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Abstract: Atrial fibrillation (AF) is an arrhythmic cardiac disorder with a high and increasing preva-
lence in aging societies, which is associated with a risk for stroke and heart failure. However, early
detection of onset AF can become cumbersome since it often manifests in an asymptomatic and
paroxysmal nature, also known as silent AF. Large-scale screenings can help identifying silent AF
and allow for early treatment to prevent more severe implications. In this work, we present a ma-
chine learning-based algorithm for assessing signal quality of hand-held diagnostic ECG devices to
prevent misclassification due to insufficient signal quality. A large-scale community pharmacy-based
screening study was conducted on 7295 older subjects to investigate the performance of a single-lead
ECG device to detect silent AF. Classification (normal sinus rhythm or AF) of the ECG recordings
was initially performed automatically by an internal on-chip algorithm. The signal quality of each
recording was assessed by clinical experts and used as a reference for the training process. Signal
processing stages were explicitly adapted to the individual electrode characteristics of the ECG device
since its recordings differ from conventional ECG tracings. With respect to the clinical expert ratings,
the artificial intelligence-based signal quality assessment (AISQA) index yielded strong correlation of
0.75 during validation and high correlation of 0.60 during testing. Our results suggest that large-scale
screenings of older subjects would greatly benefit from an automated signal quality assessment
to repeat measurements if applicable, suggest additional human overread and reduce automated
misclassifications.

Keywords: atrial fibrillation; ECG signal quality assessment; single-lead ECG screening

1. Introduction

Atrial fibrillation (AF) is a cardiac arrhythmia with a high and increasing prevalence
in aging societies, which is associated with a risk for stroke and heart failure. AF affects
around 1–2% of the overall population [1,2]. However, the prevalence of AF increases
with age, with one European study reporting a prevalence of 0.7% in the age group of
55–59 years and 17.8% in individuals aged over 85 years [3]. AF is associated with a 5-fold
increased risk for strokes [4], a 3-fold increased risk for heart failure [5], and an overall
higher risk for mortality [5]. Additionally, untreated AF appears to be associated with a
50% increased risk for dementia [6].

The European Society of Cardiology (ESC) Guidelines for the management of atrial
fibrillation [7] describe a progressive character of AF if untreated, which often starts as
paroxysmal AF and evolves to persistent AF and long-standing/permanent AF. Symp-
tomatic or asymptomatic episodes may appear in any of these stages. A diagnosis of AF is
typically established through a 12-lead ECG in patients with suspected but undocumented
AF. However, early detection of onset AF can become cumbersome since it often manifests
in an asymptomatic and paroxysmal nature [8], which is known as silent AF, and AF can
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only be diagnosed if present during an ECG recording. Therefore, such patients may remain
undiagnosed or may only be diagnosed incidental when being treated for other conditions.

Given the high prevalence of silent AF of up to 30% in patients with risk for stroke,
the US National Heart, Lung, and Blood Institute (NLBHI) recommends the use of nonin-
vasive methods to identify and characterize incident and recurrent AF, especially in clinical
and research settings [9]. Recently, various devices for AF detection, such as stand-alone or
mobile systems, have become widely available for large-scale investigations [10]. These
include electrocardiographic, photoplethysmographic or mechanical sensors with varying
levels of accuracy for automated AF detection, whereas ECG sensors generally provide
higher accuracy [11,12]. Machine learning and artificial intelligence-assisted diagnostics
are expected to significantly improve the specificity and sensitivity of large-scale screenings
when trained on a large set of data sets that will become available in the near future [13].

Large-scale ECG measurement devices, such as ECG hand-held sticks, rely on easy-to-
apply electrode conditions and signal acquisition to provide accurate recordings of cardiac
electrical activity. For reasons of simplicity, these measurement devices typically realize
a single-lead measurement to capture the cardiac electrical signals [10]. The electrode
characteristics of these devices are critical for accurate signal acquisition, as they must have
low impedance and high signal-to-noise ratio (SNR) to capture small amplitude signals [14].
Signal quality can be affected by various factors, such as patient movement, electrode-skin
interface characteristics, and environmental noise [15]. Motion artifacts may distort the
ECG signal, leading to false positive or false negative decisions in AF detection [16].

The accuracy of automated AF detection is limited [17] and preliminary results indicate
that it may be associated with age and underlying comorbidities, which are also the
target groups for AF screening [18]. A reliable signal quality assessment (SQA) is of
major importance to optimize the classification performance independently of individual
influences. SQA for ECG recordings has been proposed in the literature before using
different approaches. Hayn et al. presented an algorithm, which assess signal quality base
on the QRS detection performance [19]. They implemented a threshold-based classification
based on four different signal features. Li implemented an SQA method based on spectral
analysis, which can assess the signal quality of a single-lead ECG quantitatively [20]. Zhang
and Zhao described an effective system for ECG quality assessment based on simple
heuristic fusion and fuzzy comprehensive evaluation of the signal quality indexes, which
can discriminate between high- and poor-quality ECGs [21]. Their algorithmic approach
was based on hard thresholding of two spectral features and one statistical parameter.
Clifford et al. proposed an algorithm based on novel and previously published signal
quality metrics, which can achieve a high classification accuracy for determining the clinical
acceptability of ECGs [15].

