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Abstract: We demonstrate a magnetocardiography (MCG) sensor that operates in non-shielded en-
vironments, in real-time, and without the need for an accompanying device to identify the cardiac
cycles for averaging. We further validate the sensor’s performance on human subjects. Our approach
integrates seven (7) coils, previously optimized for maximum sensitivity, into a coil array. Based on
Faraday’s law, magnetic flux from the heart is translated into voltage across the coils. By leveraging
digital signal processing (DSP), namely, bandpass filtering and averaging across coils, MCG can be
retrieved in real-time. Our coil array can monitor real-time human MCG with clear QRS complexes in
non-shielded environments. Intra- and inter-subject variability tests confirm repeatability and accuracy
comparable to gold-standard electrocardiography (ECG), viz., a cardiac cycle detection accuracy of
>99.13% and averaged R-R interval accuracy of <5.8 ms. Our results confirm the feasibility of real-time
R-peak detection using the MCG sensor, as well as the ability to retrieve the full MCG spectrum as
based upon the averaging of cycles identified via the MCG sensor itself. This work provides new
insights into the development of accessible, miniaturized, safe, and low-cost MCG tools.
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1. Introduction

Magnetocardiography (MCG) is a non-invasive and non-contact means of capturing
the magnetic fields radiated by the human heart. Key clinical benefits of MCG compared
to electrocardiography (ECG) entail: (1) the ability to provide three-dimensional mapping
of the heart [1]; (2) high sensitivity toward tangential and vortex currents [2]; and (3) clear
and reliable detection of cardiac activity through thick tissue (e.g., monitoring of fetal
cardiac activity) given that magnetic fields propagate relatively undisturbed though body
tissues (tissue permeability ~ 0) [3]. In turn, several studies have demonstrated the
superiority of MCG to monitor coronary artery diseases in patients without persistent
ECG features, identify early repolarization patterns to prevent ventricular fibrillation,
provide more accurate prognosis of ventricular tachycardia, test rejection reaction post
heart transplantation, and detect various related fetal cardiac conditions [4-9].

The technologies that are available for capturing the extremely weak MCG signals
(range of 50-100 pT) are summarized in [4]. In brief, clinical practice mainly uses super-
conducting quantum interference devices (SQUIDs) [10] that convert the cardiac magnetic
flux into oscillating voltage via Josephson junctions in extremely low-noise environments.
To achieve the desired performance, SQUIDs need to operate in a super conducting state
(operating temperature of ~4 K to ~77 K) and in the presence of magnetic shielding. In
turn, SQUIDs are bulky, non-portable, and expensive. Recent technology has introduced
different types of atomic magnetometers (AMs), such as Optically Pumped Magnetometers
(OPM) and Spin Exchange Relaxation-Free (SERF) magnetometers, to sense MCG signals.
AMs achieve similar detection sensitivity as SQUIDs with much smaller size and without
the need for cryogenics [11]. Nevertheless, AMs are active devices that require alkali atoms
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to be heated to a high temperature (~150 °C), raising safety concerns. In addition, most
AMs can only operate in a near-zero magnetic field and their signal bandwidth is extremely
limited [12]. Very few OPMs (such as the QuSpin Total Field Magnetometer, QTFM) can
operate in earth ambient noise, but at the cost of degraded noise performance [13]. To date,
no AM can record clear human MCG in the absence of shielding. The closest achievement
entails the recording of heartbeat from cattle as based upon data recorded for a long period
of time [13]. The research works reported in [14,15] overcome the key limitations of AM
and they both achieve MCG detection in non-shielded environments. However, these
approaches come with their own limitations: Ref. [14] does not demonstrate MCG detection
in real-time while the device in [15] is not passive (i.e., it requires an additional external
magnetic field to be applied).

To address these limitations in the state-of-the-art, we previously reported a fully
passive, miniaturized, and light-weight sensor that can detect MCG signals in non-shielded
environments, as validated upon phantoms [16,17]. The sensor operates on the principle of
Faraday’s law where alternating magnetic flux from the heart interacts with induction coils
placed upon the chest to induce voltages upon them. Through the theoretical optimization
of the coil geometry and advanced digital signal processing (DSP), the final MCG signal can
be retrieved in an earth ambient field [18]. This sensor is comparable in size, weight, and
sensitivity to a typical AM sensor (i.e., ~centimeter, ~grams, and ~pT//Hz, respectively);
fully passive without the need of any heated alkali atoms nor any type of cryogenic; and
capable of recording emulated signals that mimic the human MCG activity. However, three
limitations of our prior work are that (a) the MCG sensor relies on extensive averaging over
a long period of time (i.e., 15 min) that may be unsuitable for certain clinical applications,
(b) the MCG sensor only operates in the presence of an ECG sensor (or equivalent) that is
used to identify the cardiac cycles for averaging, and (c) the performance has only been
validated in vitro using a function generator and an 8-shaped loop to emulate MCG activity.

