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Abstract: This study aims to address the challenges of managing the vast amount of data gener-
ated by Internet of Things (IoT) devices by categorizing stakeholders based on their roles in IoT
security. As the number of connected devices increases, so do the associated security risks, high-
lighting the need for skilled stakeholders to mitigate these risks and prevent potential attacks. The
study proposes a two-part approach, which involves clustering stakeholders according to their
responsibilities and identifying relevant features. The main contribution of this research lies in
enhancing decision-making processes within IoT security management. The proposed stakeholder
categorization provides valuable insights into the diverse roles and responsibilities of stakeholders
in IoT ecosystems, enabling a better understanding of their interrelationships. This categorization
facilitates more effective decision making by considering the specific context and responsibilities of
each stakeholder group. Additionally, the study introduces the concept of weighted decision making,
incorporating factors such as role and importance. This approach enhances the decision-making
process, enabling stakeholders to make more informed and context-aware decisions in the realm of
IoT security management. The insights gained from this research have far-reaching implications. Not
only will they benefit stakeholders involved in IoT security, but they will also assist policymakers
and regulators in developing effective strategies to address the evolving challenges of IoT security.

Keywords: IoT security; clustering; stakeholders; role; decision making

1. Introduction

The Internet of Things (IoT) has experienced rapid growth and is increasingly perva-
sive in various domains, including healthcare, transportation, manufacturing, and smart
homes. This expansion highlights the urgent need to address the security challenges as-
sociated with managing the large amount of data generated by IoT devices [1,2]. As the
number of connected devices increases, so do the security risks. IoT devices often have
vulnerabilities that can be exploited by malicious actors, resulting in privacy breaches,
data leaks, device tampering, or even physical harm. Investigating and addressing these
security risks is crucial to safeguarding the integrity, confidentiality, and availability of IoT
systems. Understanding the roles, responsibilities, and interdependencies of these stake-
holders is essential for effective decision making, resource allocation, and risk mitigation
strategies. This article’s focus on stakeholder categorization contributes to enhancing the
understanding of stakeholder dynamics in IoT security management.

The management of IoT security and clustering stakeholders face several
bottlenecks [3–6], including scalability challenges, heterogeneity and interoperability issues,
privacy and data protection concerns, collaboration and communication gaps, adaptability
to dynamic IoT environments, and optimizing security measures for resource-constrained
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IoT devices. To overcome these challenges, it is essential to engage in multidisciplinary re-
search efforts and make advancements in security protocols [5], privacy-enhancing technolo-
gies [5], standardization [6,7], collaborative frameworks [7,8], and resource-management
techniques [5]. By effectively addressing these bottlenecks, the field of IoT security and
stakeholder management can make substantial progress in achieving secure and sustainable
IoT deployments.

The paper make a significant contribution to the theoretical understanding of IoT
security management by classifying stakeholders based on their roles and responsibilities.
This framework provides valuable insights into the diverse stakeholders in IoT ecosystems
and their interrelationships. Enhancing decision making by considering factors such
as role and importance. Various statistical techniques, including chi-square, F-test, and
logistic regression, are employed to validate the research and enhance the understanding
of validation methodologies.

The results of this research will also provide valuable guidance for IoT device manufac-
turers, cloud service providers, and other stakeholders to prioritize and allocate resources
to address the most critical security risks and collaborate in building a secure and trust-
worthy IoT ecosystem. This paper is organized as follows: Section 2 provides background
information, Section 3 discusses related work, Section 4 outlines the methodology, Section 5
presents a case study, Section 6 discusses the results and their implications, and Section 7
concludes the paper. Section 8 provides limitations and suggests future work.

2. Background

The IoT is a rapidly expanding technology with the potential to transform numerous
facets of our daily lives. IoT devices are equipped with sensors and communication
capabilities, allowing them to collect and transmit data over the Internet. These devices have
utility across a range of applications, including smart residences, industrial automation,
and transportation networks [9].

However, the growing popularity and extensive use of IoT devices have also intro-
duced new security challenges. IoT devices often lack proper security measures, rendering
them vulnerable to attacks [10,11]. These attacks can range from simple network-based
attacks to more sophisticated ones that target the physical devices themselves [11].

The security of the IoT ecosystem is a complex and interdisciplinary domain that
combines cybersecurity with various engineering fields, such as mechanical and electrical
engineering [12,13]. It goes beyond protecting data, servers, network infrastructure, and in-
formation. It also involves the supervision and management of physical systems connected
through the Internet, whether in a centralized or distributed manner [14,15].

2.1. Taxonomy

Different categories of attacks can significantly impact the security of IoT devices
and the information they collect and transmit [16]. It is essential for both organizations
and individuals to have knowledge about these attack types and implement appropriate
measures to protect against them. A classification of IoT attacks is illustrated in Figure 1.

Figure 1. Taxonomy of IoT attacks based on different features.
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2.1.1. Device Attacks in IoT

Security threats targeted toward specific devices or types of devices exploit vulnerabili-
ties in the hardware or software of the device, potentially causing harm to the device itself or
the network it is connected to [17]. These device-specific attacks involve exploiting known
vulnerabilities in the device’s operating system, firmware, or hardware, compromising
the device through phishing attacks, or even physically tampering with the device [18,19].
As the number of IoT devices continues to grow, it has become crucial for manufacturers
to prioritize device security, and users must also take proactive measures to protect their
devices [20,21]. This can include keeping software up to date, using strong passwords, and
exercising caution when connecting to untrusted networks.

2.1.2. Application Attacks in IoT

Security threats that target the applications and software running on IoT devices
exploit vulnerabilities within the applications, including issues within the code or the way
the application interacts with other systems [22,23]. Examples of application attacks in the
IoT include cross-site scripting [24], SQL injection [18], and buffer overflow attacks [25].
These attacks can compromise the security of the device and potentially grant attackers
access to sensitive data or control over the device. To prevent application attacks in the IoT,
it is crucial for developers to adhere to secure coding practices, and users should ensure their
devices are updated with the latest security patches and software versions. Additionally,
employing encryption and authentication technologies can help protect against application
attacks in the IoT.

2.1.3. Network Attacks in IoT

Security threats that target the network infrastructure used by IoT devices exploit vul-
nerabilities within the network itself, potentially compromising the security and functional-
ity of connected devices. Examples of network attacks in the IoT include man-in-the-middle
attacks [26], denial-of-service (DoS) attacks [27], and unauthorized access attacks [28]. These
attacks can enable attackers to intercept and manipulate data transmitted over the network
or disrupt the network, affecting the availability and reliability of connected devices. To
prevent network attacks in the IoT, organizations should implement secure network design
and deployment practices, such as using secure protocols, firewalls, and access controls.
Additionally, regularly monitoring network activity and promptly addressing any security
incidents can help mitigate the risk of network attacks in the IoT.

