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Abstract: Many recent cloud or edge computing strategies for automotive applications require trans-
mitting huge amounts of Light Detection and Ranging (LiDAR) data from terminals to centralized
processing units. As a matter of fact, the development of effective Point Cloud (PC) compression
strategies that preserve semantic information, which is critical for scene understanding, proves to
be crucial. Segmentation and compression have always been treated as two independent tasks;
however, since not all the semantic classes are equally important for the end task, this information
can be used to guide data transmission. In this paper, we propose Content-Aware Compression
and Transmission Using Semantics (CACTUS), which is a coding framework that exploits semantic
information to optimize the data transmission, partitioning the original point set into separate data
streams. Experimental results show that differently from traditional strategies, the independent
coding of semantically consistent point sets preserves class information. Additionally, whenever
semantic information needs to be transmitted to the receiver, using the CACTUS strategy leads to
gains in terms of compression efficiency, and more in general, it improves the speed and flexibility of
the baseline codec used to compress the data.

Keywords: point clouds; LiDAR; compression; transmission; semantic segmentation

1. Introduction

Sensing technologies have been recently boosted by the availability of versatile 3D
acquisition devices that have proved to be capable of generating accurate models of the
surrounding scene at a reasonable cost and in a limited time. Within these scenarios, LiDAR
technology has played a leading role considering its widespread application in several
fields including (but not limited to) land sensing and reconstruction, robotics, cultural
heritage, and monitoring [1–3]. With respect to automotive applications, LiDAR PCs allow
a real-time 3D modeling and semantic understanding of the environment [4] which enable
smart applications such as autonomous driving, traffic monitoring, and path planning, to
mention some of them.

However, most data processing architectures are unable to elaborate efficiently a
large volume of LiDAR data in a reasonable time [5]. In addition, sharing environmental
information could be required in order to enable a more efficient scheduling of operation
plans, reorganize navigation paths, or access more efficient classification tasks [6,7]. It
is possible to overcome this bottleneck by employing some shared highly performing
computational resources, moving most of the advanced processing toward cloud computing
environments [8–11].

Moreover, transferring part or most of 3D processing operations from terminals to
network processing units implies transmitting big amounts of information, which must
preserve its informational and semantic contents in order to be useful for the considered
elaboration task (e.g., object classification, semantic segmentation, planning, etc.). Com-
pression proves to be crucial since it allows constraining the impact on computing and
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transmission facilities (e.g., latency, network congestion, and energy consumption). Indeed,
whenever coding operations are too aggressive or unaware of final application, the semantic
information of the scene cannot be recovered any more as the data arrive at the processing
unit (see results on semantic segmentation reported in Section 4). The compression of
terrestrial LiDAR point clouds is a notoriously hard problem in 3D data transmission due
to the spatial sparsity and inhomogeneity of acquired 3D points as well as to the noise that
affects their coordinates.

For these reasons, aside from the most known PC codecs such as TMC13 [12] and
Draco [13], several other approaches have been proposed. As an example, the work by
Huang et al. [14] uses an entropy model to exploit the remaining redundancy after an octree
decomposition of voxel volume [15]; Tu et al. [16] use Recurrent Neural Networks to pro-
gressively encode residuals, while in the work by Varischio et.al. [17], the most meaningful
parts of the PC are transmitted after a segmentation of the input PC. Other meaningful
approaches that are not specifically targeted toward LiDAR but that are worth mentioning
are deep learning (DL)-based Point Cloud Coding (PCC) approaches [18–24] that generally
exploit convolutional autoencoders for efficient features extraction and decoding.

Following these trends, some preliminary works on multimedia compression and
transmission have highlighted the fact that cognitive and semantic information can be
extremely useful when applied to source coding and multimedia data transmission [25].

The advantage of a semantic-aware coding system is two-fold:

1. Semantic information allows dynamically allocating the bit rate to different parts of
the PC and schedules information transmission in a content-aware manner (while
discarding useless data).

2. The distortion introduced by coding operations could prevent a correct classification
when data are reconstructed and segmented at the receiver (see Section 4); a cognitive
source coding approach allows signaling to the receiver semantic information obtained
from the originally acquired data.

Most of the works that were explored in the literature address the compression task
in a very general way and thus do not exploit semantic data for transmission, since it is
not always available. To the best of our knowledge, up to the publication of this paper,
the only work that makes use of this additional information is [17]. However, the authors
fail to fully exploit it since, in the paper, semantics only serve the purpose of selecting
pieces of the PC that should be discarded in order to obtain lower compression rates and
faster decoding. As a matter of fact, they do not realize that the pre-computed semantic
information can be transmitted together with the geometry almost for free. Additionally, in
their case, the semantic information is used to divide the PC very coarsely, but increasing
granularity does not really hurt performance and actually provides greater flexibility. For
these reasons, we believe that the advantages of using semantic information for guiding
compression and transmission still have not been properly explored.