Recent research has increasingly focused on the accuracy of wearable devices, par-
ticularly wrist-worn devices and hand-helds, to detect silent and paroxysmal AF. Be-
lani et al. found that wrist-worn devices, including Apple Watch, Samsung, and Kar-
diaBand, demonstrated promising results in detecting AF in patients with paroxysmal
AF [12]. Prasitlumkum et al. found that smartphones and smartwatches had similar
diagnostic accuracies in detecting AF, with a sensitivity of 94% and a specificity of 96%
for smartphones and a sensitivity of 93% and a specificity of 94% for smartwatches [22].
Zink et al. used an single-lead ECG stick to detect AF within a large-scale pharmacy-based
study [23]. Pereira et al. reviewed the state of the art in AF detection with wrist-worn
devices and found that the methods show excellent accuracy for AF detection, but more
studies are needed to determine the accuracy of the technology for ambulatory long-term
monitoring [24].

This study aimed to determine the accuracy of a single-lead ECG device in a pharmacy-
based screening approach using a MyDiagnostick ECG device. A machine learning ap-
proach based on multiple features from different domains is applied to provide an artificial
intelligence-based signal quality assessment (AISQA) to support the reliability of the automated
AF screening. The rest of this paper is organized as follows. In Section 2, we analyze the
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basic requirements associated with the ECG sensor setup used and discuss the limitations
and possibilities of such devices. In Section 3, we present an approach to quantify the
signal quality of ECG recordings obtained in a large-scale clinical study. The results are
presented and discussed in Sections 4 and 5, respectively. Finally, we conclude this paper
with Section 6 and give an outlook on the next steps in this project.

2. Analysis of Prerequisites
2.1. Single-Lead ECG Device for AF Detection

In this study, a hand-held device (MyDiagnostick, Applied Biomedical Systems, Maas-
tricht, The Netherlands) was used to record ECG data on a large-scale basis. The device is
depicted in Figure 1. It is designed to be used by healthcare professionals for easy diagnosis
of AF. The device has flat metal electrodes at both ends that are grasped by the subjects
to obtain the Einthoven I-lead ECG signal with a sampling rate of fs = 200 Hz. The ECG
signal is then analyzed by the internal software to detect any abnormalities or AF-related
arrhythmia. The system can be connected to a computer or mobile device for real-time
monitoring and offline data analysis. The device has been shown to be a reliable and
effective tool for the diagnosis of arrhythmia, with a high level of agreement with standard
12-lead ECG measurements.

Figure 1. The MyDiagnostick device used in the our study. The device incorporates two metal handle
electrodes and performs an Einthoven I-lead ECG when held by the user.

2.2. Characteristics and Simulation of Metal Electrodes and Measurement Device

In order to implement sophisticated algorithms for assessing the signal quality and
finally classifying for different cardiac arrhythmia, the signal morphology resulting from
the environmental conditions and the measurement device itself needs to be understood
in detail. Along with the metal electrodes of the utilized device and the specific mea-
surement setup, some specific characteristics of the signal processing chain arise, which
need further consideration. First, metal electrodes are not adhesively connected to the
skin and, therefore, prone to an increased influence of motion artifacts. Additionally, gel-
based wet-contact electrodes (usually Ag/AgCl) provide an optimal interface to the ionic
conduction over the skin-electrode interface [25]. The main difference between these two
types of electrodes is the categorization into polarizable and non-polarizable electrodes,
respectively. In polarizable electrodes, the metal electrode material cannot ionize into the
salt solution and they are therefore prone to charge separation caused by the increased
capacitive properties due to a possibly oxidized electrode surface [14].

Additionally, metal electrodes highly depend on current characteristics of the con-
necting skin area and underlying tissue properties. Especially when being applied to the
hands, the outer layer of the skin, the stratum corneum (SC), adds a significant dynamically
changing impact on the overall skin-electrode impedance characteristics. The complex
impedance can be modeled by a capacitance and a parallel resistance. The resistance of the
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SC Rsc varies between several 100 kΩ and 10 MΩ [26]. The capacitance Csc of the SC was
approximated by a cylindrical capacitance representation, which can be described by

Csc = 2 π ε0εr
lelec

ln
(

delec+dsc
delec

) , (1)

where ε0 denotes the vacuum permittivity, lelec and delec are the length and the radius of
the metal handle electrodes, respectively, and dsc is the thickness of the SC of the palm.
The relative permittivity εr of the SC was reported by Gabriel et al. [27]. It can be regarded
as approximately constant over the range of frequencies that are of interest to ECG analysis
and varies in magnitude from 103 to 105 with the respective humidity conditions of the
skin [27,28]. The thickness dsc of the SC on the hands strongly depends on individual
patient characteristics and location and is typically in the range of several 10 µm up to
800 µm [29,30]. The capacity of the SC was calculated for an effective electrode length of
lelec = 4.5 cm and an electrode radius of delec = 1.1 cm according to the device manual.
The results presented in Figure 2 suggest a capacity range of 10 nF to 100 µF over the range
of humidity conditions and SC thickness.
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Figure 2. Capacitance of the stratum corneum over the layer thickness. The relative permittivity is
additionally dependent on the skin humidity.

