evaluation process involves the following steps. First, the reputa-
tion evaluation indexes are collected from the devices by the cloud platform. These indexes
and prior knowledge are then divided into training and test sets. Second, a BPNN model is
designed on the cloud platform and trained using the training set. Third, the BPNN model
is tested using the test set to analyze the accuracy of the point reputation evaluation, ensur-
ing that it meets the usage requirements for IoT-enabled PSPSs. Finally, the trained BPNN
model is deployed in the cloud platform to comprehensively and objectively evaluate each
device’s point reputation. The model takes our defined evaluation indexes as input and
produces the corresponding point reputation as output.

The BPNN model we designed for point reputation evaluation is shown in Figure 2,
which consists of an input layer, a hidden layer, and an output layer. Specifically, we
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represent the input vector of the input layer as x = (x1, x2, . . . , x9), where the nine elements
correspond to the nine evaluation indexes defined in Table 1. Accordingly, the input layer
consists of nine neurons. Because our BPNN model outputs only one value for the point
reputation evaluation result, the output layer has only one neuron. We denote the input
of the output layer by z, and the actual output result and the expected output result are
denoted by o and g, respectively. The number of neurons in the hidden layer is denoted by
l, and the input and output vectors of the hidden layer are denoted by f = ( f1, f2, . . . , fl)
and y = (y1, y2, . . . , yl), respectively. It is important to choose an appropriate number of
neurons in the hidden layer to optimize the accuracy and efficiency of the BPNN model.
Most existing methods determine the number of neurons in the hidden layer by trial
and error. Typically, an approximate range of neuron numbers is first set based on prior
experience. Then, each number within this range is tested in the BPNN model while
keeping all other conditions constant, and the best result is used to determine the required
number of neurons in the hidden layer. The number of neurons in the hidden layer is
generally related to the number of neurons in the input and output layers. The formulas
commonly used to determine the approximate range of neuron numbers in the hidden
layer are as follows:

l =
√

p + q + λ, (1)

l =
√

pq, (2)

l = log2 p, (3)

where p and q are the number of neurons in the input and output layers, respectively, and
λ is a constant within [1, 10]. Applying these formulas to our BPNN model with p = 9 and
q = 1, we can calculate the range of hidden layer neuron numbers for our BPNN model as
[3, 14]. The optimal choice of the number of neurons in the hidden layer still needs to be
determined by network training with dynamic debugging.

…

…

Input layer

Hidden layer

Output layer
x
1

x
2

x
9

o

wij

wki

Figure 2. Diagram of our designed BPNN model.

Next, we present the operation process of the BPNN model to demonstrate the sen-
sitivity and effectiveness of the heuristic used in translating evaluation indexes into the
point reputation.

(1) Initialization: We denote the connection weight from input layer neuron j to
hidden layer neuron i as wij. The threshold at hidden layer neuron i is denoted by ai,
and the activation function at the hidden layer is denoted by ϕ(·). Moreover, we denote
the connection weight from hidden layer neuron i to output layer neuron o as wko. The
threshold at output layer neuron o is denoted by bo, and the activation function at the
output layer is denoted by ψ(·). In the initialization process, wij and wko are assigned
random values, ai and bo are set to 0, and a learning rate η is specified. The total number of
training iterations is also set to a fixed value to ensure the network can terminate training.
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(2) Forward Propagation: The input layer forwards the external information it receives
to the hidden layer. The input expression at hidden layer neuron i is as follows:

fi =
9

∑
j=1

wijxj − ai. (4)

The output of the hidden layer neuron i is then obtained by applying the activation
function ϕ(·) to the input fi:

yi = ϕ( fi). (5)

The input expression at the output layer neuron o is obtained by summing the products
of the hidden layer neuron outputs yi and their corresponding weights wko:

z =
l

∑
i=1

wkoyi − bo. (6)

Finally, the output of the output layer neuron o is obtained by applying the activation
function ψ(·) to the input z:

o = ψ(z). (7)

(3) Backpropagation: Comparing the output obtained from the output layer with the
expected output determines the error. If the error is not within the expected range or the
training is ongoing, the adjustment of the weights and thresholds between the output layer
and the hidden layer, as well as between the hidden layer and the input layer, is made
by propagating the error backward from the output layer to the input layer. The training
continues for multiple iterations until the output result is within the expected range or the
maximum number of iterations is reached. The error function is expressed by Equation (8),
where K represents the number of samples.

