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Abstract: This paper explores the use of low earth orbit (LEO) satellite links in long-term monitoring
of water levels across remote areas. Emerging sparse LEO satellite constellations maintain sporadic
connection to the ground station, and transmissions need to be scheduled for satellite overfly periods.
For remote sensing, the energy consumption optimization is critical, and we develop a learning
approach for scheduling the transmission times from the sensors. Our online learning-based approach
combines Monte Carlo and modified k-armed bandit approaches, to produce an inexpensive scheme
that is applicable to scheduling any LEO satellite transmissions. We demonstrate its ability to adapt
in three common scenarios, to save the transmission energy 20-fold, and provide the means to explore
the parameters. The presented study is applicable to wide range of IoT applications in areas with no
existing wireless coverages.

Keywords: Internet of Remote Things; sparse LEO satellite transmission; water-level monitoring

1. Introduction

The Internet of Things (IoT) has made huge advances in smart homes, industrial and
other settings with numerous networking options already present. To achieve progress in
the Internet of Remote Things (IoRT) for environmental monitoring in wilderness, connec-
tivity solutions are needed that are widespread, energy-efficient and cost-efficient. This
paper presents the exploration of satellite-based connectivity in the context of environmen-
tal water-level monitoring.

1.1. Water-Level Monitoring and Its Role in Climate

Global water-level monitoring is critical in hydrology and climate change tracking.
The polar regions are arguably at the center of the climate crisis, because these regions
are experiencing the most rapid changes and the largest current and future contribution
to sea level rise is predicted to be from ice sheets losing mass to the ocean [1]. Predicting
how the polar regions will change in the future requires field measurements, for example,
from sensors that monitor changes in the atmosphere (weather stations), coastal water-level
sensors, ocean buoys, or from Global Navigation Satellite System (GNSS) stations (for
monitoring solid earth deformation) [1]. Despite the ever-expanding capabilities of remote
sensing satellites, such measurements cannot yet be obtained from space with the same
accuracy or temporal resolution as from ground-based sensors.

Climate model predictions become more reliable with an increased density of sensors,
hence low-cost environmental sensor networks are emerging as a powerful tool for climate
monitoring [2]. One recent innovation repurposes mass-market GNSS technology for water-
level monitoring, using a technique called GNSS Interferometric Reflectometry (GNSS-IR),
and has the potential to be used to increase the density of coastal water-level stations [3,4].
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In remote regions such as Greenland or Antarctica, where sea level information is critical
for climate monitoring [5,6], field campaigns are expensive and it may be prohibitively
expensive to maintain a dense network of sensors. Wireless connectivity should reduce the
maintenance cost of remote sensor networks by reducing the frequency of expensive site
visits to collect data or check the status of instruments. This paper focuses on a low-cost and
energy-efficient wireless communication technique using low earth orbit (LEO) satellites
that is suitable for remote water-level sensor networks, notably GNSS-IR ones, Figure 1.

Figure 1. Schematic showing a GNSS-IR water-level sensor with integrated LEO satellite connectivity.

1.2. Connectivity for Internet of Remote Things

This paper addresses the problem of providing inexpensive and energy-efficient
satellite IoT links in the context of GNSS-IR monitoring. Such a water-level sensor must be
affordable and widely deployable. Wide geographic reach imposes the challenge of data
uplink from remote locations to where that data is needed [3]. This limitation of IoT has
spawned a subdomain dedicated to solving the issues of bringing IoT to the remote corners
of the globe, the IoRT [7].

There is an abundance of connectivity options for IoT around populated areas. Several
standard IoT connectivity options range from cellular technologies to LoRa. Connectivity
options for IoRT range from low-power wide area networks (LPWANs) to low-power
cellular network standards to geostationary and LEO satellites [8]. Additionally, there have
been efforts into unmanned aerial vehicles supporting IoRT [8,9]. Satellite options are the
only proven connectivity options for truly global coverage [8,10,11], but only if the cost and
energy consumption are kept low enough. Traditional geostationary satellites are always
overhead for a fixed earth location, but they are costly, require higher transmission power,
and incur around 70 times longer latency than LEO satellites [7,12].

1.3. LEO Satellite Communications for Internet of Remote Things

For IoT applications, LEO satellites are practical for the most remote regions where
terrestrial infrastructure is out of reach [7,12]. LEO communications are categorized by:

• Communication directness;
• LEO orbit configuration;
• By satellite service type.

Regarding communication directness, individual sensor nodes can communicate
directly to a satellite (known fittingly as “direct-to-satellite”) or indirectly via a local
network (often an LPWAN such as Bluetooth) centered around a satellite gateway [8,10].
The latter case is impractical in our case, as a gateway adds another independent hardware
part not under the IoRT node control, which needs to be designed and dimensioned for
multiple unknown nodes, and requires a critical mass of nodes to be useful.
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Among satellite services, there are those provided by companies from the pre-IoT era
(who often offer satellite internet and phone coverage as well), and the emerging sparse
constellation [13] networks, such as Swarm, Lacuna, Enxaneta, Kepler or Astrocast pro-
vided by independent LEO satellite companies [8,10], which are more suited for IoT. The
independent LEO satellite services use CubeSats, which are small and modular picosatel-
lites [8]. Since IoT can tolerate intermittent connectivity better than satellite phones, their
satellites can use polar orbits to provide global, but intermittent, coverage [10] by sparse
constellations. In contrast, traditional LEO providers deliver continuous or near-continuous
coverage using a combination of polar and non-polar orbits [10].