2.1.4. Physical Attacks in IoT

Physical attacks in the context of IoT refer to security threats that involve the physical
manipulation of a device [18]. These attacks can range from simple tampering to more
sophisticated and malicious activities, including theft or destruction of the device [29,30].
Physical attacks can be particularly detrimental in critical infrastructure systems used in
sectors such as healthcare, transportation, or energy production [31]. To prevent physical
attacks, it is crucial for manufacturers to prioritize security in the design of their devices,
and for users to secure their devices in physically inaccessible locations to unauthorized
individuals. Additionally, implementing measures such as secure enclosures, tamper-
evident seals, or biometric authentication can help mitigate the risk of physical attacks.

2.1.5. Cloud Attacks in IoT

Security threats targeting IoT devices’ cloud infrastructure and services exploit vulner-
abilities in the cloud platform, its applications, or the communication between the cloud
and IoT devices [32]. Examples of cloud attacks in IoT include cloud data breaches, server
misconfigurations, and unauthorized access to cloud resources [32,33]. These attacks can
compromise sensitive data stored in the cloud, disrupt the functioning of connected IoT
devices, or grant attackers unauthorized access to cloud resources. To prevent cloud attacks
in IoT, organizations should adopt secure cloud deployments and management practices,
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such as implementing encryption, access controls, and monitoring tools. Regularly updat-
ing and patching cloud platforms and applications can also help mitigate the risk of cloud
attacks in the context of IoT.

2.2. Impact of Attacks

The impact of attacks in the field of IoT security can be substantial, resulting in various
consequences, such as financial losses, reputational damage, physical harm, and loss of
critical information. Having an understanding of these impacts is crucial for organizations
and individuals to prioritize security measures and mitigate the risks associated with IoT
attacks. This section discuss the impact of attacks in three specific areas: side-channel
attacks (SCA), post-quantum cryptography (PQC), and standardization efforts.

2.2.1. SCAs

SCAs pose a significant threat to IoT security, as they exploit unintended side-channel
leakages to extract sensitive information. These attacks can have severe consequences,
including the unauthorized disclosure of cryptographic keys and confidential data, thereby
compromising the overall security of IoT systems [34]. To mitigate the impact of SCAs,
several countermeasures have been developed [35–37], such as error detection and correc-
tion techniques, redundancy mechanisms, secure implementation practices, and masking
techniques that introduce random noise to power traces or resist power analysis.

The combination of Differential Power Analysis (DPA) and Differential Fault Analysis
(DFA) attacks poses a significant threat to cryptographic implementations. Attacks that
exploit unintended side-channel leakages, such as power consumption, electromagnetic
radiation, or timing information, can extract sensitive information from cryptographic
implementations [38]. To mitigate the risks associated with these combined attacks, coun-
termeasures such as Threshold Implementations (TI) circuits and error detection schemes
are crucial. TI circuits provide built-in security features and tamper-resistant designs, while
error detection schemes incorporate redundancy and error-checking mechanisms [39].
These measures enhance the resilience of cryptographic systems and protect against the
compromise of sensitive information through fault and power analysis [38,40]. By imple-
menting these countermeasures, the security of cryptographic implementations can be
effectively enhanced against combined DPA and DFA attacks.

Field-Programmable Gate Arrays (FPGAs) play a crucial role in implementing crypto-
graphic algorithms for IoT devices. However, the physical characteristics of FPGAs, such
as power consumption, electromagnetic radiation, and timing information, can uninten-
tionally leak information about the internal operations and secret keys of the implemented
algorithms [41]. SCAs, including power analysis attacks and fault attacks, take advantage of
these leakages to extract sensitive information from FPGA-based implementations. Power
analysis attacks analyze power consumption patterns to infer secret keys [42], while fault at-
tacks manipulate the FPGA to induce faults and analyze resulting behavior variations [43].

To enhance the security of FPGA-based implementations against SCAs, researchers
have been working on countermeasures, including those targeting post-quantum crypto-
graphic algorithms such as Ring-Learning with Errors (Ring-LWEs) [44,45]. These counter-
measures aim to mitigate side-channel leakages and protect sensitive information processed
by FPGAs. Furthermore, specific fault detection techniques for FPGA platforms have been
developed to detect and mitigate the impact of faults in cryptographic algorithms such as
Ring-LWEs [46].

2.2.2. PQCs

With the rise of quantum computing, there is a growing concern that traditional cryp-
tographic algorithms, such as Elliptic Curve Cryptography and Rivest–Shamir–Adleman,
may be vulnerable to being broken by quantum computers [47,48]. Post-Quantum Cryp-
tography (PQC) aims to address this challenge by providing cryptographic algorithms that
are resistant to attacks by quantum computers [6]. The adoption of PQC has implications
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for security applications across various domains, including IoT [49]. The impact of PQC
implementation on IoT security is twofold [6,50,51]. Firstly, the adoption of PQC algorithms
requires significant changes in cryptographic protocols and infrastructure. This transition
may introduce challenges, such as increased computational and storage requirements for
IoT devices, which could potentially affect their performance and resource constraints.
Secondly, ensuring compatibility between legacy IoT systems and PQC algorithms is cru-
cial to ensure a seamless transition without compromising security. Efforts are currently
underway to standardize PQC algorithms and protocols, aiming to achieve interoperability
and widespread adoption. Standardization of PQC is essential in establishing a secure foun-
dation for future IoT deployments, as it enables the development of robust cryptographic
systems capable of withstanding attacks from quantum computers.

In the context of embedded systems, including IoT devices, it is crucial to have specific
implementations of PQC algorithms that are optimized for ARM Cortex M4 and Cortex-A
processors. These processors are widely used in embedded systems due to their low power
consumption and cost effectiveness [52–54].

Several previous papers have focused on the development and analysis of PQC imple-
mentations on ARM processors, specifically the Cortex-M4 and Cortex-A processors. For
example, refs. [55–57] discusses the implementation of Curve448 and Ed448 algorithms on
the Cortex-M4 processor. In [6,58], the focus is on the implementation of the SIKE (Super-
singular Isogeny Key Encapsulation) algorithm on the Cortex-M4 processor, with the latest
version being SIKE Round 3 [58,59]. Furthermore, ref. [60] explores the implementation
of the Kyber post-quantum cryptographic algorithm on 64-Bit ARM Cortex-A processors.
Kyber is a lattice-based PQC algorithm.