In a nutshell, the current paper proposes a general framework for LiDAR PC com-
pression that first segments the input PC into multiple semantically characterized clusters
that are then independently coded and transmitted, tuning the compression parameters
according to the significance of the coded class and the desired quality level.

This approach is particularly well suited for LiDAR data, since it is one of the most
used sensors in automotive scenarios where the Semantic Segmentation (SS) literature is
already well established.

The main novelties and advantages of the proposed approach can be listed as follows:

• Semantic information can be transmitted with a very limited overhead (see Section 3),
sparing the segmentation task at the decoder side.

• Transmitting labels proves to be more accurate than operating SS at the decoder on
the reconstructed PC (because of compression noise).

• The bitrate can be flexibly allocated by choosing the quality level or skipping some parts
in a content-aware manner according to the network conditions or user preferences.
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• The execution time required to compress the PC and the semantic information is
lower with CACTUS than with the reference codecs. This result is obtained without
considering the time required to compute the semantic information, because this step
needs to be computed regardless of the coding procedure.

The framework was implemented using RandLA-Net [26] for the segmentation part,
and TMC13 [12], Draco [13], and Distributed Source AutoEncoder (DSAE) [24] for the
compression part. Nonetheless, the processing pipeline can be generalized to different
SS architectures and codecs. The architectures choice was mainly driven by the fact that
the considered algorithm is intended for a mobile automotive scenario, where latency
and computational complexity are significantly constrained. In this regard, experimental
performances were tested on a subset of SemanticKITTI [27,28], which is one of the most
popular benchmarks for autonomous driving.

The paper is organized as follows: in Section 2, the main advancements in collaborative
strategies using LiDAR PCs are presented together with an explanation about PCs codecs;
then, in Section 3, the proposed method is introduced and analyzed while its performances
are examined in Section 4 and all the results are further discussed in Section 5. Finally, in Sec-
tion 6, the conclusions are drawn, which are followed by some hints for future works. The
code for the framework can be found at https://github.com/Dan8991/CACTUS-Content-
Aware-Compression-and-Transmission-Using-Semantics-for-Automotive-LiDAR-Data (ac-
cessed on 15 January 2023).

2. Related Work

Due to the increasing hype that self-driving cars are rising in the industry and
academia, a lot has been accomplished to reduce at its minimum the computational and
transmission cost of the acquired data. In particular, collaborative strategies have been
developed to avoid redundant calculations, while coding algorithms have been designed
in order to produce representations that are as efficient and effective as possible, facilitating
data exchange among nearby vehicles.

2.1. Collaborative Strategies for LiDAR Point Clouds

The idea of sharing LiDAR PC data and processing them in a collaborative and
distributed fashion has been recently investigated in many applications ranging from
cultural and natural preservation [2,29,30] to automotive applications [31,32].

In [11], Shin et al. propose a road object mapping system for LiDAR data based on an
edge–fog–cloud platform. Similarly, it is possible to obtain an HD mapping of the surround-
ing environment by fusing multiple contributions acquired by diverse vehicles at different
locations and instants [33]. The problem of registering and fusing multiple acquisitions
(which can have different orientations and distances) can be solved by matching lines
and geometrical properties [1] or analyzing semantic information [34,35]. Alongside with
reconstruction problems, the approach [10] tackles the problem of localizing the mobile
terminal in an indoor environment thanks to an edge-side Simultaneous Localization And
Mapping (SLAM) engine. A similar problem is solved in [36] for a swarm of unmanned
ground vehicles (UGVs) using a two-stage graph optimization. Similarly, merged LiDAR
data are employed for multiple object detection and tracking combining estimation filter-
ing with a discretization of space in [37]. In addition, the solution in [38] adopts some
a priori information about the environment and the context to localize cars using some
low-complexity estimation strategies.

Together with reconstruction and localization, the semantic analysis of the surrounding
environment benefits from collaboration as well. During the last few years, it has become
possible to find different collaborative perception and classification frameworks [39–41]
showing the robustness and the safety level that can be obtained by such applications.
Alongside a distributed orchestration of the operations, these collaborative approaches
integrate different Deep Learning data processing techniques. The approach in [42] resorts
to a reinforcement learning algorithm to create a map of the environment, while a position-
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channel attention mechanism is adopted in [43] to enhance some LiDAR-related features
in order to discard the least-relevant information. A transformer-based architecture is
employed in [44] on multispectral LiDAR data for land classification.

Although most of the approaches imply the transmission of PCs to the central process-
ing framework, some solutions resort to federated learning strategies to avoid disseminat-
ing the data sensed by the different terminals with all the privacy-related implications [45].

2.2. An Overview of Compression Strategies for LiDAR Point Clouds

In the literature, PCC approaches can be divided into two separate classes: traditional
source coding solutions [12,46,47] and DL-based codecs [18–23,48–50]. In the first set of
approaches, a compact representation of the geometry is obtained by using an ad hoc data
structure (e.g., a graph, a KD-tree [51], an octree [15] or cellular automata [52]) and then
entropy coding. Some recent solutions aim at exploiting the temporal redundancy existing
between temporally adjacent acquisitions by entailing a bidirectional prediction [53].