Besides the additional influences of the skin-electrode interface in this specific applica-
tion and characteristics of the polarizable nature of stainless steel electrodes, systems like
this incorporating metal electrodes often include actively-driven buffers with high input
impedance Rin and coupling capacities Ccpl. In this case, the coupling capacity and the
input resistance or bias resistance form a passive high-pass filter with cut-off frequencies
in the lower 1 Hz range to suppress baseline wandering. This methodology additionally
affects the signal morphology but, on the other hand, provides a more stable measurement
signal. The equivalent circuit diagram is presented in Figure 3. To evaluate the influence of
the previously described elements on the respective ECG signal morphology, the electrical
model was simulated in MATLAB R2021b Simscape.

In our experiments, the input voltage Uecg to the system was provided by an artificially
generated ECG signal that was given by the synthesizer framework of Hoog Antink et al. [31].
The ECG signal prototypes of the synthesizer are based on templates extracted from real
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Einthoven I-lead ECG signals provided by a publicly available database [32]. Prior to each
simulation run, an ECG signal of 300 s length was generated, as would be expected when
recording with a conventional patient monitor and standard ECG electrodes. Besides the
correlation of the template morphology to a real ECG, the input signal additionally cor-
responded to the amplitude- and frequency-modulated characteristics of a realistic ECG
signal to also capture dynamical inter-beat variabilities. The measured voltage Umeas corre-
sponds to the voltage at the input of the instrumentation amplifier. After each simulation
run with a given parameterization, the resulting output signal was segmented by identify-
ing the R-peaks using the Pan-Tompkins algorithm [33] and the mean signal morphology
was calculated with respect to the percentage of the heart cycle.

Figure 3. Simplified equivalent circuit diagram of the ECG measurement chain provided by the
device used in this study. The circuit consists of the internal voltage source Uecg, which equals a
standard ECG signal measurement, the skin-electrode interface, Csc and Rsc, of the metal electrodes,
the input high pass-filter characteristic formed by the coupling capacity Ccpl and the input impedance
Rin of the analog amplifiers.

The simulations were conducted for a parameterization sweep through the range of
SC resistance and capacity values of the hand Rsc and Csc, respectively, and a coupling
capacity Ccpl range from 0.1 pF to 100 pF, which corresponds to a cut-off frequency of
0.032 Hz to 32 Hz with Rin = 50 GΩ. Since the influence of the electrode-skin interface
was found to be less significant with respect to the signal morphology (when assumed to
be constant over time yet patient-individual), the simulation results were achieved with
Csc = 10 µF and Rsc = 1 MΩ. Figure 4a shows the change of the signal morphology over a
varying coupling capacity Ccpl and, thus, a varying cut-off frequency fc of the 1st-order
input high-pass filter. In Figure 4b, the signal morphology of the original ECG recording
and the resulting measured ECG signal with an input high-pass filter with Csc = 0.3 pF or
fc = 10.6 Hz, respectively, are compared with an aligned Q-R-amplitude.
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Figure 4. Results of the measurement chain simulations. (a) Resulting changes in ECG signal
morphology due to input high-pass filter characteristic over varying coupling capacity Ccpl. Different
coupling frequencies are represented by different shades of blue from 0.1 pF to 0.1 nF, the original
ECG signal is shown in orange. (b) Comparison between original ECG signal morphology and
amplitude-aligned filtered signal for the input high-pass characteristic with a cut-off frequency of
fc = 10.6 Hz.

2.3. Consequences for ECG Signal Evaluation

Several observations can be obtained from Figure 4 that provide information for the
subsequent signal processing chain. First, the measurement signal is strongly affected
by the input high-pass filter, which manifests both in amplitude as well as morphology
(predominantly P-wave, S-wave, and T-wave). Especially for smaller P-wave amplitudes,
the resulting waveform after high-pass filtering can be masked by noise artifacts with
similar amplitude. The absence of P-waves, which is a necessary characteristic of AF, may
therefore not be a reliable feature for identifying AF, especially for low signal quality-type
ECG recordings. The QRS-complexes, on the other hand, still have a distinct characteristic
that can be identified with standard peak detection methods, i.e., the Pan-Tompkins algo-
rithm [33]. The T-wave tends to appear as a fully periodic sinusoidal signal at first and
then turns negative as the coupling capacitance decreases. The isoelectric line is reached
much earlier due to the high-pass characteristic. Therefore, important parameters for other
types of cardiac arrhythmias, such as ST segment length or ST deviations, can hardly be
determined reliably, so that additional diagnostic capabilities are limited.

Additionally, a high-pass filter with a comparably high cut-off frequency of fc > 1 Hz
reduces baseline wandering and thus enables valid ECG measurements with low settling
time but, on the other hand, lowers the energy in the signal band resulting in a decreased
SNR for constant noise components in the upper frequency bands. With respect to the ECG
morphology, this results in an overall decreased R-peak amplitude and relatively amplified
noise components. As far as R-peaks can be clearly distinguished from (noise) artifacts, AF
can still be detected by an irregular heart rhythm or the absence of a discernible pattern
of the RR intervals, respectively. According to the manual of the MyDiagnostick device,
the classification algorithm is based on RR-interval dispersion, which requires reliable
R-peak detection but is not dependent on P-wave visibility.

