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Abstract: Tungsten heavy alloys (WHAs) are an extremely hard-to-machine material extensively
used in demanding applications such as missile liners, aerospace, and optical molds. However, the
machining of WHAs remains a challenging task as a result of their high density and elastic stiffness
which lead to the deterioration of the machined surface roughness. This paper proposes a brand-new
multi-objective dung beetle algorithm. It does not take the cutting parameters (i.e., cutting speed,
feed rate, and depth of cut) as the optimization objects but directly optimizes cutting forces and
vibration signals monitored using a multi-sensor (i.e., dynamometer and accelerometer). The cutting
parameters in the WHA turning process are analyzed through the use of the response surface method
(RSM) and the improved dung beetle optimization algorithm. Experimental verification shows
that the algorithm has better convergence speed and optimization ability compared with similar
algorithms. The optimized forces and vibration are reduced by 9.7% and 46.47%, respectively, and
the surface roughness Ra of the machined surface is reduced by 18.2%. The proposed modeling
and optimization algorithms are anticipated to be powerful to provide the basis for the parameter
optimization in the cutting of WHAs.

Keywords: tungsten heavy alloys; multi-object optimization; dung beetle algorithm; response surface
method; multi-sensor

1. Introduction

Tungsten heavy alloys (WHAs) possess a unique combination of excellent physic-
ochemical properties, including high density, high mechanical strength, high Young’s
modulus, low thermal expansion, good ductility, and excellent resistance to corrosion and
radiation, as well as good formability and non-radiation pollution [1–3]. They play an
irreplaceable role in frontier scientific fields such as rockets, missiles, re-entry spacecraft,
and nuclear reactors [4–6]. A high-quality machined surface is crucial for the performance
of alloy components; therefore, machining is necessary to achieve the desired smooth-
ness/shape and precise dimensions [7]. Due to the fact that WHAs are composite materials
prepared via liquid-phase sintering, the presence of tungsten grains, which possess both
hardness and brittleness, significantly affects the cutting force and vibration of the cut-
ting tool during the cutting process. Consequently, this leads to the deterioration of the
machined surface and reduced machining efficiency.

Currently, research on WHA machining is limited and mainly focuses on areas such
as the ultrasonic elliptical vibration cutting and leveraging of single-crystal diamond
tools [8–10], tool wear mechanisms [11–14], and chemical–mechanical polishing [15,16].
Yin et al. [8] proposed a design for a single-excitation-based ultrasonic elliptical vibration
cutting device. The research results demonstrated that the device performed well in the
ultrasonic elliptical vibration cutting of tungsten alloys. Pan et al. applied the ultrasonic
elliptical vibration cutting technology to the ultraprecision machining of tungsten alloys,

Sensors 2023, 23, 5616. https://doi.org/10.3390/s23125616 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125616
https://doi.org/10.3390/s23125616
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s23125616
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125616?type=check_update&version=1


Sensors 2023, 23, 5616 2 of 14

proving that ultrasonic elliptical vibration technology can effectively improve the surface
quality of WHAs [9,10]. Further precision processing, such as polishing, of tungsten alloys
requires good initial surface conditions of the workpiece. Although ultrasonic elliptical
vibration cutting can achieve desirable surface profiles, this machining method imposes
specific requirements. Therefore, optimizing the process parameters of the conventional
machining of tungsten alloys is necessary to achieve the best possible surface conditions at
lower costs.

In recent years, bio-inspired optimization algorithms such as genetic algorithms,
artificial bee colony algorithms, and cuckoo search algorithms have achieved significant
success in the field of machining [17], which provide novel approaches for optimizing
process parameters in machining. Tanvir et al. [18] proposed a hybrid whale optimization
algorithm and applied it to optimize the cutting parameters of stainless steel. The results
showed significant improvements in the performance of stainless steel turning operations
after multi-objective optimization using the hybrid whale algorithm. Vukelic et al. [19]
used a genetic algorithm to perform multi-objective optimization of the turning process
for 4340 steels. The results demonstrated that optimizing the cutting parameters makes
it possible to improve the machining quality while simultaneously reducing the surface
roughness and cutting forces. Xue et al. [20] introduced an optimization algorithm inspired
by the behavior of dung beetles. This novel algorithm exhibits superior global optimization
capabilities compared to other algorithms and has great potential for applications in the
field of machining. However, this algorithm is only suitable for handling single-objective
optimization problems.