In the second set of approaches, instead, deep auto-encoders are usually exploited to
generate smaller and entropy-efficient hidden feature representations [18–22,24].

In the work by Huang et al. [14], the PC is quantized and encoded using an octree
decomposition where each set of octants can be represented by a byte. Such representation
proved to work well on LiDAR PCs since sparsity can be handled efficiently. A deep
entropy model is then used to estimate the probability of each symbol, and the resulting
values are used as context by an arithmetic coder.

In [16], the PC is represented in a format similar to depth maps. This 2D representation
is then compressed with an autoencoder, where a quantizer block maps the latent space
features into binary strings. In this scheme, the Neural Network (NN) performs a first
compression of the original image; then, some residuals are progressively encoded to refine
the accuracy of the reconstructed samples. An LSTM-based solution is proposed in [54]
obtaining higher performances with respect to other state-of-the-art PC codecs. However,
such approaches are computationally burdensome and do not allow for content-aware
compression.

In the work by Varischio et al. [17], Draco [13] is used in conjunction with Rangenet++ [55]
to perform the encoding. In particular, the authors define three compression levels where
parts of the PC are progressively removed to allow to perform compression in real time.
At the highest quality level, the whole PC is coded; at the second one, points related to
the street are removed, and at the lowest quality level, only points for critical classes (e.g.,
person, car, motorcycle) are retained. This codec allows shaping the bitrate according to
the network constraints, but the bit allocation may be non-optimal whenever data from
all the classes (e.g., road and vegetation) are required. On top of that, semantic labeling
is discarded during transmission so the receiver has to recompute it himself on the recon-
structed point cloud. The latter has holes and is affected by compression noise; therefore, it
is likely to lead to a less accurate semantic segmentation.

3. Methodology

The CACTUS pipeline is composed of two main building blocks. The first is designed
for a semantic understanding and organization of the acquired samples representing the
scene, while the second consists in the core compression strategy that, adequately optimized,
is going to create the bit stream. The proposed framework can be represented by the block
diagram reported in Figure 1, where the input PC is segmented into separate semantic
classes that are independently coded by a PCC architecture. Indeed, in the CACTUS
framework, we assume that a SS unit is available on automotive terminals, since it is
employed for the navigation or safety issues (e.g., pedestrian detection, obstacle avoidance,
et.). As a matter of fact, the acquired point clouds could be semantically segmented and
characterized after their acquisition.
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Figure 1. Schematic representation of CACTUS coding process.

In the current implementation, we adopted the architecture RandLA-Net for SS, while
standardized codecs TMC13 or Draco were considered for the compression of the acquired
point clouds and the formatting of the transmitted bit stream. These segmentation and
coding architectures were chosen since they prove to be among the most suitable and
standard-compliant solutions for LiDAR point cloud coding, although several other codecs
or segmenting networks [56,57] could be adopted as the proposed framework can be
generalized very well. Additionally, in order to assess the properties of the framework
when using one of the most recent learned codecs, some tests were also carried out with
the DSAE [24] network. The data employed belong to the validation sequence of the
SemanticKITTI dataset (the first 100 samples of sequence 08).

3.1. Adopted Segmentation and Coding Solutions in the CACTUS Framework

RandLA-Net: RandLA-Net [26] is probably one of the best-performing architectures
for LiDAR SS that is completely point based. In addition, it is one of the most lightweight
solutions available, providing good results without needing to voxelize the input data.
RandLA-Net tackles the problem that many architectures have in capturing point-wise
context information as it proposes an effective local feature aggregation module, which
is able to automatically preserve complex local structures by progressively increasing
the receptive field for each point. This module can obtain successively larger receptive
fields by explicitly considering the local spatial relationship and point features, being more
effective and robust for learning complex local patterns. In general, RandLA-Net only
relies on random sampling within the network, thereby requiring much less memory and
computation. The entire network only consists of shared multi-layer perceptrons, making
it ideal for large-scale point clouds.

TMC13: TMC13 is an implementation by the MPEG group of the Geometry-based
Point Cloud Coding (GPCC) standard; it works by encoding the PC with an octree that
is then processed by an arithmetic coder to reduce redundancy. The main way to per-
form rate control is to quantize the coordinates before entropy coding. In particular, the
codingScale parameter can be used to control the amount of quantization. In the results
section, we refer to a quantization parameter qp where the two are related by the equation
codingScale = 2−qp. In TMC13, the attributes are encoded using the Region Adaptive Hier-
archical Transform (RAHT) transform [58]. In this work, the class is encoded as the color
attribute by setting the values ri, gi, bi relative to point pi = (xi, yi, zi) as its semantic class ci.
This was achieved because, to the best of our knowledge, arbitrary attribute compression is
not supported in TMC13 and Draco, but this procedure should be almost equivalent to an
ad hoc implementation since the arithmetic coder should be able to completely remove the
redundancy due to the repetition of the value over the three channels being deterministic.