Using emerging sparse LEO constellations for IoRT has the primary benefit of requiring
fewer satellites and less cost [10], but requires waiting until a satellite passes overhead [10].
To achieve low-energy LEO networking, a suitable algorithm must be devised to sched-
ule sensing and transmissions at appropriate times such that the data is transmitted at
(near-)minimal cost in energy [10].

1.4. Relation to Previous Work

To the best our knowledge, one previous paper [11] has examined this problem and
proposed an online learning algorithm, which can learn sample-by-sample in the field, as
opposed to offline in batched datasets. That work on indirect-to-satellite communications
is not applicable here, as it assumes perfect knowledge of uplink availability, unpredictable
multiple streams of data that can easily overflow the buffers, and is thus posed as a
queue scheduling problem [11]. They then propose an online learning algorithm based
on Lyupanov optimization, which is a common approach for similar queue optimization
problems [11,14].

In contrast, our paper deals with direct-to-satellite communications with a known
data production rate. The algorithm presented in this paper is derived from reinforcement
learning, specifically Monte Carlo learning and the k-armed bandit problem. Because of the
relative youth of the LEO satellite service (provided commercially by Swarm Technologies),
an integrative approach is taken to the design from requirements, to communications
technology selection, to hardware, and finally to software and algorithm design. In doing
this, this paper aims to highlight key design considerations for creating a low-cost, low-
power communications scheme for an IoRT device. The key contribution of this paper is
the online learning-based direct-to-satellite scheduling, and associated energy model.

2. Materials and Methods

We implemented GNSS-IR water-level detection system on a printed circuit board
(PCB), Figure 2 and deployed on Swarm network by help of our software. The PCB includes
from right to left: a Swarm M138 LEO Modem, a Raspberry Pi Pico, and pads for four
GNSS modules for GNSS-IR water-level measuring (together with GNSS antennas). The
proposed scheduling algorithm was implemented on a dual-core ARM Cortex M processor
of the Raspberry Pi Pico, where each processor core executes one process of the code. The
board is sending one 128-bit message per hour, to fit within a single Swarm data plan for
USD 60/year.

Figure 3 presents the schematic for the final prototype PCB design produced in this
project. The left-hand side displays spaces for four GPS receivers and four GPS antenna
connectors, which are the project-specific sensing components for GNSS-R water level
sensing. The remaining two-thirds of the schematic are generalizeable to other projects
that use the Swarm M138 LEO modem, including an mPCI-e connector, decoupling and
feed-through capacitors, and headers for the microcontroller.
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Figure 2. Board design: PCB layers and board populated with Raspberry and Swarm modules.

Figure 3. Board schematic with GNSS receivers, Raspberry Pico microcontroller and Swarm modem.

2.1. Satellite Modem Operating Specifications

For remote GNSS-IR sensors, we use the independent LEO satellite provider Swarm
Technologies. The energy consumption and, consequently, transmission scheduling will
depend on Swarm’s service specification and operation of the Swarm M138 modem built
into our board. The Swarm modem has four operating states: (1) Sleep Mode, (2) GPS
Acquisition Mode, (3) Receive Mode, and (4) Transmit Mode, Figure 4.

When the modem powers on, it enters GPS acquisition mode to determine the time
and location. The modem will also re-enter GPS Acquisition Mode every 4 h or when
awoken. Once a GPS fix has been acquired (30 s typical duration), the modem enters
the Receive Mode, wherein it listens for a packet from any satellites passing overhead.
This mode lasts until either a packet is received from a satellite (at which point it enters
Transmit Mode), the modem is instructed to enter Sleep Mode, or enough time elapses
that the modem automatically re-enters GPS Acquisition Mode. Robust operation and
enhanced availability [15] is built into the M138 modem, as well as ensured by handling
the exceptions, such as those caused by lost signals (Swarm or GNSS) or power.
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Figure 4. State machine of the Swarm M138 operating modes.

If a packet is received from a satellite, the modem enters Transmit Mode, attempting
to transmit queued packets and receive an acknowledgement. If successful, it will return to
Receive Mode, unless put into Sleep Mode. Table 1 shows that transmission is 1–2 orders of
magnitude more costly, while Sleep Mode uses 2 to 3 orders of magnitude less energy. Com-
munication incurs a dominant part of energy consumption in IoT nodes [16]—even more so
for satellite access. For instance, Swarm reports that sending a maximum-length 192-byte
packet at P = 2.8 W takes ∆T = 3.7 s and Etotal = 12.24 J, while in comparison Raspberry
Pico benchmark for embedded code, hello_sleep runs at 1.5 mW, as per the datasheet.

Table 1. DC power characteristics of 4 modes of operation for 5V/3.3V power supply.

Mode Typical Current at 5 V/3.3 V Typical Power at 5 V/3.3 V

Transmit 550 mA/850 mA 2.8 W/2.8 W
GPS Acquisition 45 mA/45 mA 230 mW/150 mW
Receive 26 mA/26 mA 130 mW/86 mW
Sleep <110 µA/80 µA <550 µW/260 µW

For Swarm modem’s operating modes, the energy-saving strategy includes:

1. Keep the modem in Sleep Mode as much as possible. When not in Sleep Mode, its
default state is Receive Mode, which uses much more power.

2. Being awake dominates energy usage, either from the actual transmission energy or
the GPS Acquisition and Receive Modes.