Machining is a non-linear and multi-modal complex process [21]. In the cutting
process, besides cutting speed, cutting depth, and feed rate, cutting forces and vibrations
also impact the machining quality of the workpiece. Tseng et al. [22] established a cutting
force model for low-carbon steel S15C using experimental data and machine learning
algorithms, studying the influence of cutting forces on the workpiece surface morphology
during turning processes. Segreto et al. [23] used vibration sensors to monitor vibration
signals during the turning process of a nickel–titanium alloy. The experimental results
showed that parameters such as vibration signal frequency, amplitude, and time-domain
features could determine critical indicators such as material removal rate and surface
quality during the turning process. When optimizing cutting parameters, it is necessary
to consider not only the cutting parameters but also the effects directly caused by forces
and vibrations.

In this study, a brand-new multi-objective dung beetle optimization algorithm was
proposed to find the optimal processing solution. It introduced the non-dominated sorting
technique into the dung beetle optimization algorithm. A regression model for cutting
parameters, cutting forces, and vibrations in the machining process of tungsten alloys
was established using response surface methodology. The constructed regression model
was used as the fitness function to optimize the cutting parameters in the tungsten alloy
machining process, obtaining the optimal combination of cutting parameters, which was
further validated through experiments. Compared to other multi-objective optimization
algorithms, the algorithm proposed in this paper demonstrates a faster convergence speed
and superior optimization capability. The following sections will describe the generation
of the RSM model, the improvement process of the DBO algorithm, and the optimization
process of the cutting parameters.

2. Materials and Methods
2.1. Workpiece and Cutting Tool

WHA (95W-3.5Ni-1.5Fe) specimens with a diameter of 14 mm were utilized for the
experiments. Table 1 illustrates the nominal composition and physical properties of the
WHA specimen used in this study. Inserts were composed of cubic boron nitride (CBN)
tips brazed onto a WC substrate. The corner radius of the insert was nominally 0.4 mm.
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These inserts were used with a tool holder with a side rake angle of 35◦, a back rake angle
of 7◦, and a lead angle (DCGW11T304).

Table 1. Chemical element composition and physical properties of 95W-3.5Ni-1.5Fe.

Properties Values

Density (g/cm3) 18.3
Hardness (HV) 380
Tensile strength (Mpa) 800
Yield strength (Mpa) 400
Young’s modulus (Gpa) 450
Deflective strength (Mpa) 1176
Thermal conductivity (W/(m·K)) 89.2

Thermal expansion coefficient (ppm/k) 4.8

2.2. Experimental Work
2.2.1. Experimental Setup

Figure 1 shows the experimental equipment and sensor system used in this study.
A cylindrical WHA workpiece in combination was carried out on a slant-bed lathe (Hi-
son, HTC150, Ningbo, China) without cutting fluids. A dynamometer (Kistler, 9119AA2,
Winterthur, Switzerland), together with an A/D data acquisition board (Kistler, 5697A,
Switzerland), was mounted on the turret of the lathe via an adaptor to capture the cutting
forces at a sampling frequency of 5 kHz per channel. The integrated electronic piezo-electric
(IEPE) triaxial accelerometer (Kistler, 8763B, Switzerland), connected with data acquisition
(National Instruments, Austin, TX, USA), was glued on a tool holder as close to the insert
as possible to better measure the vibration generated in the cutting area, with a sampling
rate of 5 kHz.

Sensors 2023, 23, x FOR PEER REVIEW 3 of 15 
 

 

tips brazed onto a WC substrate. The corner radius of the insert was nominally 0.4 mm. 

These inserts were used with a tool holder with a side rake angle of 35°, a back rake angle 

of 7°, and a lead angle (DCGW11T304). 

Table 1. Chemical element composition and physical properties of 95W-3.5Ni-1.5Fe. 