Draco: Draco is an efficient codec implemented by Google that performs compression
based on KD-trees [51] instead of octrees. This data structure has the advantage that it can
place the boundaries that split the space where it is most efficient, which allows to better
encode point clouds with uneven densities.

Draco with respect to TMC13 has the advantage that it provides the cl (compression
level) parameter that can be used to reduce the computation time at the price of worse
compression ratios. Here, the qp parameter was computed as qp = 15− qpd, where qpd is
the quality parameter defined by Draco. In this case, the class was losslessly encoded as
the color likewise TMC13.

DSAE: DSAE is a learned geometry codec proposed in [24] based on the principles of
distributed source coding [59]. The main idea of this paradigm is that the receiver knows
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a signal x̂, called side information, that is correlated with a signal x at the sender side.
Because of this, the latter can just transmit some bits s called syndromes that the receiver
can use to correct his own signal, increasing its similarity with x. In this case, the side
information is represented by the PC compressed with another codec (TMC1 in the original
paper). During transmission, the sender will use a convolutional encoder to compute the
syndromes, which will be compressed with an arithmetic coder and transmitted to the
receiver. The latter will feed them, together with the side information, to a convolutional
decoder that should be able to reconstruct the PC with higher quality with respect to the
side information.

For a more detailed description of the approach, we refer to the original paper.

3.2. Content-Aware Compression for Automotive LiDAR Point Clouds

This subsection presents the operational pipeline that defines the general backbone of
the CACTUS coder. The input point cloud P = {p1, . . . , pn} is processed by the semantic
segmentation unit (RandLA-Net), splitting the full acquisition into k subsets Pi = {pi,1, . . . ,
pi,ni}, i ∈ {0, . . . , k}, where the gathered points belong to the same semantic class ci,j = i ∀ j.
Empty segments, i.e., such that |Pi| = 0, are skipped. Whenever |Pi| 6= 0, the point subset
is compressed using a configurable PCC generating a binary stream bi. Codec parameters
for Pi can be manually tuned (e.g., the Quantization Parameter (QP)) in order to vary the
reconstruction accuracy and the allocated bitrate. This larger amount of degrees of freedom
makes the approach more flexible with respect to [17], where three fixed configurations are
adopted and only a limited set of information is transmitted. In this way, the user or the
algorithm can choose to lower the quality of semantic classes (or even completely remove
them) that are less useful in the considered scenario (e.g., a self-driving car might not need
to precisely know the position of the vegetation outside the road). This allows the system
to be more robust to scenarios when the bandwidth is limited, for example when there is
high network congestion.

Moreover, the CACTUS scheme allows transmitting semantic class information along-
side with point cloud geometry data, making semantic segmentation unnecessary at the
receiver side. The compressed file format can be represented by Figure 2 and consists of
a small initial header h, which is followed by the sizes (s1, . . . , sk) in bytes of each com-
pressed representation and the corresponding encoded points. Therefore, it is possible to
represent the final bit stream with the concatenation b = concat([h, s1, b1, s2, b2, . . . , sk, bk]).
The header h is formatted in a 4-byte string, where each bit flags whether the associated
semantic class is present in the bit stream or not (in the case of SemanticKITTI, only 20 bits
are strictly required). The integer si is coded by 4 bytes and represents the size of the
compressed PC bi. The total size of the bitstream can be computed as:

len(b) = len(h) +
k

∑
i=1

(len(si) + len(bi)) (1)

where the len(·) function returns the size in bytes of the argument. Adding the header
h allows sending semantic information just with an overhead of 4(k + 1) bytes, which is
almost negligible with respect to the total transmission size. This way, the decoder can
obtain all the required information to reconstruct the full PC. In fact, using the file sizes, it
can obtain the compressed version of the segments that can be independently decoded by
TMC13, Draco, or DSAE without any additional information. Additionally, thanks to the
binary flags in the header, it can easily infer the class relative to each PC Pi.

Figure 2. Structure of the PC compressed with the CACTUS.
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Note that the proposed architecture is quite general, since any segmentation or com-
pression algorithm can be used depending on computational and accuracy requirements.
Experimental results showed that the coding performance is not significantly affected by
the choice of the SS algorithm. Indeed, even if some points are misclassified (thus becoming
isolated after partitioning the PC), many codecs have some coding options that efficiently
handle this eventuality (e.g., direct coding mode in TMC13). On the contrary, compression
performance can significantly depend on the codec’s robustness with respect to sparsity
and noise. For this reason, experimental data were obtained on TMC13 and Draco when
considering standard codecs and with DSAE for learned approaches.

3.3. Learned Point Cloud Coding Methods

Before moving to the results section, it is important to briefly explain how DSAE
was integrated in CACTUS and to mention the main problems that Learned Point Cloud
Geometry Codecs (LPCGCs) approaches currently display when used in CACTUS or more
in general when applied to LiDAR PCs.