3. Materials and Methods
3.1. Pharmacy-Based AF Screening Study

In a previously conducted study, a total of 7295 patients aged 65 years or older were
screened for AF within a four-week period at 90 participating pharmacies in Aachen,
Germany [23]. The study adhered to ethical principles and guidelines of Good Clinical
Practice and was approved by the local ethics board of the University Hospital RWTH
Aachen (Registration number: EK306/16, ClinicalTrials.gov: NCT03004859). The typical
measurement scenario in the pharmacy is depicted in Figure 5. After exclusions due to
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incomplete data and lack of automated ECG analysis, 7031 data sets were eligible for further
analysis for this work. 7107 recordings were automatically analyzed by the MyDiagnostick
devices. The overall baseline characteristics are provided in Table 1.

Figure 5. Typical measurement scenario of a potential study participant in the pharmacy. The mea-
surement with the ECG device was performed under the guidance of trained pharmacy staff.

Trained pharmacy staff recorded a one-minute single-lead ECG using the hand-held
device that provided a green or red light based on the device’s automated decision for AF
detection. A study team was available for on-site or remote assistance. ECG recordings
were retrospectively analyzed by ECG experts for heart rhythm and signal quality in a
stepwise process, with AF defined as an episode of irregular heart rhythm for at least 30 s
in absence of P-Waves. On a particular note, in this study, atrial flutter was classified as
AF due to similar clinical consequences and treatment. ECG signal quality was rated as
Q0: excellent (= 0), Q1: good (= 1), Q2: poor (= 2) or Q3: uninterpretable (= 3) based on the
possibility of heart rhythm identification.

Table 1. Baseline characteristic of pharmacy study participants with valid ECG data and resulting
decision by the single-lead ECG device (normal ECG or AF detected).

Parameter Normal ECG AF Detected Total

Population [1] n = 6675 (93.92%) n = 432 (6.08%) n = 7107
Age [years] 74± 5.8 77± 6.2 74± 5.9
Gender [m/f] 2732/3943 245/187 2977/4130
BMI [kg/m2] 27± 4.7 26± 4.7 27± 4.7

The clinical experts have assessed both the signal quality and the underlying nature of
the ECG morphology. In case a final diagnosis for heart rhythm was not possible due to
insufficient signal quality, the ECG recording was assessed as uninterpretable. The percent-
ages of ratings of the clinical experts are provided in Table 2. These decisions were used as
the ground truth reference for the further machine learning-based methods of quantifying
the signal quality.
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Table 2. Baseline data of signal quality assessment by clinical experts sorted by cardiological classifi-
cation (Normal ECG rhythm, AF or other abnormal ECG).

Percentage
Normal ECG Percentage AF Percentage

Other
Percentage

Data Set
Signal Quality [%] (n) [%] (n) [%] (n) [%] (n)

Excellent 98.20 (817) 1.80 (15) 0 (0) 11.83 (832)
Good 95.79 (4578) 4.21 (201) 0 (0) 67.97 (4779)
Poor 88.24 (1185) 11.76 (158) 0 (0) 19.10 (1343)
Uninterpretable 0 (0) 0 (0) 100 (77) 1.10 (77)
Total 93.59 (6580) 5.31 (374) 1.10 (77) 100 (7031)

3.2. ECG Preprocessing

The signal processing for assessing the signal quality of a single ECG recording was
realized in a multi-step approach. First, segments affected by motion artifacts were detected
and removed by applying a custom algorithm tailored to the specific characteristics of the
device used in this study. Secondly, if according to current guideline recommendations [7]
the remaining continuous ECG tracing was longer than 30 s, the segment was further
analyzed for potential markers of signal quality. Therefore, we first identified the R-peaks
to calculate the heart rate (HR) using a previously implemented adaptive method for peak
detection [34]. Secondly, we extracted the average signal morphology over the heart cycle to
finally calculate a set of global signal features and morphology-related features. The overall
processing chain is depicted in Figure 6.

Figure 6. Signal processing chain for preprocessing the ECG recordings prior to feature extraction.

3.2.1. Motion Artifact Removal

For motion artifact detection and removal, the signal was processed window-based
with the assumption that signal characteristics will significantly differ when affected by
motion artifacts. The window length was set to 5 s, such that approximately 5 consecutive
heartbeats were included in a single analysis window (assuming an inter-individual average
heart rate of 60 bpm). In the next step, we calculated both the fast Fourier transform
(FFT) and the empirical cumulative distribution function (eCDF) of each window to cover
temporally independent signal characteristics of both frequency and amplitude information.
Subsequently, the maximum correlation coefficients CCmax were calculated for all window-
based FFT and eCDF segments to determine the signal similarity to the average individual
signal characteristics. Therefore, for the i-th window, the correlation coefficients between
the FFT (or eCDF, respectively) of the i-th window and each other window were calculated

CCi[n] =

{
ρ(FFTi, FFTj), if i 6= j
0, if i = j.