3. Failure to transmit will waste considerable energy. Thus, one should schedule trans-
mission to when there is a high probability of successful communication.

2.2. Swarm Satellite Transmission

To minimize transmission power consumption requires understanding how the satel-
lites, transmission, and data plans work. There is not always a satellite overhead, nor
are the elevation angle and environmental conditions (e.g., background RF noise) always
suitable. Data rate is limited, and frequent transmissions consume energy. These factors
critically impact how we orchestrate transmissions.

The nature of Swarm satellite passages is disclosed by their Web-based tool that lists
upcoming satellite passes, their times, durations and max elevation angles for a given
location. Elevation angles observed in Montreal, Quebec, Canada range between 15 and
85 degrees, and pass durations typically range between 10 min and an hour. In reality,
even with a satellite pass, the modem might not always be able to transmit. There are
many factors impacting this: satellite pass “quality”, RF background noise, environmental
conditions, antenna setup, and many others.
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The first factor, satellite pass quality, is due to the pass duration and maximum
elevation angle. Swarm gives no guidance on what factors impair successful transmission,
and one objective of this paper is for each sensor to construct an empirical model for
quantifying the likelihood of a pass leading to successful transmission. The second factor,
RF background noise, does have guidance provided by Swarm, Table 2, by which noise
intensity of -93 dBm or lower is expected for successful transmission.

Table 2. Background noise intensity required for likelihood of transmission.

Background Noise RSSI (dBm) Quality (for Transmission)

−90 and higher Bad (unlikely to work)
−93 and lower Marginal
−97 and lower OK
−100 and lower Good
−105 and lower Great

There are also the constraints imposed by Swarm data plans, priced at USD 60 per
year per data plan, with up to four data plans stackable onto a single modem. Each data
plan permits up to 750 packets per month, or about 25 packets per day, or about one per
hour. These constraints imply that for finer temporal resolution (e.g., every 15 min), one
must either bundle measurements, or pay to stack multiple data plans. The later, costly
option also reduces the battery life, while bundling reduces the number of packets and
possibly the cost.

The high-level view of the two main processes is shown in Figure 5. The process on
the left produces and inserts the data into a circular queue. Since the Swarm modem’s
internal queue can drop packets after 48 h, the circular queue needs to contain 48 h of data.
Each cycle of waking from sleep, acquiring GPS, listening for a satellite, and transmitting
uses a lot of extra energy. In addition, due to environmental variables, there is inherent
uncertainty as to how long one can expect the modem to be awake before transmitting
successfully. This precise question is examined in the rest of the paper.

2.3. Efficient Packet Data Bundling

Note that there are a few important functions in Figure 5, such as the data bundling,
as the transmission duration directly causes energy consumption. Table 3 shows the format
of data. Each datum includes a timestamp, expressed in minutes since 1 January 1970. Due
to the nature of the GNSS-IR, we omit seconds, which allows the re-purposing of 4 bits for
16 status codes. For completeness, using 28 bits allows timekeeping for 510 years. This
format allows the whole datum to fit in 16 bytes, which divides evenly into 192 bytes per
packet, such that each packet will be maximally utilized with 12 data points per packet.

Table 3. Format for each datum within the software.

Name Type Bits

Water level Floating-point 32 bits (4 bytes)
Error Floating-point 32 bits (4 bytes)
Roughness Floating-point 32 bits (4 bytes)
Minutes since 1 January 1970 Positive integer 28 bits (<4 bytes)
Status Positive integer 4 bits (<1 byte)

Total 128 bits (16 bytes)
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Figure 5. Activity diagram for the host device with two processes

Second implicit function within the high-level processes shown in Figure 5 is that of
good satellite pass selection, while the algorithm for actually predicting satellite passes—at
least from the user perspective—is made fairly simple with the help of an open-source
SGP4 satellite pass prediction Arduino library, quantifying what satellite passes are “good”
depends much on environmental conditions, setup details, and empirical observations, as
described next.

2.4. Online Learning Direct-to-Satellite Packet Scheduling

Transmitting to the LEO satellites can be unreliable due to minute changes in equip-
ment setup or environmental factors. For example, severely cloudy days lead to too high
RF background noise (i.e., higher than −93 dBm). Further, unshielded microcontroller
within 10 to 20 cm of the antenna could increase measured RF background noise by as
much as 5 to 10 dB. Further, slightly angling the antenna towards or away from a cell tower
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a few kilometers away could vary the RF background noise by several dB. With all these
factors, creating a generalizable pass model is intractable.

Previous work with indirect-to-satellite scheduling shows that online learning is a
successful strategy [11]. Thus, each individual sensor should learn for itself and for its
exact site conditions and hardware setup via online learning. Previous work in indirect-
to-satellite scheduling uses a Lyupanov optimization problem for network queuing to
avoid making assumptions about when new data would become available [11] while the
perfect knowledge of satellite overpasses is assumed. However, the data production rate is
constant in our case, so rather than treating it as a network queuing problem, we ought to
predict the uplink availability. Thus, a novel approach will be used.

2.4.1. Algorithmic Problem Statement

For a sensor placed in a remote location, a simple and interpretable model is needed
to be trusted to perform as expected [17]. To achieve this, a relatively simple algorithm
inspired from reinforcement learning has been devised. The goal is to learn the probability
of successful transmission, given three input variables: (1) the satellite pass duration (in
minutes), (2) the maximum elevation angle of the satellite pass (in degrees), and (3) the RF
background noise (in dBm).