While Draco and TMC13 are widely tested approaches that are very robust to sparsity
and other issues that often affect PCs, the same cannot be said for Deep Learning-based
approaches. As a matter of fact, many of these need to work on voxel grids in order to be
able to process the data, since this allows for the usage of 3D convolutions. This is, however,
not well suited for LiDAR PCs where in the regions close to the sensor the signal is very
dense, while when further away, it is very sparse. This means that using a coarse voxel
grid would destroy a lot of information close to the center, while using a finer resolution
would result in very sparse regions that convolutional neural networks struggle to handle
and that would increase the bitrate excessively.

This problem is tackled in TMC13, for example, by using the direct coding mode, but
these techniques are not yet implemented in learned codecs, since they are still at very
early stages, and researchers are still trying to solve many of the challenges presented by
PCs signals.

All the aforementioned problems are slightly amplified by the CACTUS framework,
since it further increases the sparsity because of the partitioning induced by SS.

Finally, the most widespread LPCGCs are trained on datasets obtained by sampling
the points from a mesh (e.g., [21,22] train on ModelNet40 [60]) or on PCs obtained with
stereo systems such as the ones from the MPEG dataset (e.g., [18,23,24]), and very few
works focus specifically on LiDAR data. For this reason, most of the LPCGCs suffer from
the shift in the input distribution when tested on this scenario.

Ideally, the best way to exploit these codecs with CACTUS would be to train a condi-
tional model that exploits information about the class of the partitioned points to achieve
better rate-distortion performance; however, this would require an ad hoc codec which goes
against the philosophy of CACTUS that was designed to work without major modifications
with most codecs. For this reason, in this work, we use the DSAE codec proposed in [24],
with some slight modifications, as the main codec for the system. The main differences with
respect to the original paper are two: i.e., TMC13 is used instead of TMC1 to generate the
side information (which provides higher quality side information at a lower rate). Second,
the syndromes are forced to be binary by applying sigmoid with the addition of uniform
noise U (−0.5, 0.5) to force the network to predict either 0 or 1, since this allowed obtaining
a similar performance while making it easier for the arithmetic coder to compress the
bitstream.

The main advantage that DSAE has with respect to other learned codecs is that it
exploits side information encoded with another codec (in this case, TMC13). For this reason,
even in very sparse regions, it is still able to reconstruct some points (which other learned
codecs fail at doing) and with a very small overhead, since only a few bits of syndromes
need to be transmitted.

One final issue with learned point cloud codecs is that they usually do not implement
attribute compression. This is due to the fact that it is usually very hard to condition
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the attributes on the decoded geometry, which often results in unsatisfactory results.
Additionally, in this scenario, we would like the compression of the attributes to be lossless.
For these reasons, in order to compare the compression performance of CACTUS with that
of DSAE, we implement attribute compression by means of RAHT (similarly to what is
used in TMC13). All the other details such as the packet structure are the same as above.

4. Experimental Results

In both TMC13 and Draco, lossy coding is performed via coordinates quantization,
whose intensity is ruled by parameters codingScale (quality–rate trade-off) and qpdraco
(quality), respectively. In order to equalize the testing conditions between the two codecs,
a generalized quantization parameter qp is used in the experimental tests. Consequently,
codingScale = 2−qp for the TMC13 codec, while qp = 15− qpdraco for Draco. Since DSAE is
applied on top of TMC13, their qp ranges are identical

The semantic information is treated as a point attribute in the compression implemen-
tations (attribute coding). This was far more efficient (in terms of rate) than other coding
mechanisms (e.g., arithmetic coding), as they are unaware of the properties of PCs.

4.1. Experiments

The results reported in this section have been obtained by averaging compression
results on the first 100 point clouds of the SemanticKITTI validation set (sequence 08). Our
method is tested on Draco and TMC13, and the coding performance is evaluated through a
comparison with the corresponding standard codecs in terms of PSNR D1 (Figure 3) and
execution time (Figure 4).
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Figure 3. Comparison between TMC13 and Draco rate curves on the full point cloud, with geometry
only (orange), with geometry and semantic information (blue), and with CACTUS (green).

Figure 4. Execution times for CACTUS and the reference codecs.

4.2. Results on TMC13 and Draco

Instead, the accuracy of segmentation is measured through the mean Intersection
over Union (mIoU), which reports how close the obtained segmentation is with respect to
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some ground-truth data. Since the main problem tacked by the CACTUS framework is the
transmission of point cloud geometry while preserving its semantic characterization, some
preliminary tests concerning the impact of coding distortion on the segmentation accuracy
need to be performed. This analysis is required because most of the SS architectures are
trained and tested on clean data (not corrupted by quantization noise). Therefore, in a
realistic scenario where compression of the signal is essential, the performance of the SS
algorithm on compressed and reconstructed point clouds might be strongly impaired.
To the best of our knowledge, compression effects on LiDAR semantic segmentation are
objectively analyzed here for the first time.