(2)

using Pearson’s correlation coefficient ρ and sorted in descending order represented by the
vector CCi,sort. The maximum correlation coefficient of the i-th window was subsequently
calculated by

CCmax[i] =
1
N

N

∑
n=1

CCi,sort[n]. (3)
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with N = 5. The threshold for the detection of corrupted signal windows was empirically
determined as CCthr = 0.982 so that, on the one hand, motion artifacts are robustly and
reliably detected and, on the other hand, AF patterns are not accidentally detected as
motion artifacts. When one or several motion artifacts were detected in an ECG recording,
the respective segments were discarded from further analysis. If the remaining segment
duration Tseg was less than 30 s, the entire record was excluded from the analysis according
to the current guidelines [7]. In Figure 7, two exemplary recordings and their corresponding
FFT-CC and eCDF-CC values are shown. The upper graph presents a typical measurement
scenario (good quality) in which motion artifacts occur at the beginning of the recording
phase (t = 0–3 s) due to intentional relocating the hand positions on the stick. The lower
graph shows a clean recording (excellent quality) of a patient suffering from AF without
any significant motion artifact.
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Figure 7. Two exemplary ECG recordings including motion artifact detection and R-peaks identified
by the peak detection algorithm. (a) Recording of sinus rhythm affected by a motion artifact at
t = 0–3 s. The segment affected by the motion artifact is discarded from further analysis. (b) Record-
ing of a patient suffering from AF. Motion artifact detection is not affected by irregular cardiac
rhythm.
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3.2.2. Extraction of Average Signal Morphology

After identification of at least 30 s of consecutive ECG tracings in a single recording, it
was first checked for correct alignment of the device. In case that the device was held in
the wrong direction, the measurement would result in the inverse Einthoven I-direction
and, therefore, cannot provide reliable information with respect to comparability to other
recordings of this cohort. It should be noted that the device’s approach for the detection
of AF is not expected to be affected by incorrect application. Incorrect alignment can
be detected based on the effective signal amplitude distribution. For correct alignment,
the following assumption can be made for a signal vector s

mean(s) < median(s). (4)

If Equation (4) did not hold, the input signal was inverted for further processing. In the
next step, the R-peaks were identified using a previously implemented peak detection
algorithm [34] (cf. Figure 7). A recording was considered valid, if the median of the HR was
within a physiologically expected range between 40 bpm and 150 bpm. In this way, highly
noisy ECG tracings were excluded from further signal analysis, as AF detection would
most likely fail when the R-peaks could not be detected reliably. The overall statistics on
evaluated ECG tracings are provided in Table 3.

Table 3. Overall results of ECG signal preprocessing.

Percentage Percentage Percentage Percentage
Valid Invalid Peak Detection Peak Detection

Signal Quality Recording Recording Succeeded Failed

Excellent 100 (832) 0 (0) 99.52 (828) 0.48 (4)
Good 99.67 (4763) 0.33 (16) 99.41 (4751) 0.59 (28)
Poor 99.03 (1330) 0.97 (13) 98.96 (1329) 1.04 (14)
Uninterpretable 94.81 (73) 5.19 (4) 96.10 (74) 3.90 (3)
Total 99.53 (6998) 0.47 (33) 99.30 (6982) 0.70 (49)

The ECG tracings were segmented according to the identified R-peaks and subse-
quently resampled to a relative percentage of the heart cycle, such that an average mor-
phology could be determined independently of the individual HR. We then generated an
ideal heart cycle prototype from the class of ECG tracings with excellent signal quality for
quantifying the similarities of the individual signal morphologies to an ideal reference.
As the morphologies within the excellent class also showed a certain variability, we clustered
the resulting set of averaged signal morphologies according to their inter-signal distances.
We calculated the dynamic time warping (DTW) distance as a cost function between two
individual morphologies and identified four different clusters of optimally similar signal
prototypes using the k-means clustering algorithm in MATLAB R20221b. The resulting
average signal morphologies for each individual cluster for the class of excellent signal
quality are presented in Figure 8. As can be seen, approximately 90% of the variance are
covered by template clusters 1 and 4. Additionally, these clusters show minimum variance
in signal morphologies. Therefore, these clusters were selected to ideally represent the
signal prototypes of a heart cycle. It should be noted that the simulation results in Figure 4
also show significant similarity to the extracted signal prototype.



Sensors 2023, 23, 5618 11 of 20

0 20 40 60 80 100

Template Cluster 2 (n = 8)

0 20 40 60 80 100
−0.5

0

0.5

A
m

pl
it

ud
e

[m
V

]

Template Cluster 1 (n = 414)

0 20 40 60 80 100
−0.5

0

0.5

Percentage Cycle [%]

A
m

pl
it

ud
e

[m
V

]

Template Cluster 3 (n = 88)

0 20 40 60 80 100
Percentage Cycle [%]

Template Cluster 4 (n = 322)

Figure 8. ECG heart cycle prototypes extracted from the excellent´signal quality category. The signal
prototypes were clustered into four separate groups according to maximum signal similarity using
the DTW distance. The mean signal morphology is shown in dark blue, the standard deviation is
represented by the light blue area.

3.2.3. Feature Extraction for Signal Quality Assessment

Different features were extracted from the raw ECG tracing as well as from the cal-
culated average signal morphology to assess the signal quality. The signal features can
be categorized into statistical features, time-domain features, frequency-domain features
and morphology-related features. In total, we extracted 22 different features, which are
listed and further described in Table 4. The features were calculated on a global level
for each ECG recording, such that the feature vector x(s) for a single measurement was
one-dimensional and temporally independent with x ∈ R22×1.

In addition to commonly used features provided by the statistical features, the time-
domain and the frequency-domain features, we calculated a set of parameters that describe
the similarity to the ideal ECG single-lead measurement prototype as expected by applying
the device used in this study (cf. Section 3.2.2). The similarity is quantified using four
metrics, which each aim at different manifestations of similarity. These are provided by
the Euclidean distance, the Cityblock distance or L1 distance, the DTW distance and the
correlation coefficient.
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Table 4. Detailed description of the set of ECG features used for the signal quality assessment.