Borrowing the notation from reinforcement learning, the state space S is the set of
all possible input variable combinations, and the action space A is the set of all possible
actions [18]. In this case, A consists of the actions to transmit or not to transmit for each
satellite pass with pass characteristics s ∈ S. Let the function v be the mapping of S to a
probability of successful transmission, v : S 7→ [0, 1], and let the policy π represent the
conditional probability of choosing a particular action a ∈ A given a state s ∈ S. Hence, the
policy is the mechanism for choosing which satellite pass to select, given a set of passes
and their characteristics.

π(a|s) = P(At = a|St = s) (1)

In Equation (1), At represents the action at time step t, and St represents the state at
time step t. Regarding the probability success mapping V, a natural objective is thus to
approximate it with collected experience: as the system runs and has successes and failures
transmitting with different states s ∈ S, it will converge to true probabilities of successful
transmission for a given state, i.e., the value function v [18,19].

2.4.2. Modified Monte Carlo Learning

Monte Carlo learning methods approximate a value function in a simple and inter-
pretable way by taking the value of a state to be the average return at the end of a training
episode [18,19]. In the direct-to-satellite packet scheduling, the episodes are of length one,
i.e., there is no sequential decision-making, simplifying the problem. If the reward is taken
to be 1 for a successful transmission and 0 for an unsuccessful transmission, then the value
function can be taken to be the average rate of successful transmission from a given state.
If for a given state of satellite pass characteristics and RF noise, transmission is successful
50% of the time, then the value function is 0.5.

However, Monte Carlo learning requires a discrete state space, whereas the state space
for this problem is continuous, so we discretize the state space. Using the Swarm pass
checker, it is known that all satellite passes shown are between 15 and 90 degrees and
almost all between 10 and 60 min. Additionally, while RF noise is technically continuous,
the modems only report whole numbers, e.g., −95 dBm. If only integers within the range
−93 dBm (the highest noise Swarm reports success transmitting with) to −106 dBm (the
lowest noise measured in this project) are considered, this is naturally discretized. Table 4
shows how the state space has been chosen to be discretized. With 5 buckets for each state
variable, some simple combinatorics gives 125 unique combinations, where the total set of
125 combinations represents the discretized state space.
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Table 4. State space bucketing for each state variable.

Bucket Number Max Elevation Angle (°) Pass Duration (minutes) RF Background Noise (dBm)

1 15 to 30 10 to 20 −93 to −95
2 31 to 45 21 to 30 −96 to −98
3 46 to 60 31 to 40 −99 to −101
4 61 to 75 41 to 50 −102 to −104
5 76 to 90 51 and higher −105 and lower

The remaining question is that of the policy π. Clearly, once a good approximation of
the true value function is made, the policy π should exploit that knowledge to select the
most promising satellite passes. At the beginning, the system will not know about a good
satellite pass, and it will thus have to explore with passes of different characteristics. This
is an example of the exploration–exploitation problem in reinforcement learning [18,19]. A
common approach is to explore early on and gradually exploit more with time.

2.4.3. Modified k-Armed Bandit

Regarding the policy for packet scheduling, there is a similarity to the k-armed bandit
problem, whereby an agent repeatedly plays the same one-step episode. In each game,
the agent has a selection of options, which may give varying stochastic rewards. The goal
is to learn over time which actions give the greatest expected reward [18,19]. A common
approach to this problem involves softmax (Boltzmann) exploration, which derives a set
of probabilities corresponding to each possible action [20]. The action with the highest
expected reward has the highest probability of selection, plus all the choices are guaranteed
to sum to 1 by the design.

Our problem is slightly different from the k-armed bandit problem in two impor-
tant ways: (1) the set of actions available to the agent in each episode is different, and
(2) expected reward is not only the probability of successful transmission, but its utility
in the given application, most notably the timeliness. Regarding the first point, the agent
is faced with a different selection of satellite passes each episode, each with their own
set of pass characteristics and times at which they occur. This problem is solvable, as the
modified Monte Carlo learning methods will allow keeping track of the estimated reward
of each action.

2.4.4. Temporal Bounds for Packet Scheduling

Addressing the reward modeling, we apply the following reasoning. A good pass
in an hour is not the same as an equally good pass occurring after 24 h because: (1) data
needs to be transmitted regularly, (2) the circular queue holding data has a finite capacity,
and (3) the Swarm modem will drop packets from its transmission queue after a timeout.
Thus, to model he preference for more prompt transmissions, a discount factor λ is applied
to reduce the value of later passes.

Under the data plan, each modem can transmit at most one packet per hour to remain
within the budget. Since there are many satellite passes to consider, the rules are needed for
the interval of packet scheduling. Such rules are shown in Figure 6, in which tmin and tmax
are the minimum and maximum amount of time (in hours) for a satellite pass, respectively,
a is a vector of satellite passes between tmin and tmax (ai is the i-th element of a). Further, s
is a vector of states (i.e., pass characteristics and RF background noise) of satellite passes of
a. Let t be a vector of midpoint times of satellite passes of a.
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Figure 6. Routine for selecting the next satellite pass to attempt transmission.

2.4.5. Algorithmic Formulation

Since we are developing a learning approach to the LEO transmission scheduling, we
will rely on the activation function for classification/learning, softmax. For the set of values
xj, {j, 1, N}, it is for each value xi from as:

so f tmax(xi) =
exp(xi)

∑ j exp(xj))
. (2)

Since softmax adds up to 1 across all inputs, it effectively creates a probability distri-
bution function that disproportionally favors larger values of xi.