Properties Values 

 

Density (g/cm3) 18.3 

Hardness (HV) 380 

Tensile strength (Mpa) 800 

Yield strength (Mpa) 400 

Young’s modulus (Gpa) 450 

Deflective strength (Mpa) 1176 

Thermal conductivity (W/(m·K)) 89.2 

Thermal expansion coefficient 

(ppm/k) 
4.8 

2.2. Experimental Work 

2.2.1. Experimental Setup 

Figure 1 shows the experimental equipment and sensor system used in this study. A 

cylindrical WHA workpiece in combination was carried out on a slant-bed lathe (Hison, 

HTC150, Ningbo, China) without cu�ing fluids. A dynamometer (Kistler, 9119AA2, Win-

terthur, Swi�erland), together with an A/D data acquisition board (Kistler, 5697A, Swit-

zerland), was mounted on the turret of the lathe via an adaptor to capture the cu�ing 

forces at a sampling frequency of 5 kHz per channel. The integrated electronic piezo-elec-

tric (IEPE) triaxial accelerometer (Kistler, 8763B, Swi�erland), connected with data acqui-

sition (National Instruments, Austin, TX, USA), was glued on a tool holder as close to the 

insert as possible to be�er measure the vibration generated in the cu�ing area, with a 

sampling rate of 5 kHz. 

 

Figure 1. Experimental setup for capturing cu�ing forces and vibration. 

The surface roughness was measured using a stylus profilometer (Mitutoyo, SJ-210, 

Kawasaki-shi, Japan) and a trace length of 1.6 mm. The surface roughness values were 

recorded at three equally spaced locations around the circumference of the specimen to 

obtain statistically significant data for each trial. Inserts were composed of cubic boron 

nitride (CBN) tips brazed onto a WC substrate. The corner radius of the insert was nomi-

nally 0.4 mm. These inserts were used with a tool holder with a side rake angle of 35°, a 

Figure 1. Experimental setup for capturing cutting forces and vibration.

The surface roughness was measured using a stylus profilometer (Mitutoyo, SJ-210,
Kawasaki-shi, Japan) and a trace length of 1.6 mm. The surface roughness values were
recorded at three equally spaced locations around the circumference of the specimen to
obtain statistically significant data for each trial. Inserts were composed of cubic boron
nitride (CBN) tips brazed onto a WC substrate. The corner radius of the insert was
nominally 0.4 mm. These inserts were used with a tool holder with a side rake angle of 35◦,
a back rake angle of 7◦, and a lead angle (DCGW11T304). In order to reduce the impact of
tool wear on the experimental data, a new insert was used for each cutting.
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2.2.2. Experimental Design

The response surface method (RSM) is a powerful tool for analyzing the functional
relationship between multiple factors with interaction and the response value. It is capable
of establishing a high-precision high-order polynomial regression model. Compared to
many other predictive models, the response surface method considers the influence of
random errors during the experimental process on the model construction. In the field of
machining, the response surface method is widely used to analyze the relationship between
cutting parameters and material processing characteristics. This study aimed to investigate
the influence of each processing parameter on cutting force and vibration. To achieve this,
cutting speed, feed rate, and back engagement were selected as variable parameters. Table 2
shows the parameters of the cutting experiments.

Table 2. Levels of cutting parameters.

Symbol Factors Unit
Level

−1 0 1

v Cutting speed r/min 800 1100 1400
f Feed rate µm/r 20 35 50

ap Depth of cut µm 2 4 6

A total of 17 experiments were designed using the Box–Behnken design (BBD), and
the parameters and results of each experiment are provided in Table 3. It can be seen
from Table 3 that the surface roughness of the processed workpiece will decrease with the
increase in cutting force and vibration. Therefore, in order to obtain better surface quality,
the cutting parameters should be optimized with the optimization goal of reducing cutting
force and vibration.

Table 3. Experimental layout and measurement results.

Exp. No. v (r/min) ap (µm) f (µm/r) Fy (N) Ay (m/s2) Ra (nm)

1 600 30 35 11.79 0.662 461
2 600 20 20 9.588 0.851 557
3 600 10 35 7.716 0.653 454
4 600 20 50 10.15 0.415 332
5 1050 30 50 12.57 0.343 289
6 1050 20 35 9.904 0.488 321
7 1050 30 20 12.10 0.672 411
8 1050 10 20 7.492 0.656 438
9 1050 10 50 7.128 0.355 193

10 1050 20 35 9.879 0.498 346
11 1050 20 35 10.25 0.485 355
12 1050 20 35 10.16 0.472 368
13 1050 20 35 10.34 0.488 329
14 1500 30 35 13.29 0.332 398
15 1500 10 35 8.496 0.389 409
16 1500 20 50 10.97 0.236 206
17 1500 20 20 11.37 0.416 478