Category Name Description

St
at

is
ti

ca
l

Fe
at

ur
es

mean 1st central moment over valid ECG signal segment
median Median value over valid ECG signal segment
standard deviation 2nd central moment over valid ECG signal segment
skewness 3rd central moment over valid ECG signal segment
kurtosis 4th central moment over valid ECG signal segment

Ti
m

e-
do

m
ai

n
Fe

at
ur

es
mean HR Average heart rate calculated from identified

RR-intervals

SDNN Standard deviation of RR-intervals over 1-minute
recording [35]

coverage Segment length Tseg of valid ECG tracing (cf.
Section 3.2.1)

eCDF consistency Mean value of eCDF correlation coefficient [36]

Signal consistency DTW Distance between first half and second half of ECG
recording [37]

Fr
eq

ue
nc

y-
do

m
ai

n
Fe

at
ur

es

FFT consistency Mean value of FFT correlation coefficient

basSQI Signal quality index (SQI) for ECG baseline wander
according to [15]

qrsSQI SQI for QRS complex power according to [15]
pliSQI SQI for power-line interference according to [38]
SNR Signal-to-noise ratio according to [38]
mean SQI Mean SQI: (basSQI + qrsSQI + pliSQI)/3 [38]

M
or

ph
ol

og
y-

re
la

te
d

Fe
at

ur
es

mean R-peak amplitude Average R-peak amplitude from peak detection
mean template STD Average standard deviation from mean morphology

Euclidean distance Euclidean distance between mean morphology and
optimal signal prototype

Cityblock distance One-norm between mean morphology and optimal
signal prototype [39]

DTW distance DTW distance between mean morphology and optimal
signal prototype [37]

Correlation Coefficient Correlation coefficient between mean morphology and
optimal signal prototype

3.3. Regression Training

In order to automatically calculate a signal quality index from the set of features that
can be extracted from every single measurement, we conducted a regression to relate the
feature vectors to the clinical expert ratings. The index is denoted as artificial intelligence-
based signal quality assessment (AISQA). The regression training was conducted using the
Regression Learner toolbox in Matlab R2021b. The set of ECG recordings was separated
into a training data set and a test data set with a 20% holdout with respect to the overall
data set. During training, we used five-fold cross-validation to prevent overfitting. Based
on the first results using different regression approaches, we focused on Gaussian process
regression. The rational quadratic kernel, the Matern 5/2 kernel and the exponential kernel
were used for optimizing the prediction performance.

4. Results

We have used the root-mean-square error (RMSE), the mean absolute error (MAE) and
the Pearson correlation coefficient ρ between the clinical expert rating and the AISQA value
as metrics for evaluating the SQA performance of the respective regression approach or
chosen kernel. The results of the training and test phases are presented in Table 5. The com-
bination of features through the regression formulation was projected to the arbitrarily
chosen signal quality range of [0 . . . 3]. The RMSE and MAE were calculated on this basis.
The balanced accuracy (BA) was calculated for the receiver operating characteristics (ROCs)
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with respect to the binary decision interpretable (excellent, good or bad) or uninterpretable
signal quality.

Table 5. Results of the training and test phases of the Gaussian process regression using different
kernel implementations. Results are presented as root-mean-square error (RMSE), mean absolute
error (MAE), Pearson correlation coefficient ρ and the balanced accuracy (BA).

Phase Kernel RMSE [1] MAE [1] Pearson’s ρ [1] BA [%]

Training/
Validation

quadratic 0.45952 0.34478 0.62269 96.37
Matern 5/2 0.46884 0.34977 0.60161 95.12
exponential 0.39621 0.29826 0.75242 98.01

Test
quadratic 0.46909 0.35435 0.60126 94.74
Matern 5/2 0.47092 0.35226 0.59710 93.73
exponential 0.46800 0.35582 0.60365 94.99

The training process results are additionally presented in a violin plot in Figure 9.
As can be seen, the distributions concerning the reference expert rating approximately
follows normal distributions. As expected, due to the heuristic rules for the assessment of
signal quality by clinical experts, the four categories cannot be clearly distinguished from
each other and the distributions overlap to a certain extent. However, the correlation of
the calculated AISQA to the reference signal quality is evident from Figure 9. Therefore,
the chosen set of features can be assumed to reflect signal characteristics that correspond to
the signal quality obtained from human overread.

Excellent Good Poor Uninterpretable
0

1

2

3

Clinical Expert Rating

A
IS

Q
A

[1
]

Mean
Median

Figure 9. Violin plot presenting the results of the training process of mapping the input feature space
to the clinical expert rating.