ErrorBP =
1

2K

K

∑
k=1

(ok − gk)
2. (8)

4.3. Credibility and Global Reputation Calculation

To detect malicious devices that launch single-point attacks and ensure the accuracy
of global reputations, we construct a visualization model PR-WDNM for the reputation
evaluation network. We then calculate credibility and global reputation based on our
PR-WDNM.

4.3.1. PR-WDNM

Considering the relationships between devices in the point reputation evaluation, we
construct the PR-WDNM, which assigns weights to the edges in the reputation network
with determined directions.

As shown in Figure 3, our PR-WDNM can be denoted by a triple (U, E, R), where
U = {u1, u2, . . . , un} denotes the set of all intelligent inspection devices in an IoT-enabled
PSPS, E = {e1, e2, . . . , em} denotes the set of point reputation evaluation relationships, and
R denotes the weight matrix of directed edges. Moreover,

(
ui, uj

)
∈ E denotes a weighted

directed edge from ui to uj, and rij denotes the weight of
(
ui, uj

)
, which is equal to the point

reputation value evaluated by ui to uj. By performing this, we visually illustrate the point
reputation evaluation relationships between devices. Moreover, the statistical properties in
PR-WDNM include the evaluation relationships between devices, point reputation values
of each device, average point reputation values of all devices, as well as the sets of evaluator
devices and evaluatee devices. They will be utilized in the credibility and global reputation
calculations to detect malicious devices that launch single-point attacks.
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Figure 3. Diagram of our designed PR-WDNM.

4.3.2. Credibility Calculation

To calculate the credibility ci of ui, we first calculate the average point reputation of
each device. By analyzing the statistical properties of our PR-WDNM, the average point
reputation r̄j of uj is equivalent to the average value of the weights on all edges pointing to
uj, which can be expressed as

r̄j =

∑
uk∈Urec

j

rkj∣∣∣Urec
j

∣∣∣ , (9)

where Urec
j denotes the set of devices that provide point reputation evaluation to uj, which

is equivalent to the set of all nodes pointing to uj in our PR-WDNM. uk denotes the k-th
device in Urec

j , k = 1, 2, 3, . . ., and rkj denotes the point reputation of uj evaluated by uk.
Next, we define the credibility ci of ui as

ci =

∑
uj∈Usen

i

rij
r̄j∣∣Usen

i

∣∣ , (10)

where Usen
i denotes the set of devices evaluated by ui, which is equivalent to the set of

nodes pointed by ui in our PR-WDNM. uj denotes the j-th device in Usen
i , j = 1, 2, 3, . . .,

and rij denotes the point reputation of uj evaluated by ui.
Furthermore, we utilize ci to detect malicious devices that post false point reputations.

The average value of all devices’ credibilities can be calculated as

µ =

n
∑

i=1
ci

n
, (11)

where n denotes the number of devices and µ can reflect the credibility level of the whole
network, which is the basis for malicious device judgment. Specifically, if ci is less than µ,
ui will be judged as a malicious device that has posted false point reputations.

4.3.3. Global Reputation Calculation

Each device’s global reputation is obtained by aggregating its point reputations eval-
uated by others. Before aggregation, we remove the false point reputations evaluated by
the detected malicious devices. Next, we utilize the devices’ normalized credibilities as the
weights to calculate the average of the point reputation values as the global reputation of
the device. This weighted average method effectively mitigates the impact of abnormal
point reputations provided by low-credibility devices on the global reputation calculation.
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When calculating the global reputation Rk of uk, the process of normalizing ci of ui into its
weight βi can be expressed as

βi =
ci

∑
uj∈Urec

k

cj
, (12)

where Urec
k denotes the set of devices that provide point reputation evaluation to uk and

ui ∈ Urec
k . Therefore, Rk can be calculated as

Rk =

∑
ui∈Urec

k

βi · rik∣∣Urec
k

∣∣ . (13)

Based on Equation (13), devices with low global reputations can be identified as
malicious, indicating that they provide bad services. Additionally, global reputations
can serve as reliable references for future interactions, thereby ensuring a secure and
trustworthy PSPS IoT environment.