2.3. RSM Modeling

RSM is a statistical technique used for modeling any output of interest as a function
of contributing independent input variables. The RSM model can be expressed as a
polynomial function, typically written in the following format:

y = c0 + ∑n
i=1 cixi + ∑n

i=1 ∑n
j=1 cijxixj + ε (1)
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wherein ε indicates the fitting error, c0 is the regression coefficient of overthinking, and xi is
the input factor of the model. Drawing on research conducted by other scholars in the field
of cutting processing, it has been found that the first-order regression prediction model
lacks accuracy and adaptability. It is not capable of effectively reflecting the influence of
the internal interaction of cutting parameters on the cutting force. Polynomial regression
prediction models that go beyond the third order require a significant number of experi-
ments, which will increase the cost and burden of experimentation. Therefore, this study
established a quadratic polynomial prediction model for the regression model, which can
be expressed as follows:

y = c0 + ∑3
i=1 cixi + ∑3

i=1 cijxi
2 + ∑3

i=1 ∑3
j=1 cijxixj + ε (2)

2.4. Multi-Objective Optimization Algorithm
2.4.1. Dung Beetle Optimization Algorithm

The dung beetle optimization algorithm is based on the rolling, dancing, breeding,
foraging, and stealing behaviors of dung beetles in nature. The population optimization
algorithm, the mathematical model of the optimization algorithm, is as follows:

(a) Dung ball

Dung beetles are common insects in nature that feed on animal dung. When the
dung beetle rolls the dung ball backward, it can navigate according to the moonlight or
sunlight, so that the dung ball moves in a straight line. When there is no light source at
all, its trajectory is curved. Assuming that the intensity of the light source will affect the
movement path of the dung beetle, its position update in the search space can be expressed
as follows:

xi(t + 1) = xi(t) + α× k× xi(t− 1) + b× ∆x (3)

∆x = |xi(t)− Xw| (4)

where t represents the current iteration number; xi(t) represents the position of the i’th
iteration dung beetle; k ∈ (0, 0.2] is a constant value, representing the deflection coefficient;
b ∈ (0, 1] is a constant value, a is a natural coefficient, where the value is 1 or −1; Xw

represents the global worst position; and ∆x represents the change in light intensity.

(b) Dance

When dung beetles encounter an obstacle and cannot move, they will dance to the
top of the dung ball to reposition themselves and obtain a new route. Assuming that the
dung beetle will continue to roll the ball backward immediately after determining the new
orientation, the process can be expressed as follows:

xi(t + 1) = xi(t) + tan θ|xi(t)− xi(t− 1)| (5)

wherein θ ∈ [0, π] represents the azimuth angle.

(c) Breed

After the dung beetle transports the dung ball to a safe location and hides it, the female
dung beetle will lay eggs in the dung ball. Choosing a suitable place to lay eggs is very
important for dung beetles. The region boundary selection strategy for simulating the
spawning of dung beetles is defined as follows:

Lb∗ = max(X∗ × (1− R), Lb) (6)

Ub∗ = max(X∗ × (1− R), Ub) (7)

wherein X∗ is the current local best position; Lb∗ and Ub∗ are the lower bound and upper
bound of the spawning area, respectively; Lb and Ub represent the lower bound and upper
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bound of the optimization problem, respectively; and R = 1− t/Tmax, Tmax represents the
maximum number of iterations. Once the spawning area has been determined, the female
dung beetle will choose the egg balls in this area to lay eggs. For the DBO algorithm, each
female dung beetle lays only one egg in each iteration. The position of the ovum can be
expressed as follows:

Bi(t + 1) = X∗ + b1 × (Bi(t)− Lb∗) + b2 × (Bi(t)−Ub∗) (8)

where Bi(t) is the location information of the i’th egg in the t’th iteration; b1 and b2
represent two independent random vectors with a size of 1 × D; and D is the dimension of
the optimization problem.

(d) Foraging

Some mature small dung beetles will come out of the ground to look for food, and
an optimal foraging area needs to be established to guide dung beetles to forage. The
boundary of the optimal foraging area is defined as follows:

Lbb = max
(

Xb × (1− R), Lb
)

(9)

Ubb = max
(

Xb × (1− R), Ub
)

(10)

wherein Lbb and Ubb are the upper bound and lower bound of the optimal foraging area.
At this time, the position of the little dung beetle is updated as follows:

xi(t + 1) = xi(t) + C1 ×
(

xi(t)− Lbb
)
+ C2 ×

(
xi(t)−Ubb

)
(11)

where C1 is a random number subject to normal distribution, and C2 is a random vector
belonging to (0, 1).