Let rdata be the data point generation rate (in data points per hour), and bundlesize
be the number of data points that comprise a full bundle. Then, the rate of full packet
bundling rpkt is: rpkt =

rdata
bundlesize . Let softmax(z) be the vectorized softmax function where

softmax(z)i is the softmax of the i-th element of z, and let v(s) the vectorized value function.
We express the policy π as:

π(ai|si) = softmax(λt	tmin � v(s))i (3)

where the 	 and � symbols operating on vectors t and s are the element-wise subtraction
and multiplication, respectively. Equation (3) expresses the probability of selecting a
satellite pass ai from interval [tmin, tmax] as the softmax of the estimated transmission
success probability for the pass, multiplied by a discount factor for future passes. Pass
quality and promptness will be prioritized, while still giving a chance for exploration of
passes currently predicted to be worse. This preference allows Monte Carlo learning to
improve the value function estimates with time.

2.5. Uplink Transmission Energy Model

Energy consumption modeling of communication interfaces is a complex issue, and
we have relied on the existing Iridium satellite communication model [21], as well as a
model for long-range terrestrial network Sigfox [22], as the closest detailed model that
similarly to us relies on the published energy consumption values from the datasheets. To
determine the average power consumption, we introduce the unified uplink transmission
energy model. Since the stochastic nature of transmission success prohibits the derivation of
a deterministic model, a probabilistic model is created to give an estimate of average power
consumption. There are two key causes of transmission non-determinism: (1) whether a
transmission will succeed for a given pass, and (2) if it does succeed, how long the modem
will be in Receive Mode before it is able to transmit.
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To build the model, let tSL be the mean time that the modem is in Sleep Mode, tGPS
be the mean time the modem is in GPS Acquisition Mode, and tRX be the mean time the
modem is in Receive Mode before transmission is successful. With typical modem power
consumption values PSL, PGPS, and PRX , the total energy usage in these modes over a single
transmit attempt cycle, Eattempt is:

Eattempt = PSLtSL + PGPStGPS + PRXtRX + ETX Npkt (4)

where Npkt is the number of packets transmitted in a given pass. Depending on satellite
pass selection and/or previous transmission attempt successes, Npkt may be 1 or larger. In
the case of an unsuccessful attempt, Npkt is 0. An expression for non-zero Npkt is:

Npkt =
rpkt

psuccessrattempt
(5)

where psuccess is the transmission success probability, rattempt is the mean transmission
attempt rate, and rpkt is the rate at which fully bundled packets are generated. Since
rattempt is smaller or equal to rpkt, Npkt is guaranteed to be 1 or greater because successful
transmission of one packet entails successful transmission of all queued packets.

In Equation (4), also note that, while PSL, PGPS, tGPS, PRX, and ETX (at least for full
packets) are constant, tSL and tRX are variable. Here, tSL represents the mean time in the
Sleep Mode before making a transmission attempt, approximated as: tSL = 1

rattempt
.

The value of tRX depends on how long the modem waits until it receives a packet and
begins the transmission, or the pass is over. For a successful transmission, the quickest case
is to transmit immediately after exiting GPS Acquisition Mode. The slowest success case is
to transmit at the very end of the satellite pass. The worst failure case is the modem reaching
the end of a given satellite pass in Receive Mode, with no transmission. In terms of tRX,
this case and successful transmission at the very end of the pass would be approximately
equal. All three cases depend on the mean pass duration, denoted as tpass.

Eattempt can take two forms, depending on the transmission attempt success. A success
is expressed in Equation (6), where εpass represents the proportion of a satellite pass spent
in Receive Mode before receiving a packet from the satellite and is able to transmit. For
pessimistic and optimistic models, εpass can be treated as either 1 or 0, as these serve as the
upper and lower bounds of the time in Receive Mode for a given satellite pass.

Esuccess = PSL
1

rattempt
+ PGPStGPS + εpassPRXtpass + ETX

rpkt

psuccessrattempt
(6)

If the attempt is a failure, the model is represented by Equation (7). Note that there is
no εpass value and no Npkt, as the system will wait out a full pass without transmissions.

E f ail = PSL
1

rattempt
+ PGPStGPS + PRXtpass (7)

The above two cases can be combined into a complete model: Eattempt = psuccessEsuccess +
(1− psuccess)E f ail , which expands into the following expression:

Eattempt =
PSL

rattempt
+ PGPStGPS + psuccess(εpassPRXtpass +

ETXrpkt

psuccessrattempt
)+

+(1− psuccess)PRXtpass

(8)

where PSL, PGPS, and PRX are all constants and given by Swarm. Similarly, location fix time
tGPS is rather constant, reported to be about 30 s by Swarm. Furthermore, note that rattempt
depends on site conditions, project requirements, and packet scheduling. Similarly, psuccess
and tpass depend heavily on site conditions and packet scheduling.
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2.6. Simulation Model for Online Learning Evaluation

Setting up a number of sensors in the representative environment is expensive in
time and money. Instead, the algorithm is tested with a simulated environment, simi-
lar to the methodology chosen in previous work on indirect-to-satellite scheduling [11].
Using simulations first can demonstrate the ability of the algorithm to learn underlying
unknown patterns about satellite pass qualityand tune the discount factor λ parameter. To
simulate the algorithm, two key components are needed: (1) virtual transmitters with an
underlying probability model for which pass qualities are likely to result in transmission,
and (2) randomly generated satellite pass characteristics and RF noise data. For virtual
transmitters, three conceptual preference models were created, Table 5, to see how different
transmitting obstacles would affect the algorithm. Note that the preferences in Table 5 refer
to the conditions required for a high likelihood of success. For example, the first preference
model requires high angles, long durations, and low noise for a high likelihood of success.