5. Collusion Device Identification Methods

In this section, we propose a knowledge graph-based collusion device identification
method. By constructing a knowledge graph, we can measure the degree of associations
between devices and calculate their behavioral and semantic similarities using vectorized
knowledge. This allows us to identify collusion devices with the same malicious behaviors.

5.1. Knowledge Graph Design

The knowledge graph design comprises two significant components: entity attribute
selection and knowledge vectorization. According to the common characteristics of collu-
sion devices, we first select multiple attributes of the devices for constructing the knowledge
graph. Subsequently, we introduce the knowledge vectorization method.

5.1.1. Entity Attributes

Collusion devices involved in collusion attacks often share common traits and engage
in coordinated actions to manipulate the reputation evaluation system in IoT-enabled
PSPSs. Based on the threat model in Section 3.2, we present the following assumptions for
the collusion attacks. First, in PSPS scenarios where large numbers of intelligent inspection
devices are deployed, a collusion attack requires multiple devices to be involved in the
collusion to ensure the attack is effective and damaging. Second, to maintain a facade
of legitimacy, collusion devices work together to present a unified front. They maintain
consensus in trusted objects, untrusted objects, and potential attack targets. Third, collusion
devices tend to employ similar attack methods, such as slandering the reputations of
others or exaggerating the reputations of their partners, often with a similar number of
evaluations. Through these coordinated actions, colluding devices generate similar global
reputations and credibility. Fourth, collusion devices maintain close communication with
constant objects to ensure the successful execution of the attack. Therefore, by collaborating
closely, collusion devices can coordinate their efforts and align their behaviors to deceive
the reputation evaluation system. Based on the characteristics of collusion attacks and the
behaviors exhibited by colluding devices, we select several device attributes to construct
the knowledge graph, as shown in Table 2.

We adopt the Protégé tool to build the ontology and Neo4j to store the knowledge
graph. In Neo4j, nodes represent entities in the knowledge graph, and edges represent
relationships between entities. The configurations of our knowledge graph in Neo4j are
shown in Table 3.
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Table 2. Attributes of knowledge graph.

Attribute Type

Device Number data
Global reputation data
Credibility data
Number of evaluations data
Trusted objects object
Untrusted objects object
Communication objects object

Table 3. Configurations in Neo4j.

Item Content

Node Device entity
Edge Trusted, untrusted, and communication relationships
Node attribute Device number, global reputation, credibility, and number of evaluations

5.1.2. Knowledge Vectorization

We apply the TransE algorithm to map entities and their relationships in the knowl-
edge graph to a low-dimensional vector space, aiming to facilitate lightweight similarity
calculation. Specifically, we construct a triple (vh, r, vt), where vh denotes the head entity, vt
denotes the tail entity, and r denotes the relationship between the two entities. This triple is
embedded in a d-dimensional vector space Rd, where vh, vt, r ∈ Rd. The TransE algorithm
connects vh and vt in the knowledge graph through r, and this process follows vh + r ≈ vt.
In fact, there may be embedding errors when representing entities and relations as vectors
during the embedding process in a knowledge graph. To quantify this error, we utilize the
L2 norm to calculate the difference between the head entity vector, tail entity vector, and
the relation vector during the conversion process. We define the embedding error function
for a single triple as

F(vh, r, vt) = ‖vh + r− vt‖2
2, (14)

where |·|22 denotes the square of the L2 norm of a vector. This embedding error indicates the
degree of difference between the head entity vector, relation vector, and tail entity vector,
i.e., the Euclidean distance between them in the vector space. A smaller embedding error
suggests that the vectors are closer in distance, indicating higher embedding quality for the
triple. Conversely, a larger embedding error suggests a greater distance between the vectors,
indicating lower embedding quality for the triple. Next, we define the objective function
for all triples in the knowledge graph based on Equation (14), which can be expressed as