(e) Pilfer

There are also some dung beetles called stealing dung beetles, which will steal dung
balls from other dung beetles. The DBO algorithm assumes that the stealing behavior
occurs at the optimal foraging position Xb, and the location of the stealing dung beetles is
updated as follows:

xi(t + 1) = Xb + S× g×
(
|xi(t)− X∗|+

∣∣∣xi(t)− Xb
∣∣∣) (12)

where g is a random vector with a size of 1 × D, and S is a constant value.
After one iteration, the ball-rolling dung beetle, the brood ball, the small dung beetle,

and the thief’s position are updated. The above four agents constitute the population of the
optimization algorithm. The DBO algorithm can use the information of different periods to
thoroughly explore the search space, avoiding falling into the local optimum, and should
have strong searchability.

2.4.2. Multi-Objective Dung Beetle Optimization Algorithm Based on
Non-Dominant Ordering

Non-dominated sorting is one of the most popular and effective techniques in multi-
objective optimization algorithms [24]. It sorts and ranks Pareto optimal solutions according
to their level of dominance. Among them, solutions that are not dominated by any solution
are assigned rank 1. Those dominated by only one solution are assigned rank 2, solutions
that are dominated by only two solutions are assigned rank 3, and so on. Afterward,
solutions are selected according to their ranks to improve the quality of the population.
The flowchart of the NSDBO algorithm is shown in Figure 2.
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The optimization process of the NSDBO algorithm mainly includes the following three
stages.

Stage 1: Initialize the dung beetle population and algorithm parameters, and assign
the proportions of the four agents in the algorithm. Using the constructed Fz and Az models
as the fitness function, calculate the fitness of each agent in the population. Compute the
non-dominated solutions in the initial population and save them in the Pareto archive.
Compute the crowding distance for each Pareto archive member.

Stage 2: Update the position of the ball-rolling dung beetle and the brood ball using
Formulae (3)–(8). Update the position of the small dung beetle and the thief beetle using
Formulae (9)–(12). Eliminate agents that exceed the boundary and generate corresponding
new individuals.

Stage 3: Calculate the fitness value of each agent in the population after updating
the position. Identify new non-dominated solutions in the population and save them in
the Pareto archive, and eliminate the dominant solutions in the Pareto archive. Perform
non-dominated sorting and update the Pareto optimal solution. Repeat the above process
until the iteration termination condition is satisfied.

3. Results and Discussion
3.1. Analysis of Experimental Results Based on RSM

In this study, Design-Expert 13 software was used as an assistant to conduct response
surface correlation analysis, the RSM model regression equation was established based on
the data in Table 3 and Formulas (1) and (2), and the following model was obtained:
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Fy = 5.665 + 0.242× ap − 0.0029× v + 0.0255× f + 0.00004× ap × v
+0.0014× ap × f − 0.000036× v× f − 0.0024× a2

p + 0.0000023× v2

−0.000195× f 2
(13)

Ay = 1.5432− 0.0059× ap − 0.0006× v− 0.0187× f − 0.000004× ap × v
−0.00005× ap × f + 0.000009× v× f + 0.0000000005× v2

−0.000011× f 2 + 0.000271× a2
p

(14)

The response function can be geometrically interpreted by its corresponding response
surface. This surface visually represents the response or how a dependent factor varies
with an independent element. Response surface analysis is performed using the fitted
approximate surface. If the fitted surface is a reliable approximation of the true response
function, then analyzing the fitted surface is roughly equivalent to analyzing the actual
process. The adequacy of the fitted model is generally assessed via the analysis of the
variance of the residuals and the coefficient of determination R2.

This study assessed the reliability of the model from both statistical and experimental
perspectives via variance analysis and experimental verification. The ANOVA results for
Fy and Ay are listed in Tables 4 and 5, respectively.

Table 4 indicates that the F-value of the Fy model is 106.97, demonstrating that the
established Fy model is significant, and there is only a 0.01% chance that such a large
F-value is due to noise. The model terms v, ap, and v2 are significant, as a p-value less
than 0.05 indicates. The R2 value and adjusted-R2 value of the Fy model are 97.29% and
96.2%, respectively, and the difference between the two is negligible, indicating that the
established polynomial can fully reflect the relationship between the design variables and
the response.