Table 5. Conceptual preference models for the virtual transmitters.

Model Elevation Angle Pass Duration RF Background Noise

1 High angles Long time Low noise
2 Mid to high angles Mid to long time Low to mid noise
3 Low to high angles Short to long time Low to high noise

To create the virtual transmitter models, a function is constructed that outputs a trans-
mission success probability by multiplying three stretched-and-shifted sigmoid (theshold
activation) curves, one for each of three preference variables from Table 5. For example, the
sigmoid to represent a preference for high angles would produce a value close to 1 for high
angles (e.g., 70 degrees and higher) but a value close to 0 for low angles (e.g., 30 degrees
and lower). The general form of the preference models is shown in Equation (9).

P(success) = σ(kθ(θ − θ0))× σ(kd(d− d0))× σ(kγ(γ− γ0)) (9)

where σ(x) represents the sigmoid function, θ represents the max elevation angle, d repre-
sents the pass duration, and γ represents the RF background noise. Note that kθ , kd, kγ, θ0,
d0, and γ0 represent configurable stretching and threshold shifting constants to represent
the different conceptual preference models. The values of these constants used to create the
three preference models by Equation 9 are shown in Table 6.

Table 6. Constants for the three preference models.

Preference Model kθ θ0 kd d0 kγ γ0

1 0.5 70 0.5 35 −1 −102
2 0.5 50 0.5 20 −1 −99
3 0.5 30 0.5 10 −1 −96

Simulated satellite passes are presented to virtual transmitters by agents imbued with
a preference model and a value function approximator. The generated pass characteristics
are randomly generated: each agent is exposed to random RF background noise, a vector a
of satellite passes with corresponding random midpoint times t, and random pass charac-
teristics s (except each si ∈ s also includes the RF noise value). The randomly generated
pass characteristics are drawn from a uniform distribution, and the RF background noise
values are drawn from two differing distributions:

1. Uniform across all buckets (−107 to −93 dBm).
2. Uniform within one bucket (−107 to −105 dBm).

to express that a given sensor may experience either a full range of RF noise, or (as expected
in a remote location) a narrow sub-range of RF noise.
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Each agent calculates the probabilities of selecting satellite passes from the discretized
states, agents’ value function approximators, and the pass midpoints. These probabilities
are calculated from the policy π and satellite passes are chosen by these probabilities.
Satellite pass and the RF noise characteristics are used by the agents’ preference models
for transmission success probabilities. Finally, transmission successes are determined
according to the agent preference model outputs, and the process repeats.

3. Findings

This section summarizes the findings on the suitability of the proposed on-line learning
to adapt in different scenarios, on tuning of the parameters, as well as the overall energy
savings and the parameters tradeoffs. For evaluation of the transmission scheduling, the
goal is to (1) demonstrate the ability of the algorithm to learn patterns behind transmission
success probabilities, and (2) to make apparent how the performance gets affected by the
main variables, such as the overpass duration, angle and the RF noise.

Simulations were conducted for the proposed algorithm under all three preference
models in Table 5. The power data published by Swarm, as per Table 1 forms the basis of the
transmitter energy consumption. The effects of random noise were expressed in two ways:
noise contained in a single bucket, or across all buckets from Table 4, to model the remote
and populated locations, respectively. Figures 7–12 show the transmission success and and
average time to transmit for three preference models, as training epochs(i.e., the number
of times that the learning steps are applied) progress, all parameterized by the discount
factor λ. For their evaluation, notable is the response to overall RF noise distribution and
transmission difficulty. We observe that wider RF noise distributions negatively impact the
success, as well as when it is relatively hard (or easy) to transmit, there is less room for the
algorithm to make huge improvements in success rate. For example, when there are few
good passes, the algorithm often has to make a choice between a mediocre and a bad pass.
This is seen in the lower (but still significant) improvement for the first preference model,
and lower TX success rates, as there is simply no room for much improvement.

Figure 7. Simulated results for preference model 1 and random noise within 1 bucket.
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Figure 8. Simulated results for preference model 1 and random noise across all buckets.

Figure 9. Simulated results for preference model 2 and random noise within 1 bucket.



Sensors 2023, 23, 5581 15 of 23

Figure 10. Simulated results for preference model 2 and random noise across all buckets.

Figure 11. Simulated results for preference model 3 and random noise within 1 bucket.
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Figure 12. Simulated results for preference model 3 and random noise across all buckets.

Second to note is the difference in response to discount factors λ. In the first preference
model, less likely to succeed, differing discount factors made little difference to rattempt,
as the penalty for long wait for a decent pass outweigh the cost of other poorer options.
For the other two preference models, however, the discount factors closer to 1 did see
significantly higher average times to attempt transmission. For certain applications, an
average time to transmit of 24 h may be unacceptable. If it is necessary to keep rattempt
higher, using a lower value of tmax or a value of λ closer to 0 would lower the average
time to transmit. A lower value of tmax in particular forces the algorithm to only consider
satellite passes within a more constrained time frame.