L = ∑
χ∈I

∑
χ′∈I′

max(0, F(vh, r, vt)− F(vh′ , r, vt′) + γ), (15)

where χ = (vh, r, vt) and χ′ = (vh′ , r, vt′), respectively, denote the correct and incorrect
triples in our knowledge graph; I and I′, respectively, denote the correct and incorrect triple
sets; and γ denotes the distance parameter between I and I′. The correct triple refers to
a triple that exists in the knowledge graph, where the head entity, tail entity, and relation
type are all correct. On the other hand, the incorrect triple refers to a triplet that does not
exist in the knowledge graph, where at least one of the head entity, tail entity, or relation
type is incorrect. Incorrect triples are used as negative samples for training knowledge
graph models. Our TransE algorithm is trained by Equation (15), aiming to minimize the
distance gap between the correct and incorrect triples, thereby improving the quality of
the embedding. By doing so, we can obtain a vectorized description of the entities and
relationships in the knowledge graph to support lightweight similarity computation.
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5.2. Similarity Calculation

To identify collusion behaviors of malicious devices, it is important to quantify the
similarity between devices and identify those with similar attack behaviors. Therefore,
we compute the behavioral similarity based on devices’ point reputations and semantic
similarity based on the vector relationships in our knowledge graph. The fusion of both
similarities is used for collusion device identification.

5.2.1. Behavioral Similarity Calculation

The devices in a collusion group have the same attack targets and behaviors, resulting
in similar point reputations of the targets evaluated by the collusion devices. In this regard,
we define the similarity of point reputation evaluation behaviors between devices as the
behavioral similarity of devices. The point reputation matrix of the mutual evaluation
between devices can be expressed by

Rn×n =


r11 r12 . . . r1n
r21 r22 . . . r2n
. . . . . . . . . . . .
rn1 rn2 . . . rnn

, (16)

where the matrix element rij denotes the point reputation of uj evaluated by ui. According
to Equation (16), the point reputation evaluation vectors of ui and uj can be expressed as
Si = (ri1, ri2, . . . , rin) and Sj =

(
rj1, rj2, . . . , rjn

)
, respectively. The factors in the vector

denote the point reputations evaluated by a device for others. We use the cosine similar-
ity between Si and Sj as the behavioral similarity bsij between ui and uj, which can be
expressed as

bsij =
Si · Sj

‖Si‖ ·
∥∥Sj
∥∥ =

n
∑

k=1
rik · rjk√

n
∑

k=1
r2

ik ·
√

n
∑

k=1
r2

jk

. (17)

Furthermore, the behavioral similarity matrix can be expressed as

BSn×n =


bs11 bs12 . . . bs1n
bs21 bs22 . . . bs2n
. . . . . . . . . . . .

bsn1 bsn2 . . . bsnn

. (18)

5.2.2. Semantic Similarity Calculation

Based on our constructed knowledge graph, ui can be represented by a d-dimensional
vector as

ui = (π1i, π2i, . . . , πdi)
T, (19)

where πki denotes the value of the vector embedded by ui in the k-th dimension,
k = 1, 2, . . . , d. Next, we normalize the L2 norm of ui and uj to obtain the knowledge
graph-based semantic similarity gsij between ui and uj, which can be expressed as

gsij =
1

1 + ‖ui − uj‖2
=

1

1 +

√
d
∑

k=1

(
πki − πkj

)2
. (20)
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Furthermore, the semantic similarity matrix can be expressed as

GSn×n =


gs11 gs12 . . . gs1n
gs21 gs22 . . . gs2n
. . . . . . . . . . . .

gsn1 gsn2 . . . gsnn

. (21)

5.2.3. Similarity Fusion

We obtain behavioral similarity based on the point reputation evaluation results and
the semantic similarity based on the vectors of entities and their relations in the knowledge
graph. To identify malicious devices with collusive behaviors, we fuse the two similarity
measures to obtain a comprehensive similarity that takes into account device attributes,
relationships, and reputation evaluation behaviors. The fusion process can be expressed as

fsij = ρ · gsij + (1− ρ) · bsij, (22)

where fsij denotes the fused similarity between ui and uj and ρ ∈ [0, 1] is the fusion weight.
As such, the fused similarity matrix can be further expressed as

FSn×n =


fs11 fs12 . . . fs1n
fs21 fs22 . . . fs2n
. . . . . . . . . . . .
fsn1 fsn2 . . . fsnn

. (23)

To detect collusion devices, we set two special judgment thresholds. Specifically, we
first introduce a threshold ε for the fused similarity. If fsij is greater than ε, then ui and uj
are identified as suspicious collusion devices. We further introduce a threshold δ for the
total number of collusion devices. When the total number of devices with similar fused
similarity is greater than δ, these devices are identified as collusion devices.