Fault detection and diagnosis techniques are of paramount importance in ensuring
the reliability, integrity, and security of cryptographic algorithms such as the Pomaranch
cipher [61], Grostl hash [62], Midori cipher [63], and RECTANGLE cipher [63]. These
techniques play a vital role in identifying and mitigating faults that can compromise the
functionality and resilience of cryptographic systems. By promptly detecting and address-
ing faults, these techniques help maintain the effectiveness and robustness of cryptographic
algorithms, thus safeguarding sensitive information and providing protection against
potential attacks.

2.2.3. Standardization Efforts

Standardization plays a critical role in enhancing IoT security by providing consistent
frameworks, protocols, and guidelines for implementing secure systems. The aim of
standardization efforts is to establish best practices and promote interoperability, enabling
different IoT devices, platforms, and services to seamlessly work together while ensuring
security. By defining common security requirements, protocols, and encryption algorithms,
standardization efforts help prevent vulnerabilities and ensure the adoption of robust
security mechanisms in the IoT ecosystem [10]. Standardization also provides guidelines
for secure communication, authentication, access control, and data protection, thereby
mitigating the risks associated with IoT attacks [7].

The NIST (National Institute of Standards and Technology) is a U.S. federal agency
with the responsibility of promoting and maintaining standards in various fields, including
cryptography [64]. In the domain of lightweight cryptography, NIST has actively par-
ticipted in the standardization process to identify and promote cryptographic algorithms
suitable for resource-constrained devices, such as those used in IoT devices and embedded
systems. NIST’s efforts in lightweight standardization aim to evaluate and select cryp-
tographic algorithms that offer strong security while requiring minimal computational
resources [63]. These algorithms are designed to meet the specific constraints of resource-
constrained devices, including low power consumption, limited memory, and processing
capabilities [65].

To address the evolving technologies and challenges in IoT security, standardization
efforts must encompass areas such as SCAs and PQC, and the specific requirements of em-
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bedded systems such as ARM Cortex M4 and Cortex-A implementations. The development
and adoption of comprehensive security standards that cover these aspects are crucial for
establishing a strong security foundation for IoT devices and systems. By understanding
the impact of attacks in the areas of SCAs, PQC, and standardization, stakeholders can
effectively develop countermeasures and ensure the security and resilience of IoT ecosys-
tems. This understanding allows for the proactive enhancement of the security posture of
IoT systems, protection of sensitive information, and mitigation of risks associated with
emerging threats.

Table 1 summarizes various attack types in the field of cybersecurity and provides
information on their impact and corresponding countermeasures. The table highlights
different categories of attacks, including device attacks, application attacks, network attacks,
physical attacks, cloud attacks, SCAs, DFA and Differential Power Analysis (DPA) attacks,
and PQC attacks. For each attack category, the table includes specific attack types, the
potential impact on security, and recommended countermeasures to mitigate the risks.

Table 1. Summary of attack types, impact, and countermeasures in cybersecurity.

Type Attack Impact Countermeasures

Device
Attacks
[17–21]

Exploiting vulnerabilities
in device hardware or
software, phishing at-
tacks, physical tampering

Harm to device or net-
work, unauthorized ac-
cess, data compromise

Regular software updates,
strong passwords, cautious
network connections

Application
Attacks
[18,22–25]

Code vulnerabilities,
cross-site scripting,
SQL injection, buffer
overflow attacks

Compromised de-
vice security, data ac-
cess/control by attackers

Secure coding practices, soft-
ware patching, encryption,
authentication

Network
Attacks
[26–28]

Man-in-the-middle at-
tacks, DoS attacks, unau-
thorized access attacks

Data intercep-
tion/manipulation,
network disrup-
tions, compromised
device functionality

Secure network design, pro-
tocols, firewalls, access con-
trols, monitoring

Physical
Attacks
[18,29–31]

Tampering, theft, destruc-
tion of devices

Device compromise, data
loss, disruption in critical
infrastructure systems

Secure device design, physi-
cal security measures, enclo-
sures, authentication

Cloud
Attacks
[32,33]

Cloud data breaches,
server misconfigurations,
unauthorized access

Data compromise,
device disruptions,
unauthorized cloud
resource access

Secure cloud deployment,
encryption, access controls,
monitoring, patching

SCA
[35–37]

Active and passive SCAs,
fault attacks, power anal-
ysis attacks

Compromise of sensitive
information, crypto-
graphic implementations

Error detection/correction,
redundancy, secure imple-
mentation, masking tech-
niques

DFA and
DPA
Attacks
[38–40]

DFA and DPA attacks Compromise of sensitive
information through fault
or power analysis

Countermeasures specific to
DFA and DPA, such as
tamper-resistant designs, er-
ror detection, secure imple-
mentation

PQC
Attacks
[6,47–51]

Attacks targeting PQC al-
gorithms and implemen-
tations

Compromise of en-
crypted data, under-
mining security against
quantum computers

Development of PQC algo-
rithms, standardization, se-
cure implementation, com-
patibility considerations

3. Related Work

This section explores two aspects: clustering stakeholders and feature selection.
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3.1. Clustering of Stakeholders

Clustering stakeholders is an important task in project management, aiming to group
stakeholders based on their needs, preferences, and characteristics. Various clustering
techniques have been proposed to enhance stakeholder classification in projects. However,
in software projects, stakeholder classification and conflict resolution can be challenging
due to the presence of diverse stakeholders with different needs and requirements. Several
studies have proposed different approaches to address these challenges. For instance,
one study introduced a fuzzy inference system using a selective Bayesian classifier and a
dynamic evolving neural-fuzzy inference system to improve stakeholder classification in
projects [66]. Another study employed an embedded Markov framework and a mixture
of Markov models to cluster career paths in the IT sector [67]. In the context of software-
intensive systems, an expert-based and clustering strategy framework was developed to
locate and resolve requirements conflicts [68]. Additionally, a framework utilizing text
mining and clustering approaches was proposed to enhance the requirement prioritization
process in software development projects [69]; while these approaches have demonstrated
potential advantages such as improved accuracy and support for decision making, they
also have limitations. These limitations include reliance on the performance of clustering
algorithms and the need to consider additional variables such as geographical location and
employer. Therefore, selecting an appropriate approach requires careful consideration of
the specific needs and requirements of the project.