Before carrying on, it is worth reminding that whenever compression follows semantic
segmentation, some points, which were originally distinct, are overlapping because of the
quantization of spatial coordinates. Note that in this case, they could have been assigned to
different semantic classes (this is likely to happen in regions of transition between different
instances), making the computation of the final mIoU very hard. The impact of compression
on segmentation is therefore made using only the TMC13 codec, since Draco does not
remove overlapping points.

The decimation on the reconstructed point cloud and the quantization noise that
affects the spatial coordinates severely impair the accuracy of object classification and
localization. This is evaluated by comparing the mIoU between the ground truth and the
segmented data before and after the compression. This procedure generates mIoU(yqp

net, yqp
gt )

and mIoU(yqp
codec, yqp

gt ). Note that:

• yqp
net is the output predicted by the NN by processing the geometry of a PC compressed

with factor qp.
• yqp

codec are the labels obtained by assigning to each compressed point the label pre-
dicted by RandLA-Net for its nearest neighbor in the original geometry (recoloring in
TMC13).

• yqp
gt is the PC recolored using the original ground truth instead of the RandLA-Net

prediction.

Figure 5 displays the difference ∆mIoU = mIoU(yqp
codec, yqp

gt )−mIoU(yqp
net, yqp

gt ) versus
the QP qp. It is possible to notice that even with qp = 0, the network has a very big
loss in performance mostly due to a rounding of the coordinate values to the chosen
unit of measurement (sensor precision). Indeed, even very small quantization noise can
affect the segmentation accuracy at the receiver mounting up for higher qp values. This
effect was also verified by adding random uniform noise to point coordinates (interval
[−50 mm, 50 mm]), leading to a comparable loss and showing that the architecture is very
susceptible to noise.
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Figure 5. Difference between mIoU(yqp
codec, yqp

gt ) and mIoU(yqp
net, yqp

gt ).

By considering the execution time (omitting the SS step, since it has to be carried
out regardless) experimental results (see Figure 4) show that CACTUS is approximately
five times faster than TMC13 and two times faster than Draco at encoding and decoding
geometry and classes. This is supported by the fact that in general, splitting a problem
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that can be solved with an algorithm with super-linear complexity (PCC) into independent
subproblems (encoding subsets of the PC with the same semantic class) should reduce the
overall number of required operations (see Appendix A).

In the case of PCC, the compression algorithms are assumed to have at least O(n)
complexity. In fact, they need to process each point at least once, but it appears to be super-
linear (e.g., in order to remove duplicate points, TMC13 performs a O(n log n) sorting
operation). So, there are the conditions to assume that splitting the LiDAR signal in c
classes actually lowers the upper bound to the total number of operations in the coding
procedure. This is not guaranteed to reduce the execution time, but it appears to do so
with high probability, since empirical results show that on average CACTUS reduces the
encoding time. On top of that, the CACTUS workflow is highly parallelizable, as different
parts can be independently encoded, leading to a lower execution time when multiple cores
are available. This analysis supports the claim that the proposed framework proves to be
efficient with respect to state-of-the-art solutions.

The rate-distortion performance of the codec is analyzed using the quality metrics
described in [61]. The plots reported in Figure 3 display the Peak Signal to Noise Ratio
(PSNR) D1 (measured in dB) of the reconstructed PC versus the size in kB of the coded
stream. In our tests, only PSNR D1 is used for quality evaluation, since PSNR D2 implies the
estimation of normals which can not be easily performed on sparse point clouds. Indeed,
the latter metrics is mainly used for dense point sets.

As expected, coding semantic classes results in higher rates at constant geometry
quality. This is due to the addition of attribute information when encoding with TMC13
and Draco in the case of CACTUS, because splitting the PC into subsets makes it harder
to fully exploit the spatial redundancy for the encoder. However, whenever semantic
information is required by the receiver (or a more precise rate control needs to be entailed),
using a CACTUS segmentation-based codec proves to be more efficient, especially in the
case of TMC13.

This result holds for all the samples and the Bjontegaard delta rate computed be-
tween the curves produced by CACTUS and TMC13 with class attributes are on average
∆ratei = −31.16%, ∆PSNRi = 3.52. Conversely, it does not always hold for Draco where
segmentation generally does not yield significant rate reductions. However, on average,
CACTUS is superior in execution time, Rate Distortion (RD) trade-off and rate allocation
flexibility, reading ∆ratei = −5.26%, ∆PSNRi = 0.98.

Additionally, encoding the whole PC usually results in higher errors in under-represented
classes (since a higher percentage of their points is removed because of quantization): for this
reason, we also decided to evaluate performance in terms of average per-class PSNR

PSNRavg(P, Pcomp) =
1
|c(P)| ∑

i∈c(P)
PSNR(Pi, Pcomp

i ) (2)

where c(P) is the set of classes that can be found in the original point cloud, and Pi, Pcomp
i

are the subsets of points with class ci from P and Pcomp, respectively, where the latter is
the compressed version of the former. Using this distortion metric, it is possible to obtain
the plots in Figure 6a,b (results obtained for TMC13 and Draco are relative to the bitrates
obtained without encoding classes). In general, CACTUS achieves better RD performance
than its counterparts, even if they have a major advantage in terms of rate, since they do not
require encoding classes. This shows that this type of approach is better at preserving the
finer details of the less populated classes that do not contribute as much to the total PSNR.
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(a) Avg. per class PSNR vs full rate TMC13. (b) Avg. per class PSNR vs full rate Draco.