6. Simulation Results

In this section, we validate the performance of our ReIPS for the reputation evaluations
of intelligent inspection devices by extensive simulations. Our ReIPS is implemented on a
Windows 10 system with a Python 3.6 environment. We provide the simulation settings
and results in detail below.

6.1. Simulation Settings

During simulations, we use the parameter settings summarized in Table 4 to ensure
the stability, convergence, and precision of our ReIPS. The BPNN model comprises three
layers, with sigmoid and ReLU activation functions used in the hidden and output layers,
respectively. We use the quadratic loss function as the model’s loss function.

Table 4. Parameter settings.

Parameter Value

BPNN iterations 20,000
BPNN learning rate 0.1
Number of input layer nodes 9
Number of output layer nodes 1
Number of hidden layer nodes 13
Embedding dimension, d 150
Similarity fusion weight, ρ 0.7

To compare the performance of our ReIPS in single-point attack scenarios, we use
two existing methods as benchmarks in the simulation: the reputation measurement
method (RM) in [30] and the trust evaluation method (TE) in [31]. RM calculates the global
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reputation of a device by averaging all point reputations evaluated by others, whereas TE_1
and TE_2 correct the global reputation by assigning low weights to extreme evaluations
and high weights to normal evaluations, respectively. For comparison in collusion attack
scenarios, we consider two benchmarks: the reputation evaluation method (BS-RE), which
only considers behavioral similarity in identifying collusion devices [32], and our ReIPS
without the proposed collusion device identification method (ReIPS-NoCDI).

We use four metrics to evaluate the performance of reputation evaluation: mean
absolute error (MAE) and mean square error (MSE) for global reputation evaluation results,
and precision and recall for global reputation evaluation methods, which are expressed as

MAE =

n
∑

i=1

∣∣Ri − R̂i
∣∣

n
, (24)

MSE =

n
∑

i=1
(Ri − R̂i)

2

n
, (25)

Precision =
TP

TP + FP
, (26)

Recall =
TP

TP + FN
, (27)

where n is the number of devices, Ri is the true global reputation value of ui, and R̂i is
the global reputation value evaluated by each method. The definitions of TP, FP, and
FN are shown in Table 5. Normal devices are programmed to provide point reputations
with an error of no more than 10%, whereas abnormal devices are programmed to provide
point reputations with an error of over 10%. Abnormal devices that participate collusion
attacks are further configured to have the same trust object set, distrust object set, and
communication object set to exhibit their colluding behaviors. In addition, we consider a
range of [20, 100] for the total number of intelligent inspection devices in a PSPS, where the
proportion of malicious devices ranges from 5% to 45%.

Table 5. Confusion matrix.

Actual Normal Devices Actual Abnormal Devices

Identified normal devices TP FP
Identified abnormal devices FN TN

6.2. Performance in Single-Point Attack Scenarios
6.2.1. Performance with Different Percentages of Malicious Devices

Figure 4 plots the four performance metrics for different methods versus the percentage
of malicious devices, with a fixed total number of 100 devices. As depicted in Figure 4a,b,
our ReIPS achieves lower MAE and MSE compared to the benchmarks. For example, when
the percentage of malicious devices is 30%, the MAE of our ReIPS is 42.96% for RM, 30.7%
for TE_1, and 44.62% for TE_2, whereas the MSE of our ReIPS is 35.57% for RM, 17.43%
for TE_1, and 38.09% for TE_2 This can be attributed to our ReIPS calculating the device
credibility based on point reputations and using it as the weight of point reputation for
global reputation aggregation. Specifically, the point reputation evaluated by a normal
device carries a larger weight, whereas the point reputation evaluated by an abnormal node
carries a smaller weight or even 0. Consequently, our ReIPS improves the reliability of the
global reputation evaluation results. Figure 4c,d demonstrate that our ReIPS outperforms
the benchmarks in precision and recall. When the percentage of malicious devices is 30%,
the precision of our ReIPS is 0.13, 0.12, and 0.11 higher than that of RM, TE_1, and TE_2,
respectively, and the recall of our ReIPS is 0.24, 0.54 and 0.24 higher than that of RM, TE_1,
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and TE_2, respectively. This is because our proposed PR-WDNM can identify the malicious
devices launching single-point attacks and filter out their false point reputations, thereby
removing their impact on the global reputation calculation.
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Figure 4. Performance in different methods versus the percentage of malicious devices. (a) MAE.
(b) MSE. (c) Precision. (d) Recall.