Table 5 reveals that the F-value of the Ay model is 289.12, indicating that the established
Ay model is significant, and there is only a 0.01% probability that such a large F-value is
due to noise. The model terms v, f , v× ap, v× f , and a2

p are significant, as a p-value less
than 0.05 indicates. The R2 value and adjusted-R2 value of the Ay model are 99.30% and
99.39%, respectively, and the difference between the two is negligible, demonstrating that
the established polynomial can fully reflect the relationship between the design variable
and the response. Based on the ANOVA results, all of the constructed regression models can
be used to quantify the relationship between process factors and corresponding responses.

Table 4. ANOVA for cutting Fy.

Source Sum of Squares Degrees of
Freedom Mean Square F-Value p-Value

Model 43.34 9 5.48 106.97 <0.0001 Significant
v 2.98 1 2.98 58.13 0.0001
ap 44.74 1 44.74 872.95 <0.0001
f 0.009 1 0.009 0.1752 0.6881
v× ap 0.1296 1 0.1296 2.53 0.1558
v× f 0.2314 1 0.2341 4.51 0.0712
ap × f 0.1739 1 0.1739 3.39 0.1080
v2 0.8782 1 0.8782 17.14 0.0044
a2

p 0.2431 1 0.2431 4.74 0.0658
f 2 0.0081 1 0.0081 0.1576 0.7032
Residual 0.3587 7 0.0512
Cor total 40.70 16

Standard deviation 0.2264 R2 0.9729
Mean 10.19 Adjusted R2 0.9620
Coefficient of variation 2.22 Predicted R2 0.9341
Predicted residual of sum of squares 3.27 Adequate precision 35.6818
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Table 5. ANOVA for cutting Ay.

Source Sum of Squares Degrees of
Freedom Mean Square F-Value p-Value

Model 0.3975 9 0.0442 289.12 <0.0001 Significant
v 0.1824 1 0.1824 1194.1 <0.0001
ap 0.0002 1 0.0002 1.58 0.2485
f 0.1914 1 0.1914 1270.41 <0.0001
v× ap 0.0011 1 0.0011 7.13 0.0320
v× f 0.0164 1 0.0164 107.26 <0.0001
ap × f 0.0002 1 0.0002 1.28 0.2946
v2 0.0001 1 0.0001 0.0003 0.9872
a2

p 0.0031 1 0.0031 20.24 0.0028
f 2 0 1 0 0.1588 0.7022
Residual 0.0011 7 0.0002
Cor total 0.3986 16

Standard deviation 0.0124 R2 0.9930
Mean 0.4935 Adjusted R2 0.9939
Coefficient of variation 2.5 Predicted R2 0.9809
Predicted residual of sum of squares 0.0076 Adequate precision 64.7200

Apart from the statistical analysis, validation experiments were conducted to verify
the reliability of the constructed model. The verification test parameters were randomly
selected within the experimental interval and differed from those in Table 6. Subsequently,
the experimentally measured Fy and Ay values were compared with the calculated results
of the established model. The relative errors between the experimental and predicted
results are presented in Table 6. Based on the table, the maximum relative errors of Fy and
Ay were found to be 7.63% and 7.01%, respectively. In line with existing research, these
errors fall within the acceptable range, indicating that the model can be utilized.

Table 6. Results of confirmation experiments and their comparison with predicted values.

Exp. No.
Design Parameters Fy (N) Ay (m/s2)

v (r/min) ap (µm) f (µm/r) Exp. Predicted Error (%) Exp. Predicted Error (%)

1 600 35 30 11.735 12.48 6.34% 0.839 0.7863 6.28%
2 600 20 20 9.432 9.630 2.09% 0.892 0.8500 4.70%
3 1050 50 30 13.75 14.80 7.63% 0.717 0.7672 7.01%
4 1050 35 20 13.15 12.71 3.34% 0.657 0.6981 6.25%

Figure 3 displays the normal probability plot of the Fy and Ay residuals. The plot
indicates that the majority of the residuals are closely clustered around the straight reference
line, signifying a normal distribution. This suggests that both regression models are well
fitted. Figure 4 depicts a perturbation plot that shows the effect of the three factors on
Fy and Ay. This plot is a valuable graphical tool for comparing the effects of all of the
factors at a particular point in the design space. The results indicate that the cutting depth
significantly influences the cutting force, whereas the feed rate has the least effect. In terms
of vibration, both cutting speed and feed rate have the most significant influence, while the
cutting depth has the least effect.
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Figure 4. Perturbation plots of Fy and Ay.