3.2. Feature Selection

The emergence of IoT has brought forth new challenges in data analysis and decision
making due to the vast amount of data generated by IoT devices. Recent studies have
focused on addressing these challenges through feature selection and unsupervised learning
methods [70]; while unsupervised learning techniques such as clustering and PCA can
effectively identify patterns in IoT data, they may not capture all the relevant information.
To improve the accuracy of machine learning classifiers, novel feature selection methods
have been proposed. These methods include CorrACC [71], information gain (IG), and
gain ratio (GR) [72], which employ different approaches to select relevant features for
classification. Additionally, hybrid feature selection strategies that combine filter-based and
wrapper methods [73] have been suggested to reduce the size of the feature set and enhance
detection accuracy. However, these methods may have limitations, such as increased
computational cost or a fixed threshold for feature selection.

The detection of Android malware targeting Android devices is another significant
area of research in IoT data analysis [74]. Feature selection techniques have been proven
to enhance the accuracy of malware detection classifiers. However, the effectiveness of
different techniques varies depending on the learning algorithm employed. Moreover, the
study of IoT botnet attacks has prompted the development of feature selection methods to
identify bot-based attacks and facilitate post-attack identification. These techniques utilize
filter and wrapper methods in combination with machine learning to determine optimal
feature sets [75]. The findings suggest that wrapper methods can yield suitable feature sets
for all classification challenges, whereas filter methods may not always achieve the same
level of effectiveness. Additionally, the study highlights that host-based features are more
effective in identifying bot-based attacks, while channel-based features are preferable for
post-attack identification.

3.3. Previous Studies and Current Work

In the field of IoT security, gaining a comprehensive understanding of stakeholder
characteristics is essential for making informed decisions. However, clustering stakeholders
with similar features poses a challenge due to the limited research available on this topic
specifically in the IoT domain. Existing research on stakeholder clustering primarily focuses
on requirements or priorities, overlooking other relevant stakeholder features. Therefore,
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there is a need for further exploration and investigation in order to develop effective
clustering approaches tailored to the unique context of IoT stakeholders.

Additional research is warranted to address the clustering of stakeholders in the IoT
security environment, taking into account their responsibilities and characteristics. This
approach would be valuable in dealing with the imbalanced nature of IoT data and would
provide a deeper comprehension of stakeholder attributes. Such insights are vital for the
development and implementation of effective risk management techniques in IoT security.
Categories of stakeholders and their unique security requirements can be identified by
grouping them according to their responsibilities and features in IoT security. These
data can be used to develop specific security procedures and regulations that address the
particular needs of each stakeholder group. Further research is needed to devise methods
for effectively maintaining the security of IoT systems and devices, which have become
increasingly vital in our daily lives. Table 2 provides a summary of the literature review
conducted in this study.

Table 2. Comparison of Studies.

Study Approach Limitations

[66] 2018 Clustering stakeholders by
using fuzzy inference system

Relies on performance of clustering algorithms

[67] 2022 Clustering job titles by using
Markov model

Cannot differentiate between function
and responsibility

[68] 2021 Using K-means to cluster con-
flict resolution

Yet to be validated in other domains

[69] 2020 Clustering stakeholders
based on requirement

Does not consider words with similar meaning

[70] 2019 Clustering user behavior us-
ing hierarchical clustering
and select features using
PCA and correlation matrix

Does not capture all relevant information

[71] 2020 Wrapper-based
feature selection

Not generalized to other datasets or scenarios;
wrapper-based feature selection approaches can
also be computationally expensive

[72] 2021 Using IG and GR to
detect attacks

The fixed threshold of 50% may not be optimal
for all datasets

[73] 2019 Hybrid feature selection:
filter-based + wrapper
methods

Wrapper methods may be computationally ex-
pensive, limiting their applicability in large
datasets

[74] 2021 Detecting Android malware
by machine learning

Only examines filter-based feature selection on
a specific dataset and malware family

[75] 2022 Using feature selection meth-
ods for IoT botnet attack de-
tection

Filter techniques do not always obtain the ideal
feature set, whereas wrapper methods assure it

4. Methodology

The proposed methodology for improving IoT security comprises several stages, as
depicted in Figure 2. First, stakeholder data are collected and weighted based on their
importance. Hierarchical clustering is then used to group stakeholders based on their
roles in IoT security. Features are assigned to each cluster utilizing expert knowledge, and
the best features are chosen through a voting technique. Finally, the selected features are
validated using cross-validation techniques. This approach can lead to enhanced decision
making, improved resource allocation, and more effective managing IoT device security.
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Figure 2. Methodology for smarter decision making and resource allocation.

4.1. The First Stage: Clustering Stakeholders

After analyzing stakeholders and their roles, weights need to be assigned to them. The
following equations can be used to calculate the weights of the role and importance.

Weight(r) =
1

number of stakeholders in the same role + 1
(1)

In Equation (1), the weight of a stakeholder is calculated based on the number of
stakeholders in the same role. This equation aims to assign a higher weight to stakeholders
who have a smaller number of counterparts in their role. This decision is justified by the
assumption that stakeholders with fewer peers hold greater importance and carry a higher
level of responsibility in managing IoT security. To determine the number of stakeholders
in the same role, a correlation matrix can be utilized. The correlation matrix helps identify
the relationships and dependencies between different stakeholder roles.

Weight(Imp) =
importance level

Weight(r)
(2)

Equation (2) is used to determine the weight of importance Weight(Imp) by dividing
the importance level of a stakeholder by their corresponding Weight(r). The purpose of this
equation is to prioritize stakeholders based on their level of importance and appropriately
distribute their weights. By doing so, stakeholders with higher importance levels receive
greater consideration in decision-making processes. To determine the level of importance
of stakeholders, a questionnaire was used. The questionnaire results provide informa-
tion on the relative importance of stakeholders in managing IoT security. Based on the
questionnaire responses, weights can be assigned to stakeholders, reflecting their level of
importance.