In a major step forward, we herewith expand upon our previous work to demonstrate
a low-cost sensing system that (a) monitors the full spectrum of MCG activity with: i.
clear R-peaks in real-time and ii. fairly close P, T, QRS, and U waves over ~4.5 min of
averaging, (b) enables stand-alone operation of the MCG sensor without the need for an
accompanying ECG sensor, and (c) has been validated in vivo on human subjects. Here,
“full spectrum” indicates the full-frequency spectrum information, and “clear R-peaks”
are visually identified across the time-domain measurement. To verify that the signal we
capture is indeed MCG and not chest wall vibration, we also conduct a proof-of-concept test
with the MCG sensor placed at a distance away from the participant’s chest. Comparing
our system to the state-of-the-art, the reported MCG sensor (1) exhibits very low operation
cost (per use) and fabrication cost, unlike SQUIDs that cost USD ~5000 just to be turned
on [19]; (2) does not require any accompanying structures to operate, unlike SQUIDs that
require coolant to maintain an operating temperature of from ~4 K to ~77 K and unlike AMs
that require heating/thermal isolation structures as well as shielding; (3) can detect the
R-peaks of MCG in real-time serving as a self-sufficient device for subsequent averaging,
unlike previous induction coils that require an accompanying ECG device to capture the
R-peaks [14]; and (4) is fully passive without any lasers or strong magnetic fields needing
to be applied, unlike AMs and [15].

The rest of the paper is organized as follows: Section 2 discusses the methods used to
conduct our studies, including participant characteristics, recording system design, study
protocol, and data processing. Section 3 reports and discusses results from our experimental
validation and repeatability tests. Section 4 includes a discussion of our findings. The paper
concludes in Section 5.

2. Materials and Methods
2.1. Participants

Eleven (11) healthy volunteers between 22 and 35 years (M = 26.4 years, SD = 4.2 years)
of age were recruited for the experiment under approval from The Ohio State University
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Institutional Review Board (IRB) (#2019H0259) on 30 August 2019. The sample size of
the recruited participants was selected to be comparable to other similar studies [20-22].
Demographic and physical characteristics data (age, gender, height, weight) were collected
prior to conducting the experiments, with no personal identifying information.

Of the 11 enrolled participants, 4 identified as female (36%) and the other 7 identified as
male (64%). The participant sample consists of females aged between 22 and 35 (standard
deviation, SD = 5.6 years), height between 163 cm and 170 cm (SD = 2.9 cm), weight
between 48.5 kg and 66 kg (SD = 7.2 kg), and Body Mass Index (BMI) between 18.3 kg/m?
and 22.8 kg/m? (SD = 1.9 kg/m?). The male participants were aged between 23 and 30
(SD = 2.4 years), height between 165 cm and 192 cm (SD = 8.4 cm), weight between 55 kg
and 82 kg (SD = 11.8 kg), and BMI between 19 kg/m? and 26.1 kg/m? (SD = 2.9 kg/m?).

2.2. Experiment System Design

The recording system employed in this study is shown in Figure 1a and consists of
MCG and ECG sensors, an Analog to Digital Converter (ADC), and a laptop computer
for storing and processing the data. The block diagram of how these components were
connected is shown in Figure 1b and further described next. We remark that the ECG data
were collected as the “gold-standard” electric equivalent of MCG with a goal to validate the
performance of the MCG sensor. In real-world scenarios, cardiac activity can be ultimately
monitored directly from the MCG sensor itself without the need for a concurrent ECG
recording. This is a unique aspect vs. our previous work where an ECG sensor had to
accompany the MCG sensor for identifying the cardiac cycles to be averaged [17].
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Figure 1. (a) Overview of the recording system; (b) Block diagram of the sensor and electronics connections.
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The MCG sensor is based on the operating principle we previously reported in [16,18].
To achieve the target performance (i.e., real-time monitoring of the full MCG spectrum),
we modified the MCG sensor design to entail 7 identical coils integrated into an array
8 cm in diameter. Each coil is of an optimal dimension in detecting the axial direction of
the magnetic field, viz., Di (inner diameter)/D (outer diameter) = 0.56 and 1 (length or
height of the coil)/D = 0.7182, as discussed in [16]. The exact coil parameters are selected
as in [18] to match the high sensitivity performance, viz., Di = 9.3 mm, 1 = 12 mm, and
D =16.6 mm. The coils are based on an optimized tightly winded air-core coil design [16]
with design parameters being represented by the coil geometry (i.e., outer/inner diameter,
wire diameter, and coil height/length). Applying the tightly wound coil model, the number
of turns is calculated to be ~1095. However, the exact number of coil turns are not provided
to the coil manufacturer and the actual number of turns may slightly vary per the employed
winding technique and fill factor. The total number of 7 coils is determined by first using a
single-coil sensor to collect human MCG data as a function of time. With that, 7 cardiac
cycles are identified as the minimum number of cycles needed to be averaged to see a clear
MCG signal. This is due to the reduced level of uncorrelated noise, as discussed in [16,18].
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With a goal to monitor the MCG data in real-time, instead of averaging over cardiac cycles,
we herewith average over 7 different coil recordings that capture data at the same time.
Since coils are small in size and placed in close proximity to each other, they often capture
the same signal. Referring to Figure 1a (top left), 1 coil is placed in the center of the fixture
and the remaining 6 are placed evenly surrounding it. The MCG sensor is covered with
very thin and electromagnetically transparent green tape to keep the coils in place. It is
then secured on to an elastic chest belt (Figure 2a, top left).