Figures 5–7 display the 3D contour plots illustrating the impact of cutting parameters
on cutting force and vibration. Each plot represents the impact of two process variables,
with all variables taking values within the experimental study range, while the other
variable is fixed at the center point value. The experimental results demonstrate that the
cutting force is most significantly affected by the depth of cut, followed by the cutting speed,
while the feed rate has the least effect. As the depth of cut and cutting speed decrease, the
cutting force also decreases. Concerning vibration, the cutting speed is the parameter with
the most significant impact, followed by the feed rate, while the depth of cut has the least
influence. The vibration tends to decrease with increased cutting speed and feed rate.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 15 
 

 

  

Figure 3. Normal plot of �� and ��. 

  

Figure 4. Perturbation plots of �� and ��. 

Figures 5–7 display the 3D contour plots illustrating the impact of cu�ing parameters 

on cu�ing force and vibration. Each plot represents the impact of two process variables, 

with all variables taking values within the experimental study range, while the other var-

iable is fixed at the center point value. The experimental results demonstrate that the cut-

ting force is most significantly affected by the depth of cut, followed by the cu�ing speed, 

while the feed rate has the least effect. As the depth of cut and cu�ing speed decrease, the 

cu�ing force also decreases. Concerning vibration, the cu�ing speed is the parameter with 

the most significant impact, followed by the feed rate, while the depth of cut has the least 

influence. The vibration tends to decrease with increased cu�ing speed and feed rate. 

  

Figure 5. Influence of depth of cut and cu�ing speed on �� and ��. Figure 5. Influence of depth of cut and cutting speed on Fy and Ay.



Sensors 2023, 23, 5616 11 of 14Sensors 2023, 23, x FOR PEER REVIEW 11 of 15 
 

 

 
 

Figure 6. Influence of feed rate and cu�ing speed on �� and ��. 

  

Figure 7. Influence of feed rate and depth of cut on �� and ��. 

3.2. Optimization of Turning Parameters Based on NSDBO 

The goal of the NSDOB optimization algorithm is to minimize the y-direction force 

and vibration during the cu�ing process of WHAs. The 1 and −1 levels of the experimental 

input parameters cu�ing speed, feed rate, and depth of cut are used as the initial popula-

tion generation range of the genetic algorithm. The optimization algorithm uses a popu-

lation size of 18, and the ratio of the ball-rolling dung beetle, the brood ball, the small 

dung beetle, and the thief beetle in the population is 1:1:1:1. The maximum number of 

iterations is set to 200 to ensure that the algorithm runs to completion. The optimized 

Pareto front obtained after 87 algorithm iterations is shown in Figure 8. 

Figure 6. Influence of feed rate and cutting speed on Fz and Az.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 15 
 

 

 
 

Figure 6. Influence of feed rate and cu�ing speed on �� and ��. 

  

Figure 7. Influence of feed rate and depth of cut on �� and ��. 

3.2. Optimization of Turning Parameters Based on NSDBO 

The goal of the NSDOB optimization algorithm is to minimize the y-direction force 

and vibration during the cu�ing process of WHAs. The 1 and −1 levels of the experimental 

input parameters cu�ing speed, feed rate, and depth of cut are used as the initial popula-

tion generation range of the genetic algorithm. The optimization algorithm uses a popu-

lation size of 18, and the ratio of the ball-rolling dung beetle, the brood ball, the small 

dung beetle, and the thief beetle in the population is 1:1:1:1. The maximum number of 

iterations is set to 200 to ensure that the algorithm runs to completion. The optimized 

Pareto front obtained after 87 algorithm iterations is shown in Figure 8. 

Figure 7. Influence of feed rate and depth of cut on Fz and Az.