Equations (3) and (4) are normalization equations applied to the weights derived
from (1) and (2). The purpose of normalization is to achieve suitable scaling and ensure
that the weights fall within a normalized range. By normalizing the weights, they can be
compared and consolidated across different stakeholders and importance levels. Normal-
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ization is an important step as it allows for the aggregation of normalized weights during
subsequent phases of the decision-making process:

NormalizeWeight(r) =
Weight(r)

TotalWeights(r)
(3)

NormalizeWeight(Imp) =
Weight(Imp)

TotalWeights(Imp)
(4)

After assigning weights to the stakeholders, the next step is to cluster them into
groups using hierarchical clustering. Hierarchical clustering involves building a hierarchy
of clusters based on the similarity of the data points to one another [76,77]. There are
two main approaches to hierarchical clustering: agglomerative and divisive. The divisive
strategy starts with all items in one cluster and then repeatedly splits the clusters. On the
other hand, the agglomerative approach starts with each object in a distinct cluster and
incrementally brings clusters together [76]. In the context of stakeholder identification,
hierarchical clustering can be employed to group stakeholders with similar weights into
clusters. Ward’s method is a commonly used hierarchical clustering algorithm that aims
to minimize the sum of squared distances between the clusters. It is suitable for datasets
of various sizes, ranging from small to large [78–80]. The equation for Ward’s method is
as follows:

∆D2 = D2
ij −

D2
i + D2

j − D2
..

n− 2
(5)

where D2
ij is the squared Euclidean distance between two clusters i and j, D2

i and D2
j are

the variances of the distances within each cluster, and D2
.. is the variance of all distances.

The parameter n is the total number of observations in the two clusters.
Equation (5) quantifies the dissimilarity ∆D2 between two stakeholders by calculating

the difference between the squared Euclidean distances D2
ij of these stakeholders and the

sum of their squared Euclidean distances from all other stakeholders (D2
i , D2

j , and D2
..).

This equation is derived from the Euclidean distance formula. Its purpose is to measure
the extent to which two stakeholders differ from others in terms of their responsibilities. By
evaluating this difference, we can identify stakeholders who exhibit greater distinctiveness
and dissimilarity in their roles.

Ward’s method works by iteratively merging the two closest clusters until only one
cluster is left. The closeness of clusters is determined by measuring the distance between
them using Ward’s equation. After each merge, the method aims to minimize the sum
of squared measurements between the clusters, ensuring that the resulting clusters are
compact and have similar sizes [78,79].

One advantage of Ward’s method, as described in Algorithm 1, is that it tends to gen-
erate clusters with approximately equal variances, which makes it well-suited for datasets
with continuous variables that follow a normal distribution. However, the algorithm can be
sensitive to outliers and noise present in the data, which may affect the clustering results.

The algorithm presented as Algorithm 1 is referred to as the Ward method with aug-
mented Weight(r) and Weight(imp). This algorithm combines the traditional Ward method
for hierarchical clustering with the incorporation of weights specifically designed for clus-
tering IoT security stakeholders. The novelty of the algorithm lies in the introduction
of these weights, which enables a more refined and contextually sensitive clustering ap-
proach for stakeholders. The algorithm incorporates these weights into the computation
of the distance matrix using a customized formula that combines the role and importance
values along with their corresponding weights. This modification allows the algorithm
to effectively capture the unique characteristics and priorities of stakeholders in the IoT
security domain.
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Algorithm 1 The Ward method with weights

Require: A list of n stakeholders S, weights wr and wImp for the role and importance,
respectively.

Ensure: A clustering of the stakeholders into k clusters.
1: Compute the distance matrix D between all pairs of stakeholders i and j using the

formula: d(i, j) =

√
(wr(i)(ri−rj))2

wr
+

(wImp(Ii−Ij))2

wImp
where ri and rj are the role values

for stakeholders i and j, respectively, and Ii and Ij are the importance values for
stakeholders i and j, respectively.

2: Perform hierarchical clustering on the distance matrix D using the Ward method to
obtain the dendrogram T.

3: Cut the dendrogram T into k clusters using the maximum number of clusters k and the
criterion maxclust.

4: Return the k clusters.

4.2. The Second Stage: Features Assignment

Data analysis was performed by establishing a connection between roles and features.
This mapping facilitated the identification of stakeholders’ specific requirements. The
process involved examining the data for patterns and trends, and relevant features were
selected for each cluster. To determine the best features from the selected set, various feature
selection algorithms were employed, including chi-squared (chi2), Analysis of Variance
(ANOVA) F-value (f_classif), mutual information, entropy, and importance random forest
(importance_RF). The final subset of features for each cluster was obtained through a voting
mechanism, as illustrated in Figure 3.

Figure 3. Five models to select the best features from the relevant features.

4.2.1. Chi2

The chi2 statistic is a statistical measure used to assess the association between two
categorical variables. It helps determine if there is a significant relationship between the
characteristics and the target category [81]. A higher chi-square value indicates a stronger
relationship between the variables. The formula for calculating chi-square is as follows:

χ2 =
k

∑
i=1

m

∑
j=1

(Oij − Eij)
2

Eij
(6)

where χ2 is the chi-squared statistic, Oij is the observed frequency of cell (i, j) in a con-
tingency table, Eij is the expected frequency of cell (i, j) assuming independence, k is the
number of rows in the table, and m is the number of columns in the table.

4.2.2. ANOVA F-Value

An ANOVA is a statistical test that compares the means of two or more groups to
determine if they are significantly different from each other. It calculates the F-value by
evaluating the significance of the differences between the groups, based on the ratio of the



Sensors 2023, 23, 5578 12 of 24

between-group variance to the within-group variance [81]. The formula for calculating the
F-value for a one-way ANOVA with k groups and n observations per group is as follows:

F =
SSbetween/(k− 1)
SSwithin/(nk− k)

(7)

where F is the F-value, SSbetween is the sum of squares between groups, SSwithin is the sum
of squares within groups, and nk is the total number of observations.

4.2.3. Mutual Information

Mutual information is a measure of the mutual dependence between two variables. It
assesses the amount of information one variable provides about the other, and vice versa,
and provides a score indicating the strength of the association between them [81]. The
calculation of mutual information involves quantifying the extent of information shared
between two discrete random variables, represented as X and Y [81,82]:

I(X; Y) = ∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(8)

In the given context, p(x, y) represents the joint probability distribution of random
variables X and Y, while p(x) and p(y) denote the marginal probability distributions of X
and Y individually.

4.2.4. Entropy

Entropy is a measure of the uncertainty or randomness present in a dataset. It quan-
tifies the amount of information contained in a probability distribution and provides a
score indicating the level of disorder or unpredictability in the data [82]. The entropy of a
discrete probability distribution P can be calculated using the following formula:

H(P) = −
n

∑
i=1

pi log pi (9)

where n is the number of possible outcomes and pi is the probability of the i-th outcome.

4.2.5. Importance Random Forest

Random Forest is an ensemble algorithm that uses decision trees to perform feature
selection. It assesses the importance of each feature in the data by measuring its impact on
the accuracy of the model. The importance of a feature is ranked, and a score is assigned to
indicate its relative importance [83]. In a random forest model, the importance of a feature,
denoted as Xi, can be calculated using the following formula:

Importance(Xi) =
1

Ntree

Ntree

∑
j=1

Nnode

∑
t=1

∆Qt,j(Xi)pt,j (10)

where Ntree represents the total number of trees present in the ensemble, Nnode refers to
the number of nodes in each individual tree, ∆Qt,j(Xi) denotes the enhancement in split
quality caused by the inclusion of feature Xi at node t in tree j, and pt,j represents the
fraction of samples that reach node t in tree j.