Regarding noise distribution, Figures 7–12 also compare two noise models, where the
RF noise values were drawn uniformly from all noise buckets or from one bucket only. This
second model was explored as remote sites have largely consistent RF background noise
levels. The primary impact is that the algorithm consistently learns faster and converges
to higher success rates when exposed to RF noise associated with remote locations. For
example, the algorithm learned in 1000 epochs for preference model 2 and fully random
noise what it learned in under 300 epochs for same-bucket noise.

The most permissive conceptual preference model 3, Figures 11 and 12 shows that a
high baseline success rate is rapidly improved through fewer epochs of training, especially
as RF noise is constrained in a single bucket, as the expectation for remote, wilderness areas
noise is not to occupy all buckets. Not only that the learning will be successfull, but the
results are interpretable based on the understanding that the wireless channels with less
contention perform better than those found in populated areas.

Power and Energy Consumption

We now evaluate expected transmission energy savings. Energy spent for each trans-
mission attempt Eattempt, (Equation (8)) employs parameter values listed in Table 7. They
are derived from Table 1 obtained from the datasheet values. While these values may
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depend on exact hardware setup (e.g., voltage supply), they are all constant, as opposed to
variable terms, as detailed next.

Table 7. Constants used for transmission attempt energy model.

Constant Meaning Value

PSL Sleep Power 550 µ W
PGPS GPS Power 230 mW
tGPS Time to GPS Fix 30 s
PRX Receive Power 130 mW
ETX Transmit Energy 12.24 J
rpkt Packet Rate 1

3 h−1

The ranges of the variables in Equation (8) are shown in Table 8. Note that “pessimistic”
refers to the boundary of the interval that results in higher average consumption Eattempt,
while “optimistic” refers to the boundary of the interval with lower average consumption.
A value denoted as optimistic or pessimistic does not necessarily mean a value judgement
for system operation. For example, a lower rattempt means less frequent transmission
attempts, which is good for energy consumption, but causes high average time to transmit
and lost data. Furthermore, note the difference between average energy consumption
and the value for Eattempt given by Equation (8); while a low rattempt will result in a higher
Eattempt, it will result in lower average power, as shown by Equation (10) below. The term
in the denominator is the average time elapsed during a complete cycle.

Pavg =
Eattempt

1
rattempt

+ tGPS + psuccessεpasstpass + (1− psuccess)tpass
(10)

The results of these four variables on average modem power consumption are shown
in Figure 13. The two dominant factors in determining average power consumption are the
success rate and average time between attempts, while the smaller proportion of time εpass
idled in Receive mode helps to keep the power low irrespective of other variables.

Table 8. Sample variable ranges for transmission attempt energy model.

Parameter Variable Pessimistic Value Optimistic Value

Attempt rate rattempt 1 hr−1 1
48 hr−1

Success probability psuccess 0.0 1.0
Portion of time in
read mode εpass 1.0 0.0

Overpass duration tpass 60 min 10 min

The impact of the success rates on power and battery requirements is shown in Table 9
for the three preference models. Note that the psuccess and rattempt values are taken from
the simulations, and εpass and tpass are taken as 0.5 and 25 min, respectively. For each
preference model, three results are shown: (1) a baseline based on taking the earliest
available passes and no scheduling, (2) another baseline based on the same average rattempt
as the simulated results but no scheduling, and (3) the test case with scheduling and
simulated average rattempt.
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Figure 13. Average power of the Swarm modem under different pass variable values.

Table 9. Sample energy savings from simulated packet scheduling for a year of operation

Preference Model Success Prob. psuccess Attempt Rate rattempt Average Power Required Battery Capacity

1
0.13 2.564 hr−1 67.54 mW 592.1 Wh
0.13 1

24 hr−1 3.810 mW 33.40 Wh
0.20 1

24 hr−1 3.735 mW 32.74 Wh

2
0.42 0.7937 hr−1 29.31 mW 256.9 Wh
0.42 1

23 hr−1 3.575 mW 31.34 Wh
0.57 1

23 hr−1 3.405 mW 29.85 Wh

3
0.78 0.4274 hr−1 14.95 mW 131.1 Wh
0.78 1

22 hr−1 3.234 mW 28.35 Wh
0.85 1

22 hr−1 3.151 mW 27.62 Wh
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For simulated baseline values, the average time to attempt is represented as the first
available satellite pass, expressed by

tSL,baseline =
psuccess

rpkt
⇒ rattempt,baseline =

rpkt

psuccess
,

which represents the algorithm for determining tmin, where successful transmission lead to
waiting a minimum of 1

rpkt
hours, while unsuccessful attempts lead to no minimum wait.

The results demonstrate that online learning direct-to-satellite packet scheduling is
capable of reducing average power and battery requirements around 20 times. Note that
the dominant energy saving comes from reducing average attempt frequency, although
the improved success rate of the scheduling algorithm introduce significant power saving.
Additionally, our direct-to-satellite packet scheduling scheme enabled us to lower the
attempt frequency, as it provides a built-in mechanism for selecting future passes.

Tradeoff between Low Power and Learning Rate

The proposed algorithm in its current state exhibits low average attempt rate values
rattempt (still sufficiently high for the intended application). The discount factor parameter
λ is investigated in Figures 14–16, as it impacts the transmission attempt rate and thus the
time a node takes to learn, as well as the time to transmit and the modem power.

Figure 14. Average success rate versus discount factor λ for bucketed noise and moderate preference
model 2.