Figure 6. Comparison between the average per class PSNR computed with the standard codecs and
with CACTUS.

4.3. Results with Neural Codecs

As mentioned above, we have tested the CACTUS framework with [24] because thanks
to side information, it is more robust to the shift in distribution due to the difference in the
statistics of the training data and the LiDAR data. However, most of the results and the
considerations that will be drawn later actually apply to most LPCGCs, since they often
process PCs in the voxel domain.

In Figure 7, it is possible to see that similarly to the standard codecs case, also that
with learned ones CACTUS results in slightly lower RD performance if the receiver is only
interested in the geometry. However, as before when semantic information is required,
then CACTUS proves to be much more effective than using standard attribute compression
algorithms such as RAHT.

Figure 7. Comparison between rate curves on the full point cloud with geometry only (DSAE), with
geometry and semantic information (DSAE + RAHT), and with CACTUS.

Even though CACTUS shows similar behaviors in terms of RD performance even when
using learned codecs, the same cannot be said when considering the computational cost.
As a matter of fact, neural networks are inherently parallelized on specialized hardware,
making it harder to assess the actual difference in encoding and decoding time. However,
assuming sequential operations, i.e., using a single core on a CPU, CACTUS would result
in a higher number of total operations due to the usage of voxelized representation.

As a matter of fact, while splitting the data based on the semantic class does not
change the overall number of inputs when using a point-based representation, the same
does not hold with voxels, since partitioning the total number of cells in input to the codec
can change in different ways. Consider for example a PC with n classes; then, the total
number of voxels in input to the codec can:
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• Increase: e.g., if the class of each point is assigned at random, then the total number of
voxels is going to increase by a factor of n after partitioning.

• Remain constant: if the PC can be perfectly divided in n regions with no overlap, then
the total number of voxels will not change.

• Decrease: there are some configurations, although rare, where there are empty regions
in the PC that can be ignored after partitioning because of a better estimation of the
bounds of the PC, which can lead to a lower number of voxels being fed to the codec.

This makes it much harder to analyze the complexity of the approach when using
neural networks. However, in the sequential case, the execution time is likely going to
increase with respect to encoding the whole PC in one pass, since perfect partitioning with
no region overlap is very unlikely in this scenario. However, when considering parallel
computing capabilities, this issue should be considerably mitigated.

5. Discussion

From the aforementioned results, it is possible to point out most of the main advantages
and the main disadvantages of the proposed approach. In particular, the main strengths of
the CACTUS framework are:

1. Across all the proposed codecs (see Figures 3a,b and 7), when semantic informa-
tion needs to be transmitted, it is more effective to use CACTUS than the default
codecs. This is likely due to the fact that standard attribute coding procedures are
designed for continuous values (such as color and normals), and they are not suited
for categorical labels, leading to sub-optimal performance. This is solved by CACTUS,
which independently encodes the geometry of different semantic classes, allowing
the transmission of this type of information almost for free.

2. From the analysis in Appendix A and the empirical results in Figure 4, it is possible
to see that when the points are encoded without changing their representation, and
when the algorithm complexity is super-linear (which is almost always the case),
then independently compressing partitions of the PC leads to lower encoding and
decoding time. This is especially useful in the automotive scenario where working
in real time is a very important requirement. This does not always apply for neural
codecs, since most of them process voxelized representations. Additionally, since in
those cases parallelization is often exploited, the execution time highly depends on
the specific PC that is being processed and on the classes distribution.

3. As can be seen from Figure 5, independently transmitting semantically disjoint par-
titions helps improve the quality of the class information at the receiver side for
various reasons. Firstly, encoding all the PC with a standard codec can lead to the
removal of duplicate points, which is non-optimal, since important information (such
as the presence of a pedestrian) could be removed from the scene, and secondly, the
performance of current SS strategies are hindered by compression noise, as shown by
the analysis carried out in this paper.

4. This type of approach has much greater flexibility than simply using a standard codec,
since it allows developing rate allocation algorithms that can choose different coding
parameters for each semantic class depending on the requirements of the application.

There are, however, some drawbacks such as:

1. There are some use cases where CACTUS is sub-optimal. In particular, if all points
are equally important for the end task and if the receiver does not care about semantic
information, then using the base codec allows achieving better RD performance. This
can be easily seen from Figures 3a,b and 7, where the geometry RD curves of TMC13,
Draco and DSAE are above the corresponding CACTUS ones. The main reason for
this is that the latter further sparsifies the PC, making it hard to fully exploit the spatial
correlation in the data.
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2. Many LPCGCs struggle when reconstructing sparse PCs, and the issue is further
amplified by CACTUS. This makes it non-trivial to seamlessly use them in the frame-
work.