5. Case Study on Nine Stakeholders and Two Datasets

This case study focuses on the interactions and viewpoints of nine stakeholders in
the field of IoT security. The study utilizes two cybersecurity datasets, namely [84] and
UNSW-NB15 [85], to analyze and evaluate various aspects of IoT security.

5.1. Step 1: Define Stakeholders and Their Roles

Figure 4 shows the first step: defining stakeholders and their roles.
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Figure 4. Stakeholders and roles.

5.2. Step 2: Weights and Normalization

During this critical stage, the process entails calculating the weights of the roles
and determining the significance of the nine stakeholders. The resulting values are then
normalized to ensure consistency and uniformity across the scale.

5.2.1. Weights of Roles

To demonstrate the relationship between stakeholders based on similar roles, a corre-
lation matrix is used. The following equation shows the correlation between Ri and Rj, for
i, j = 1, 2, ..., n:

Correlation(Ri, Rj) =

{
if x = 1, there is similarity
if x = 0, there is no similarity

(11)

Table 3 represents the correlation matrix. A value of 1 indicates a high degree of
similarity between the two roles, while 0 indicates no similarity between them. These corre-
lation values can be utilized to calculate the weights of the roles, with higher correlation
values indicating stronger relationships between roles.

Table 3. Initial correlation between roles.

R1 R2 R3 R4 R5 R6 R7 R8 R9
R1 1 1 1 0 1 1 0 0 0
R2 1 1 1 0 1 1 0 0 0
R3 1 1 1 0 1 1 0 0 0
R4 0 0 0 1 0 0 0 0 0
R5 1 1 1 0 1 1 0 0 0
R6 1 1 1 0 1 1 0 0 0
R7 0 0 0 0 0 0 1 1 1
R8 0 0 0 0 0 0 1 1 1
R9 0 0 0 0 0 0 1 1 1

Note: The shaded cells represent the correlations the same input variables R in the table.

The stakeholders have the following roles: S1, S2, S3, S5, and S6 share the same role.
S4 has a unique role, and the remaining stakeholders have the same role.
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The weights assigned to different roles are determined by the formula denoted as
Equation (1). To calculate the weights, the following approach is employed: for S1, S2, S3,
S5, and S6, the weight is obtained by dividing 1 by the sum of 5 and 1, resulting in 0.16. The
weight for S4 is calculated by dividing 1 by the sum of 1 and 1, which yields 0.5. Finally,
for S7, S8, and S9, the weight is determined by dividing 1 by the sum of 3 and 1, resulting
in 0.25.

5.2.2. Weights of Importance

In the beginning, a questionnaire was administered to determine the weights of
importance for each stakeholder. A total of 124 participants responded and provided their
assessments regarding the importance of the 9 stakeholders. Figure 5 presents the results,
where a high frequency indicates a high level of importance.

The resulting weights were calculated using Equation (2), based on the values obtained
from Figure 5. These weights are summarized in Table 4. To calculate the weights of
importance, the values for each role from Figure 5 were divided by their corresponding
role weight, which was calculated in the previous Section 5.2.1.

Figure 5. The bar chart shows data for nine stakeholders, reprinted with permission from [86].

For example, according to Table 4, the weight of the role of the IoT security engineer
(S1) is 0.16, and the corresponding value from Figure 5 is 1. Therefore, the weight of
importance for S1 is calculated as 1/0.16 = 6.25. Similarly, the weights of importance for
the other eight stakeholder roles are calculated, ranging from 1.6 for the auditor (S9) to 6.25
for the IoT security engineer (S1). These weights will be used in subsequent analyses to
prioritize and allocate resources to stakeholders based on their importance.

Table 4. The weights of roles and their importance before normalization.

Stakeholders weight_role weight_imp

S1 0.16 6.25
S2 0.16 5.937
S3 0.16 5.625
S4 0.5 1.8
S5 0.16 4.25
S6 0.16 3.875
S7 0.25 2.32
S8 0.25 2
S9 0.25 1.6

5.2.3. Normalizing Weights

To normalize the weights of role and importance, each weight is divided by the sum of
all weights assigned to role and importance. The resulting values represent the normalized
weights for each stakeholder role. Tables 4 and 5 display the weights of each stakeholder
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role before and after normalization, respectively. These normalized weights will be used
in subsequent analyses to prioritize and allocate resources to stakeholders based on their
normalized weights.

Table 5. The weights of roles and their importance after normalization.

Stakeholders weight_role weight_imp

S1 0.024961 0.975039
S2 0.026273 0.973727
S3 0.027682 0.972318
S4 0.217391 0.782609
S5 0.036281 0.963719
S6 0.039702 0.960298
S7 0.097276 0.902724
S8 0.111111 0.888889
S9 0.135135 0.864865

5.3. Step 3: Clustering of Stakeholders

A scatter plot for dendrograms is a visualization technique used to represent hierar-
chical clustering. In Figure 6, the data points are plotted on a two-dimensional plane using
their respective coordinates obtained from a dendrogram. Each data point represents a leaf
node in the dendrogram, and its position in the scatter plot is determined by its distance
from other leaf nodes in the dendrogram.

Figure 6. Scatter plot illustrating the clustering of nine stakeholders into three groups.

5.4. Step 4: Select the Relevant Features

After Step 3, expert knowledge is applied to select the relevant features. Figure 7
illustrates the features for three groups (clusters), and the relevant feature is defined as any
feature with a score of 7 (50%) or higher.

5.5. Step 5: Select the Best Features from the Relevant Features

The process is divided into two steps to select the best features for each group. First,
five models are used. Second, a voting system is employed.

5.5.1. Five Models on Two Datasets

Based on Tables 6 and 7, which display the results for the Bot-IoT and UNSW-NB15
datasets, respectively, various feature selection methods were applied. The recorded metrics
for each method include classification accuracy, precision, recall, F1 score, and the time
taken. The tables are divided into three groups, and each group underwent the same feature
selection methods. Within each group, five feature selection methods were employed: chi2,
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ANOVA F-value, mutual info, entropy, and importance random forest. The tables also
provide the selected feature IDs for each method.

Figure 7. Relevant features for each group based on expert selection.