To better visualize the assessment capabilities of the implemented AISQA index, both
the best-rated ECG recordings in each signal quality category and the worst-rated ECG
recordings were identified and are shown in Figures 10 and 11, respectively. First, as it
can be observed in Figure 10a–c, the signal morphologies as introduced in Section 2.2 and
Section 3.2.2 are clearly visible. Additionally, the resulting AISQA values from 0.174 to
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0.561 do not significantly differ concerning the mean value of the excellent category of
approximately 0.6. However, the best-rated ECG recording in the uninterpretable category
with an AISQA value of 1.392 is more in the range of the poor signal quality. In this
context, it should be noted that the single beat events are hardly detectable in Figure 10d.
In contrast, the QRS complexes are still visible in Figure 11a,b. However, clearly visible P-
wave activity cannot be observed, but it is beneficial and essential for the definite diagnosis
of AF. The AISQA values of 1.594 and 2.346 assume a poor signal quality. The worst-rated
recordings in the categories poor and uninterpretable are highly affected by noise, so the QRS
complexes cannot be reliably detected, and the signals can be considered uninterpretable.
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(a) Best-rated in Q0: AISQA = 0.20471
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]

(b) Best-rated in Q1: AISQA = 0.17398
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]

(c) Best-rated in Q2: AISQA = 0.56081

0 2 4 6 8 10 12 14 16 18 20
−0.2
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(d) Best-rated in Q3: AISQA = 1.3916

Figure 10. Best-rated ECG recordings according to the AISQA index from each signal quality category
assessed by the clinical experts.

Finally, the correlation between falsely classified ECG recordings according to the
automated decision of the device and the corresponding signal qualities was investigated.
Therefore, false device classifications were identified by comparing the device’s decision to
the diagnosis provided by the clinical experts. A classification was considered false if the
device’s decision did not match the clinical classification. This included both false-positive
and false-negative decisions and those made based on uninterpretable ECG recordings.
In total, 3.16% (n = 222) of the recordings were classified as possibly false. As shown in
Table 6, there is a moderate correlation between the false decision of the automated AF
classification and signal quality index determined by human overreading, i.e., the worse the
signal quality was assessed, the higher the probability of misclassification. As can also be
seen, the correlation coefficient increases slightly when AISQA is applied, suggesting that
automated quality assessment can generalize the heuristic rules using the feature-based
regression approach.



Sensors 2023, 23, 5618 15 of 20

0 2 4 6 8 10 12 14 16 18 20

−0.2

0

0.2

EC
G

[m
V

]

(a) Worst-rated in Q0: AISQA = 1.5942
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(b) Worst-rated in Q1: AISQA = 2.3456
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(c) Worst-rated in Q2: AISQA = 2.8026
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(d) Worst-rated in Q3: AISQA = 3.1001

Figure 11. Worst-rated ECG recordings according to the AISQA index from each signal quality
category as assessed by the clinical experts.

Table 6. Correlation between false decision of automated AF classification and signal quality indices
(clinical expert rating vs. AISQA).

Variable Pearson’s ρ [1] (p-Value [1])

Expert rating 0.2717 (p < 0.001)
AISQA 0.3664 (p < 0.001)

Figure 12 shows the number of repeated measurements over the AISQA threshold for
the theoretical construct that a measurement should be repeated when a particular signal
quality value is exceeded. In parallel, the percentage of remaining false classifications is
shown. As can be seen, the remaining misclassifications increase approximately linearly for
an AISQA value between 1 and 2.5, suggesting that misclassifications can appear almost
equally distributed over the good and poor signal quality categories.

In Figure 13, the Receiver Operating Characteristic (ROC) of the implemented SQA
approach with respect to the binary decision interpretable (excellent, good or poor signal
qality) or uninterpretable signal quality is presented. We have evaluated the ROC for
single subgroups of features (statistical, time-domain, frequency-domain and morphology-
based features) as introduced in Table 4. The results are additionally compared to the
performance of the overall AISQA including all features and the benchmark reference
provided by Clifford et al. [15].
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Figure 12. Percentages of repeated measurements and remaining false AF classification over AISQA
threshold if a measurement is assumed to be repeated when the signal quality exceeds the threshold.
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Figure 13. Reveiver Operating Characteristic with respect to benchmark characteristic by Clif-
ford et al. [15] with the respective Area Under Curve (AUC) measures.

5. Discussion

Large-scale screening for cardiac arrhythmia remains a challenging task due to the
specific limitations of partially unsupervised and easily applicable measurement scenarios.
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I.e., the measurement devices are often designed such that the patient conducts the measure-
ment himself. This results in high requirement standards for user-independent operability
to ensure reproducibility over a wide range of user expertise and environmental factors.

The device used in this study is easily applicable as the user must hold the device
to start a measurement. The data is stored internally so clinical experts can analyze the
recordings retrospectively. Additionally, the device includes an automated AF detection
functionality that can indicate a high probability of the occurrence of AF. In the case of
an abnormal R–R interval dispersion during the measurement period, the diagnosis is
supposed to be substantiated by conducting an extended 12-lead ECG analysis by clinical
experts. Concerning large-scale screenings, false positive decisions could increase demand
for clinical diagnostic and medical resources.

The device has two metal electrodes, which avoids the need for conventional adhesive
ECG electrodes. As introduced in Section 2.2, the electrode characteristics significantly
influence the signal morphology, which differs from the conventional ECG due to the
high-pass transfer characteristics of the passive input stage. Therefore, it should be noted
that further ECG analyses, including the evaluation of P and T waves or the extraction of
temporal parameters such as the PQ interval or the ST segment, require more complex signal
processing to ensure reliable diagnosis. Additionally, a more extensive and automated ECG
analysis would require consistently measured data. In the study presented in this paper,
in some cases, the device was inadvertently held in the opposite direction, resulting in an
inverse Einthoven I-lead measurement. Although this did not affect the automated AF
detection of the device itself, a more detailed, automated retrospective ECG analysis with a
specific focus on other cardiac abnormalities could be confounded by inconsistencies.