Figures 14 and 15 show that with low values of λ, future candidate passes are all
discounted to such a degree that the resultant probabilities from the softmax function show
little to no preference for earlier passes. Furthermore, with high values of λ (very close
to 1), we observe that future candidate passes are all so little discounted that the resultant
probabilities from the softmax function show little to no preference for earlier passes. It is
only for λ values from around 0.9 to 0.95 (“sweet spot”) that the values of future candidate
passes are discounted such that there is an apparent preference for earlier passes, such that
the transmission success and time to transmit are more favorable.
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Figure 15. Average time to attempt transmission versus discount factor λ for bucketed noise and
moderate preference model 2.

Earlier passes means more frequent transmission attempts. A downside to this is in
smaller expected power savings, as more frequent transmissions require significantly more
average power. There is thus a tradeoff between having a high learning rate and achieving
low average power consumption, Figures 14–16, with the “sweet spot” area of λ selected
for all earlier experiments, e.g., Table 9.

Figure 16. Average modem power versus discount factor λ for bucketed noise and moderate prefer-
ence model 2, using εpass = 0.5, rattempt =

1
24 hr−1, and tpass = 25 min.

4. Conclusions and Future Work

We have presented and evaluated the transmission scheduling for emerging sparse
LEO satellite services suitable for IoT. This is the first published study that addresses the
critical uplink availability issue with sparse LEO constellation. A detailed probabilistic
energy consumption model was developed used to evaluate our on-line learning scheme
for predicting transmission periods. Our learning proposal is inexpensive computationally,
learns in small increments and in a modest number of training epochs, and is interpretable,
unlike most modern machine learning approaches. For three common scenarios, we have
observed up to 20-fold reduction in power and battery requirements of the transmissions
attributable to this learning approach. Since the whole scheme is suitable for the smallest
embedded microcontrollers, we have demonstrated its implementation on Raspberry Pi
Pico that manages to pack all sensed data within the least expensive dataplan.

While the intended application is the water-level monitoring in remote locations, the
proposed scheme is practical for other IoRT applications, as it incurs modest computing
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costs. The results demonstrate the ability of the proposal to facilitate energy-efficient data
collection over prolonged periods of time.

The whole analysis was done by simulations to reduce the burden in cost, time and also
to combat location-dependence, since RF noise in the city differs from the intended remote
locations; while we demonstrate the ability of our proposed scheme to adapt appropriately,
obtain interpretable learning and explore the impact of variables on the performance of the
algorithm, they are nonetheless simulated results.

Complete code and data for modeling, learning and energy consumption evaluation is
made available by GitHub (as reported below in “Data Availability” statement). The code
and data can be readily used for further exploration of sparse LEO connectivity for IoT
in general.

4.1. Future Work

Related to the learning approach, further research could examine the possibility
of adaptive learning rates. One possibility for polar regions would be increasing the
transmission attempt frequency (e.g., by decreasing the discount factor λ) during the
summer when solar power is abundant, and lowering the transmission attempt frequency
during the polar winters.

There are two natural steps that could be taken to improve the simulation setup
in future: (1) the simulations could be based on extracted real-world data for a given
application, or (2) multiple sensors could be placed in the field for weeks or months. The
first option is natural, as the risk of needing to adjust the algorithm is high, making tuning in
simulations and testing on hardware only when confident in good results is the best route.

4.1.1. Potential Simulation Model Improvements

The most apparent way to improve the simulations is to generate a more representative
RF noise distribution and to use the Swarm satellite pass information, something which
is not available in the remote locations. For the latter, there are the versions of the online
satellite pass library, as used in the open source SGP4 Arduino library or in Python [23,24].

4.1.2. RF Noise Impact on Prototype System

One factor discovered in verification testing of a prototype is the sensitivity of the
antenna to noise. For example, minor changes in the exact positioning of the PCB and
microcontroller under the ground plane could vary the measured noise by as much as 3 dB.
Clearly, the antenna receives RF interference from an unshielded device in the immediate
vicinity (e.g., 10 to 20 cm). In fact, it was precisely this interference that played a role in the
design of a online learning direct-to-satellite packet scheduling algorithm; since no method
could possibly account for the range of possible housing, ground plane, and even power
supply designs, as well as varied site conditions and lines of sight, there could be no single
ultimate “good” pass model, so a learning-based approach is used.

Author Contributions: Conceptualization, G.K. and D.P.; methodology, G.K..; software, G.K..; val-
idation, G.K.; formal analysis, G.K..; investigation, G.K., Ž.Ž. and D.P.; resources, Ž.Ž. and D.P.;
writing—original draft preparation, G.K. and Ž.Ž.; writing—review and editing, G.K., Ž.Ž. and D.P.;
visualization, G.K., Ž.Ž. and D.P.; supervision, Ž.Ž. and D.P. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by NSERC Canada Discovery Grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study was generated by a simulation program
placed in the repository: https://github.com/garrettkinman/Self-Learning-Satellite-Pass-Selection
(accessed on 31 May 2023).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/garrettkinman/Self-Learning-Satellite-Pass-Selection


Sensors 2023, 23, 5581 22 of 23

Abbreviations

GNSS Global Navigational Satellite System
GNSS-IR GNSS Interferometric Reflectometry
LEO Low Earth Orbit
IoRT Internet of Remote Things
PCB Printed Circuit Board
MC Monte Carlo
RSSI Received Signal Strength Intensity
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