Table 6. Performance comparison of feature selection methods on the Bot-IoT dataset.

Group Method Feature ID Accuracy Precision Recall F1 Score Time

Group 1

chi2 [2, 15, 18, 19, 22] 0.9318 1 0.8637 0.8966 72.1125
f_classif [2, 15, 18, 19, 22] 0.9318 1 0.8637 0.8966 74.0828

mutual_
info [2, 36,37, 40, 41] 0.9318 1 0.8637 0.8966 795.7370

entropy

[2, 15, 14, 27, 17,
36, 37, 40, 41,11,
12, 18, 19, 20, 21,
22]

0.9318 1 0.8637 0.8966 252.578

importance_
RF [2, 15, 19, 22] 0.9318 1 0.8637 0.8966 1128.947

Group 2

chi2 [2, 15, 18, 19, 22] 0.9318 1 0.8637 0.8966 72.1125

f_classif [2, 15, 18, 19, 22] 0.9318 1 0.8637 0.8966 74.0828

mutual_
info [2, 36,37, 40, 41] 0.9318 1 0.8637 0.8966 795.737

entropy

[2, 15, 14, 27, 17,
36, 37, 40, 41, 11,
12, 18, 19, 20, 21,
22]

0.9318 1 0.8637 0.8966 252.578

importance_
RF [2, 15, 19, 22] 0.9318 1 0.8637 0.8966 1128.947

Group 3

chi2 [2, 15, 34, 19, 22] 0.9319 1.0000 0.8637 0.8966 94.2569

f_classif [2, 15, 34, 19, 22] 0.9319 1.0000 0.8637 0.8966 98.0719

mutual_
info [42, 33, 34, 30, 31] 0.8752 0.8003 0.9999 0.8890 1280.683

entropy

[2, 15, 43 42, 6,
23, 24, 28, 29, 32,
33, 34, 35, 4, 25, 26,
30, 31, 18, 19, 20,
21, 22]

0.9299 0.9960 0.8637 0.8946 348.2347

importance_
RF [2, 15, 43, 42, 33, 19] 0.9318 1.0000 0.8637 0.8966 804.577

Note: The Feature ID can be found in the Appendix A (Figure A1).
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Table 7. Performance comparison of feature selection methods on the UNSW-NB15 dataset.

Group Method Feature ID Accuracy Precision Recall F1 Score Time

Group 1

chi2 [36, 19, 20, 10, 31] 0.8047 0.7865 0.8648 0.8183 17.6258
f_classif [36, 6, 19, 20, 10] 0.7702 0.7845 0.7963 0.7685 23.7648
mutual_
info [10, 11, 31, 32, 34] 0.7889 0.7733 0.8541 0.8043 166.4645

entropy
[36, 6, 14, 19, 20,
40, 10, 11, 31, 32,
33, 34, 35, 27, 28]

0.8426 0.8312 0.8884 0.8513 74.7406

importance_
RF [6, 10, 11, 31, 32, 34] 0.7867 0.7733 0.8491 0.8016 207.4284

Group 2

chi2 [10, 11, 31, 7, 24] 0.7911 0.7707 0.8643 0.8086 16.0989

f_classif [10, 31, 34, 28, 24] 0.7888 0.7709 0.8590 0.8056 22.0848

mutual_
info [10, 11, 7, 23, 24] 0.7900 0.7706 0.8625 0.8073 136.3324

entropy
[10, 11, 31, 32, 33,
34, 35, 27, 28, 5,
7, 23, 24]

0.7885 0.7747 0.8501 0.8032 79.4134

importance_
RF [10, 11, 23, 24] 0.7899 0.7706 0.8624 0.8072 240.6583

Group 3

chi2 [10, 19, 20, 36, 24] 0.8051 0.7865 0.8657 0.8189 24.1376

f_classif [10, 19, 20, 6, 24] 0.8012 0.7846 0.8590 0.8146 18.6429

mutual_
info [10, 11, 8, 9, 23] 0.7900 0.7708 0.8626 0.8074 225.8134

entropy

[10, 11, 31, 32, 33,
34, 35, 27, 28, 14,
19, 20, 40, 17, 18,
8, 9, 6, 36, 23, 24]

0.8544 0.8447 0.8926 0.8612 98.0131

importance_
RF

[10, 11, 34, 18, 8,
9, 23, 24] 0.7890 0.7732 0.8552 0.8049 238.2793

Note: The Feature ID can be found in the Appendix A (Figure A1).

5.5.2. Votes to Select the Best Features

Feature selection by vote refers to selecting the features that are most frequently used
across all the models. This is typically completed by counting the number of times each
feature is utilized in the different models and selecting the ones with the highest counts.
The advantage of using this method for feature selection is that it can help identify the
most important features that contribute the most to the overall performance of the model.
By focusing on these significant features, the model can be simplified and made more
efficient without sacrificing predictive accuracy. The results of this approach are presented
in Table 8.

5.6. Validation of the Results

Cross-validation was employed in every model to ensure the correctness of the features.
The best features were determined using votes. The logistic regression model was trained
and tested to evaluate the performance of the selected features.

The equation below illustrates the relationship between the sets of features:

R = U − B (12)

where U represents the set of all features (universal set), B represents the set of best features,
and R represents the set of remaining features (i.e., those features not selected as the best).
The results of the validation process are depicted in Figures 8 and 9. These figures clearly
demonstrate that the accuracy of the logistic regression model significantly improved
after incorporating the best features. This provides strong evidence that the feature selec-
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tion process successfully identified the relevant and important features necessary for the
classification task.

Table 8. Results of the vote system from two datasets.

Dataset Group
Votes

Total
V5 V4 V3

Bot_IoT

G1 [2, 34] [15] [42, 23, 32,
33, 35] 8

G2 [2] [15, 19, 22] [18] 5

G3 N/A [2, 15, 19, 34] [22, 33, 42] 7

UNSW-NB15

G1 [10] [31] [36, 6, 19, 20, 11,
32, 34] 9

G2 [10,24] [11] [31, 7, 23] 6

G3 [10] [24] [20, 11, 23, 9,
8, 19] 8

Note: The notation “V5” indicates that the corresponding feature received votes from all five models, “V4” means
the feature received votes from four models, and “V3” means the feature received votes from three models.

Figure 8. Comparison of the impact of using only the best features vs. other features: analysis of
groups G1, G2, and G3 in the Bot_IoT dataset.