6.2.2. Performance with Different Total Numbers of Devices

Figure 5 shows the four performance metrics for different methods versus the total
number of devices with a fixed percentage of 20% for malicious devices. Figure 5a,b demon-
strate that our ReIPS has consistently lower MAE and MSE compared to the benchmark
algorithms. For example, when the total number of devices is 60, the MAE of our ReIPS is
42.13% for RM, 23.95% for TE_1, and 43.17% for TE_2, whereas the MSE of our ReIPS is
23.75% for RM, 6.55% for TE_1, and 24.55% for TE_2. Moreover, both figures also shows
that the MAE and MSE hardly change as the number of devices increases. This is because
our ReIPS ensures the correctness of global reputation aggregation by calculating device
credibility based on point reputations, which is unaffected by the total number of devices.
Figure 5c,d exhibit the superior performance of our ReIPS in terms of precision and recall.
When the total number of devices is 60, the precision of our ReIPS is 0.05, 0.08, and 0.04
higher than the values of RM, TE_1, and TE_2, respectively, and the recall of our ReIPS is
0.1, 0.44 and 0.1 higher than the values of RM, TE_1, and TE_2, respectively. This is because
our ReIPS can accurately detect and filter false point reputations generated by malicious
devices. Furthermore, Figure 5 demonstrates that our ReIPS maintains good performance
stability as the number of devices increases, making it suitable for IoT-enabled PSPSs with
a large number of intelligent inspection devices.
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Figure 5. Performance in different methods versus the total number of devices. (a) MAE. (b) MSE.
(c) Precision. (d) Recall.

6.3. Performance in Collusion Attack Scenarios

Figure 6 plots the four performance metrics for different methods versus the percentage
of collusion devices, with a fixed total of 100 devices. As shown in Figure 6a–d, our ReIPS
consistently outperforms the benchmarks with lower MAE and MSE, and has a higher
precision and recall as the percentage of collusion devices increases. For example, when
the percentage of collusion devices is 20%, the MAE and MSE of our ReIPS are 38.16% and
14.66% for BS-RE, and 31% and 9.57% for ReIPS-NoCDI, respectively. Regarding precision
and recall, our ReIPS obtained values 0.11 and 0.018 higher than BS-RE, and 0.16 and
0.014 higher than ReIPS-NoCDI, respectively. Unlike ReIPS-NoCDI, our ReIPS considers
the impact of malicious evaluation behaviors from collusion devices on global reputation
aggregation. Our proposed knowledge graph-based collusion device identification method
accurately detects collusion devices, filters out false point reputations, and removes devices
providing bad services from the IoT network. This ensures the correctness of global
reputation evaluation under collusion attack scenarios. Moreover, compared to BS-RE, our
ReIPS considers both behavioral and semantic similarities between devices, enhancing its
collusion device identification ability. Therefore, our ReIPS can ensure secure reputation
evaluation in IoT-enabled PSPSs with single-point and collusion attack scenarios.
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Figure 6. Performance in different methods versus the percentage of collusion devices. (a) MAE.
(b) MSE. (c) Precision. (d) Recall.

7. Conclusions

This paper presented ReIPS, a secure cloud-based reputation evaluation system de-
signed to maintain a trusted IoT environment comprising intelligent inspection devices
in PSPSs. We first introduced a cloud platform for IoT-enabled PSPSs to handle resource-
consuming operations related to reputation evaluation. Then we proposed a novel rep-
utation evaluation model based on BPNN and PR-WDNM to improve the precision and
objectivity of reputation evaluation. Our PR-WDNM was used to detect malicious devices
that launch single-point attacks and improve the correctness of global reputation aggre-
gation. Moreover, we proposed a knowledge graph-based collusion device identification
method that utilizes both behavioral and semantic similarities to accurately detect colluding
devices and prevent their impact on global reputation aggregation. Simulation results
demonstrate that our ReIPS exhibits good performance and usability in IoT-enabled PSPSs.
Future work is in progress to apply our ReIPS in real PSPSs and evaluate its universality
with more experimental parameter adjustments related to the network status, multi-type
attacks, and improved learning algorithms.
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