Overall, large-scale AF screening will clearly benefit from optimized measurement
techniques and decision-making to decrease the false decision rate reducing unnecessary
diagnostic workload and at the same time, increasing the acceptance and thus the applica-
bility to a broader group of potentially high-risk subjects. This will include miniaturized
integrated electronics to provide portable or wearable ECG devices and the concepts to
integrate ECG measurements into everyday life situations unobtrusively. This can be
achieved by ECG sticks, such as those used in this study, smart wearables, such as smart-
watches or chest strap heart rate monitors, or ECG measurement technology integrated
into beds, chairs, armchairs or car seats. Along with the sensor concepts, a more effective
decision-making process based on novel hardware-accelerated methods, such as neuromor-
phic computing, could also contribute to sophisticated large-scale ECG diagnostics. This
is especially concerning the increasing number of available clinical data sets for cardiac
arrhythmia, which enables deep learning-based approaches for decision-making.

In addition, in the context of this study, a thorough understanding of the sources
affecting the signal quality of the ECG measurements and a corresponding SQA will
improve AF detection. As shown in Section 2.2, modeling and understanding the input
filter stages of the ECG measurement devices help interpret the resulting signal morphology,
which may appear distorted in comparison to conventional ECG measurements. Since we
have identified similarities between the simulated signal morphology (cf. Figure 4) and the
average ECG prototype obtained from excellent-quality signals (cf. Figure 8), a more detailed
ECG analysis would be possible based on the a-priori knowledge of the filter characteristics.

The automated SQA implemented in this project reflected the trend of decreasing
signal quality according to the clinical expert ratings (cf. Figure 9). These results suggest that
the combination of extracted features is suitable for proper SQA of individual recordings.
However, the distributions over the four quality categories rated by human overread are not
clearly separable. In this context, it is also evident from Figures 10 and 11 that the SQA by
the clinical experts may be affected by subjective biases, such that the ground truth reference
is subject to natural variability. Additionally, the SQAs by clinical experts were based on
heuristic rules, so we cannot assume a linear relationship between the four categories.
In this case, the AISQA can be considered an interpolation method that smooths clinical
expert decisions based on objective signal characteristics. Although the regression approach
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using Gaussian processes already yielded satisfying results concerning an automated SQA,
a classification approach can also be considered valid given the heuristic rules for human
overread SQA.

The AISQA implemented in this project was furthermore able to increase the corre-
lation between signal quality rating and false decisions of the ECG device. This result
substantiates the assumption that the AISQA provides a valid and robust basis for assessing
the ECG signal quality of this specific type of ECG device. As can be seen in Figure 12,
the AISQA, however, is not perfect concerning false classifications. This graph can be fur-
ther used to identify a sweet spot between the percentage of measurements to be repeated
due to insufficient signal quality and remaining false classifications. It should be noted that
the number of incorrect classifications and total measurements, respectively, may not be
representative of such decisions. However, the AISQA needs to be further validated in a
prospective study in the future. This can for example include indicating a measurement of
insufficient signal quality by the device to directly repeat the recording.

Compared to previously proposed approaches for signal quality assessment of single-
lead ECG recordings [15,19–21] our approach is based on a set of multi-domain signal
features that allow for a more comprehensive analysis of the signal quality. Additionally,
similar approaches often focus on spectral-based characteristics and hard thresholding,
which can not directly be applied to measurement scenarios with varying coupling charac-
teristics (cf. Section 2.2) and unspecified hardware settings. In this contribution, we have
presented an approach based on multi-domain signal characteristics and a machine learn-
ing approach to assess the signal quality on a continuous scale and can be applied to any
other configuration of single-lead ECG measurement devices. Consequently, the algorithm
needs to be trained on a large dataset, which needs to be annotated by experts in the field
to provide sufficient prediction accuracy.

Figure 13 shows the ROC curve of the different subgroups of features according to
Table 4. It also compares the results of the approach implemented with a benchmark
reference provided by Clifford et al., who tested their SQA method on a large dataset [15].
As can be seen, the performances of the individual subgroups highly differ. Interestingly,
the feature subset that was used by Clifford et al. (cf. frequency-domain in Table 4) yielded
the worst results and did not match the reference. This can be explained do to the fact that
we only had a small number of recordings that were considered uninterpretable (n = 77)
and the heuristic classification criteria may have been different. Additionally, Clifford et al.
applied their algorithm to conventional 12-lead ECG recordings. Fusing features from
different domains, however, yielded satisfactory results with a comparable ROC to the
reference method and is therefore considered a valid approach for assessing the signal
quality of single-lead ECG data.

6. Conclusions

This paper demonstrates the signal deformations of a hand-held ECG diagnostic
device incorporating two metal electrodes. Based on these prerequisites, we implemented
an algorithm for preprocessing the ECG signal for reliable feature extraction. A regression
approach was trained to map a combination of 22 features to clinical experts’ reference
SQA. The process was validated using a large-scale AF screening data set with 7031 older
subjects. The regression approach yielded promising results in assessing the signal quality
and, therefore, reducing false classifications by repeating the measurement for exceeding a
certain threshold. Future work will include further investigations on reconstructing the
original ECG morphology by applying inverse filtering. Additionally, the data set will be
used to implement and validate novel approaches for classifying AF with specific regard to
an on-chip application.
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