Figure 9. Comparison of the impact of using only the best features vs. other features: analysis of
groups G1, G2, and G3 in UNSW-NB15 dataset.
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6. Discussion

The results in Tables 6 and 7 demonstrate the effectiveness of various feature selection
methods in improving the classification performance of the Bot-IoT and UNSW-NB15
datasets, respectively. This section discusses the key observations and insights derived from
the experimental results. First, it is observed that the chi2 and f_classif methods consistently
select the same subset of features, which exhibit similar classification performance in the
Bot-IoT dataset, and convergent features in the UNSW-NB15 dataset. This implies that
the statistical methods used for feature selection are successful in identifying the relevant
features that significantly contribute to classification accuracy.

Second, it was observed that the mutual_info method performed poorly in selecting
relevant features for the Bot-IoT dataset, whereas it demonstrated good performance for
the UNSW-NB15 dataset. This suggests that the effectiveness of the mutual information
method depends on the specific characteristics of the dataset and the relationships between
the features. Third, the entropy-based feature selection method resulted in the selection of a
higher number of features compared to the other methods for both datasets. This outcome
could be attributed to the fact that the entropy-based method takes into account the joint
information gain of features, which can introduce redundancy and include irrelevant fea-
tures. However, despite selecting more features, the chosen ones still achieved comparable
classification performance to the other methods.

Fourth, the importance_RF method, which utilizes the feature importance scores of
the random forest classifier, identified a smaller subset of features for both datasets. Despite
selecting fewer features, this method achieved comparable classification performance to
the other methods, indicating its effectiveness as a feature selection technique. Fifth, the
time taken for feature selection varies significantly among the different methods. The chi2
and f_classif methods are the fastest, while the mutual_info method is the slowest due to
its dependence on the number of features. The entropy-based and importance_RF methods
took longer than the statistical methods, but their performance is comparable. Therefore,
the choice of feature selection method depends on the available computational resources
and the desired classification performance.

In conclusion, it is crucial to emphasize the significance of feature selection in machine
learning tasks, as it enhances classification performance and reduces computational ex-
penses [87]. However, the effectiveness of feature selection techniques heavily relies on the
specific characteristics of the dataset, the relationships between features, and the classifica-
tion model employed. Hence, it is essential to evaluate multiple feature selection methods
and choose the one that achieves the best classification performance for a given dataset and
model. Figures 8 and 9 display the accuracy percentages achieved by different groups (G1,
G2, and G3) on the Bot-IoT and UNSW-NB15 datasets using various feature sets.

Both datasets demonstrate that utilizing only the best features leads to higher accuracy
compared to using all features except the best one. This indicates that the best features have
a substantial impact on accurately predicting the outcome. In the case of UNSW-NB15, G3
achieved the highest accuracy of 83% when using only the best features. However, it is
worth noting that the accuracy achieved by using only the B is lower than when using R,
suggesting that other features also contribute significantly to the overall accuracy. In the
Bot-IoT dataset, G3 achieved the highest accuracy of 98% when using R, while G2 achieved
the highest accuracy of 95% when using B. This suggests that the importance of the best
features is more pronounced for G2 compared to G3. The reason G3 achieved the highest
accuracy when using all features except the best one in Bot-IoT could be attributed to their
identification and inclusion of the most relevant features specific to their use case. It is
possible that the excluded features were not highly relevant for their use case and including
them did not significantly improve the model’s accuracy.

On the other hand, G2 achieved the highest accuracy when using only the best features.
This indicates that the best features are highly relevant and provide crucial information for
their specific use case. The excluded features may have been less important and could have
introduced noise or reduced the overall performance of their model. It is worth noting
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that the results for G1 consistently show lower accuracy compared to the other two groups.
This could be due to various factors such as the quality of the data they used, their feature
selection process, or their modeling technique.

In the UNSW-NB15 dataset, similar trends are observed where the accuracy is gen-
erally higher when using the best features compared to using all features except the best
one. However, the overall accuracy is lower than in the Bot-IoT dataset, possibly due
to differences in the datasets and the nature of the attacks being detected. These results
suggest that the best features are highly relevant and provide significant information for the
classification task, and including other less relevant features may not improve the model’s
performance. However, it is crucial to carefully select features based on the specific use
case and the nature of the analyzed data to achieve the best possible performance.

7. Conclusions

In this paper, a novel approach has been presented to enhance decision making in IoT
security by clustering stakeholders based on their roles. The clustering of stakeholders
offers several potenxtial benefits for organizations and individuals. Accurately identifying
and grouping stakeholders in IoT security enables more effective study of relevant features
and facilitates data division based on their roles, thereby improving decision making.

Furthermore, novel equations have been developed and utilized to assign weights to
stakeholders in the IoT security context. These equations provide a customized approach to
stakeholder weighting in the field of IoT security, enhancing the accuracy and effectiveness
of decision-making processes.

Through the analysis of stakeholders and expert knowledge, relevant features con-
tributing to effective IoT device security management have been identified. This research
not only clusters stakeholders, but also provides a structured framework for categorizing
them, enabling a better understanding of the diverse responsibilities and involvement
levels of different stakeholder groups.

The findings of this research have implications for stakeholders involved in IoT secu-
rity, as well as policymakers and regulators. Leveraging insights gained from clustering
stakeholders, stakeholders can make more informed decisions, allocate resources effectively,
and implement targeted security measures to protect IoT devices. Ultimately, these efforts
will contribute to the establishment of a more secure and trustworthy IoT environment that
fosters innovation and benefits society as a whole.

In summary, the study enriches existing knowledge in IoT by proposing a novel
stakeholder categorization, introducing a weighted decision-making approach, employing
diverse statistical validation methods, and offering practical implications for IoT security
management. These contributions advance the understanding and practice of IoT security,
leading to improved security measures and collaborative efforts within IoT ecosystems.

8. Limitations and Future Work

This study’s use of simulated data instead of data from real-world scenarios has certain
limitations; while the simulation was carefully designed and validated by experts, it may
not fully capture the complexity and variability of actual IoT systems. Future work in the
field of clustering stakeholders based on their role in IoT security could explore several
directions. One potential area of investigation is expanding the research scope to include
additional stakeholder groups, such as service providers and consumers, to gain a more
comprehensive understanding of the roles different stakeholders play in IoT security.

Another direction could involve exploring the potential of using the clustering ap-
proach to develop new security solutions, such as threat intelligence platforms or risk
management tools, specifically tailored to the unique needs of different stakeholder groups.
By addressing these areas in future research, it will be possible to further enhance the
effectiveness of the clustering approach and provide stakeholders in IoT security with the
necessary tools and guidance to better manage security risks and ensure the safe and secure
use of connected devices.
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