6. Conclusions and Future Works

This paper reports a detailed investigation of the problems and the possibilities derived
by the combination of semantic segmentation with point cloud coding in a collaborative
automotive scenario. Semantic segmentation strategies have proved to be highly suscepti-
ble to quantization noise, thus resulting in sub-optimal performance when applied at the
receiver side. The current paper also proposes a new coding framework for LiDAR PCs
that processes and transmits semantic classes independently, leading to higher flexibility in
shaping the bit stream. Simultaneously, the coding time is reduced, reliable semantic data
can be provided at the receiver, and a more flexible bitrate allocation is enabled, allowing
modulating the reconstruction quality on the semantic class. The transmission of class infor-
mation proves to be efficient also in rate-distortion terms, since CACTUS RD performance
shows a negligible loss in modeling geometry and a compression gain in coding semantic
information. Such advantages have been investigated on three different coding schemes;
however, the approach is totally generalizable to other codecs or segmentation strategies.

Therefore, if high flexibility is required or some semantic information needs to be
transmitted, the proposed framework provides improvements in terms of RD performance,
execution time, and mIoU at the receiver. Future research should focus on improving the
framework by designing the codec and possibly the SS algorithm to better interact together,
and by developing algorithms that are more robust to compression noise, in particular:

• The codecs that are currently proposed in the literature do not use semantic informa-
tion when performing compression; therefore, the performance of CACTUS might
be considerably improved with an ad hoc codec that is conditioned on the class of
the considered partition. One other possibility would be to make the codec auto-
regressive, i.e., the decoder could exploit the already decoded parts of the PC to infer
some information about the parts that it still has not reconstructed. This usually
leads to bitrate savings which could mitigate the fact that independently decoding the
partitions makes it harder for the system to exploit spatial redundancy.

• The effect of other SS schemes on the framework should be explored to asses their
effect on the overall coding performance.

• Furthermore, this work shows that compression noise can considerably hinder the
performance of scene understanding algorithms. This should strongly motivate re-
searchers to study some new techniques to make their models more robust to this and
other types of noises. For example, training the NNs on compressed data might make
them much more robust to the modified data distribution.

• It might be possible to train the whole system (semantic segmentation model and
codec) in an end-to-end fashion to achieve better representational capabilities and
faster inference due to the features shared by the two blocks.
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CACTUS Content-Aware Compression and Transmission Using Semantics
DL Deep Learning
DSAE Distributed Source Auto-Encoder
GPCC Geometry-based Point Cloud Coding
LiDAR Light Detection and Ranging
LPCGC Learned Point Cloud Geometry Codec
mIoU mean Intersection over Union
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PC Point Cloud
PCC Point Cloud Coding
PSNR Peak Signal-to-Noise Ratio
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Appendix A

Suppose that we have an algorithm that has computational complexity Θ(nγ(log n)δ)
where then this means that:

∃ k1, k2, n0 : ck1(n) = k1nγ(log n)δ < a(n) < k2nγ(log n)δ = ck2(n) ∀n > n0 (A1)

where a(n) is the actual number of operations performed by the algorithm, k, γ, δ ∈ R :
k > 0, γ > 1, δ > 0.

If it is possible, for some reason, to process the input by independently running the
algorithm m ∈ {2, 3, . . . , n} times on subsets of the input of size n

m ; then, the bound for a
general value k becomes:

m

∑
i=1

ck

( n
m

)
= mck

( n
m

)
= mk

( n
m

)γ(
log

n
m

)δ
(A2)

However, it is simple to see by manipulating Equation (A2) that mck

(
n
m

)
< ck(n)

since

mck

( n
m

)
= mk

( n
m

)γ(
log

n
m

)δ

= k
nγ

mγ−1

(
log n− log m

)δ

< k
nγ

mγ−1 logδ n

< knγ logδ n = ck(n)

(A3)

where the first inequality comes from the fact that 1 < m ≤ n, δ > 1, while the second one
is due to the fact that since γ > 1, m > 1, then mγ−1 > 1, i.e., 1

mγ−1 < 1. Similarly, it is
possible to obtain a similar result even if the dataset is not equally split in m folds; however,
the multiplicative constant in the bounds is reduced by a smaller amount.

http://www.semantic-kitti.org/dataset.html
http://www.semantic-kitti.org/dataset.html
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For this reason, it is possible to see that the CACTUS coding complexity given the
semantic labels is asymptotically bounded by two equations with smaller multiplication
constants k1

mγ−1 < k1, k2
mγ−1 < k2 with respect to the respective ones in the standard com-

pression case. This always leads to a smaller number of operations for n > n0 if k2
mγ−1 < k1;

otherwise, it will generally do so but not with mathematical certainty. However, empirical
observations confirmed that this is the case for CACTUS.
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