3.2. Optimization of Turning Parameters Based on NSDBO

The goal of the NSDOB optimization algorithm is to minimize the y-direction force
and vibration during the cutting process of WHAs. The 1 and −1 levels of the experimental
input parameters cutting speed, feed rate, and depth of cut are used as the initial population
generation range of the genetic algorithm. The optimization algorithm uses a population
size of 18, and the ratio of the ball-rolling dung beetle, the brood ball, the small dung beetle,
and the thief beetle in the population is 1:1:1:1. The maximum number of iterations is set to
200 to ensure that the algorithm runs to completion. The optimized Pareto front obtained
after 87 algorithm iterations is shown in Figure 8.

After obtaining the Pareto front, we obtained an optimal solution set containing 18 so-
lutions. The solution close to Design A can obtain a smaller vibration, but larger cutting
force. The solution close to Design B can obtain a smaller cutting force, but larger vibra-
tion. Therefore, after comprehensive consideration, we chose the solution with moderate
vibration and force as the optimal solution. Table 7 illustrates the comparison between the
optimization results of the algorithm and the optimal parameters obtained in the experi-
ment. The cutting force obtained via the optimized parameters is reduced by 9.7%, and the
vibration is reduced by 46.47%. The surface roughness of the final workpiece is reduced
by 18.2%.

In order to verify the feasibility of the NSDBO algorithm, the turning experiment was
carried out again using the optimized parameters, and the experimental conditions were
the same as the orthogonal experimental conditions mentioned above. After the test, the
surface morphology of the workpiece was observed using a scanning electron microscope.
Figure 9 is a comparison of the surface morphology before and after optimization. The
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surface processed using the parameters before optimization is shown in Figure 9a, and the
surface damage caused by incomplete material removal can be clearly seen. The surface
processed with the optimized parameters is shown in Figure 9b. In contrast, regular
knife lines were obtained without obvious damage on the surface, and the surface quality
significantly improved.
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Table 7. Comparison of cutting parameters.

Parameters v (r/min) ap (µm) f (µm/r) Fy (N) Ay (m/s2)

Design A 1032 25.85 22.85 13.87 0.0921
Design B 1452 20.5 31.25 6.43 0.19
Design C 897 12.8 21.52 5.62 0.92
Experimental 1050 30 20 7.128 0.355
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Figure 9. Comparison of surface topography of processed workpieces: (a) processing result before
parameter optimization (v = 1050 r/min, ap = 30 µm, f = 20 µm/r); (b) processing result after
parameter optimization (v = 1452 r/min, ap = 20.5 µm, f = 31.25 µm/r).

In order to verify the superiority of the proposed algorithm, this method was compared
with the genetic algorithm and the cuckoo algorithm, and the comparison results are shown
in Table 8. It can be seen that the multi-objective dung beetle algorithm has a faster
convergence speed and better global optimization performance.
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Table 8. Comparison results with similar algorithms.

Method Maximum Iterations
Optimized Result

Fy (N) Ay (m/s2)

NSDBO 87 6.43 0.19
NAGA-II 112 8.92 0.27

CSO 95 9.1 0.21

4. Conclusions

In this paper, based on the dung beetle optimization algorithm, non-dominated sorting
technology was introduced, and a multi-objective dung beetle optimization algorithm
was proposed and combined with the RSM method for the optimization of the turning
parameters of tungsten alloys. The main contributions of the article can be drawn as below:

• A second-order polynomial regression model using response surface methodology
(RSM) was established to correlate cutting speed, feed rate, cutting depth, cutting force,
and vibration. ANOVA analysis results indicated that all of the constructed regression
models could be used to quantify the relationship between cutting parameters and
corresponding responses.

• The influence of cutting parameters on cutting force and vibration was analyzed
via RSM. The influence of depth of cut on cutting forces is the most significant, the
influence of cutting speed is second, and the influence of feed rate is the smallest. For
vibration, the cutting parameter with the most significant impact is the cutting speed,
followed by the feed rate, and the depth of cut has the least influence.

• A multi-objective dung beetle optimization algorithm was realized by introducing
the non-dominated sorting technology. The results show that the proposed algorithm
has a faster convergence speed and better global optimization ability than the multi-
objective genetic and cuckoo algorithms.

• Combining the RSM and NSDBO methods, the cutting parameters of the tungsten
alloy were optimized. After the optimized parameters, the cutting force was reduced
by 9.7%, and the vibration was reduced by 46.47%. The surface roughness of the final
workpiece was reduced by 18.2%. This means that the method proposed in this text
can guide the turning of tungsten alloys.
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