(a) (b)
Figure 2. (a) In vivo experimental setup employed in this study; (b) MCG confirmation test setup.

Compared to our previous design for MCG detection [16], our coil sensor is slightly
larger with its geometry better fitting our previously calculated ideal ratio of dimensions.
Specifically, the coil’s outer radius (D) changed from 15 mm (reported in [16]) to 16.6 mm,
and the coil’s length (1) changed from 11 mm (reported in [16]) to 12 mm. The coil’s inner
diameter (Di) and wire diameter (d) were kept the same as in [16]. The coils (seven in total)
were arranged in a flower-like arrangement supported by a 3D-printed fixture with a total
diameter of 8 cm. The fixture includes seven tightly fitted slots, with one for each of the
coils. Specifically, six slots are centered along the edges of a hexagon and the seventh is
placed in the center of the structure (Figure 1a, left). The distance between the center coil
and each side coil is 22 mm. This design is selected to maximize the number of coils across
a relatively small circular area as needed for both localized MCG detection and averaged
real-time MCG detection. We note that the design of such fixture can be altered to better fit
any specific application.

Seven (7) low noise amplifiers (gain = 1000) connect to each of the coils. They are all
fabricated on a single circuit board and placed far away from the sensors to reduce the
vibration and electronic noise. A detailed circuit design is discussed in [16], where the
input network, voltage regulator, low noise instrumental amplifier (INA217), and reference
pin offset correction (OPA2277) are the building blocks for the employed amplifier. All
signal processing is performed digitally to reduce the additional noise. A power supply
is constantly powering the amplifier board with £10 V. The noise performance (noise
spectrum density) of the sensing system (one coil sensor and one amplifier) is identical to
that of the non-shieled environment reported in [18].

The overall cost is very low for our proposed sensing system. Each coil sensor costs
less than USD 1 to manufacture and there is no additional cost for shielding/any types of
coolant/any accompanying structures. The fixture holding the sensor is based on standard
3D-printing approaches, while the circuit board includes low-cost components entailing
one INA 217 (USD ~6), one OPA 2277(USD ~5), voltage regulators (UA78LO5ACDRG4 and
MC79L05ACDG, USD ~1 total), and some additional resistors/capacitors/connectors. For
one amplifier board, the total cost is USD ~38 and the price can be significantly reduced
when ordered in bulk quantities.
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The ECG signals are recorded using an off-the-shelf Arduino-based 3-lead ECG sensor
(e-Health sensor [23]) powered by an Arduino battery. Both analog signals (ECG and MCG)
are converted to digital ones using a 4-channel, 24-bits National Instrument ADC (N19239)
that samples at 5 kHz through a National Instruments LabVIEW interface. Since 8 channels
are needed to concurrently record ECG and MCG data (1 for ECG and 7 for each of the
MCG sensor coils), 2 identical ADCs (NI9239) are combined in a CompactDAQ chassis (NI
c¢DAQ-9189) and perform simultaneous multi-channel data acquisition.

2.3. Study Protocol

The study experimental setup is shown in Figure 2. All tests are conducted at the
ElectroScience Laboratory, The Ohio State University, Columbus, OH, USA. They take place
in a regular Radio-Frequency (RF) laboratory environment with a decent level of electronic
noise and no shielding.

The MCG chest belt was wrapped tightly around the participant’s chest with the
sensor array located in front of the chest and sitting slightly to the left of the breastbone
(grey circle in Figure 1a). This configuration minimizes noise due to body movement and
maximizes the magnetic cardiac signal strength as captured via the MCG sensor. Both the
amplifier board and the power supply are placed far away from the participant to reduce
electronic noise (on a workbench in the front of the participant and a cart placed on the
side, respectively, as shown in Figure 2a). Three foam-based disposable ECG silver/silver
chloride (Ag/AgCl) solid gel electrode pads are adhered to the left-hand wrist (white circle
in Figure 1la), right-hand wrist (red circle in Figure 1a), and the left-side lower edge rib
cage (black circle in Figure 1a) to record the ECG. The neutral, positive, and negative leads
from the ECG sensor are connected to the three pads, respectively. Here, an Arduino-
based ECG is used as our “gold standard” for comparison between the MCG and ECG
signals. We acknowledge that there are more advanced, clinical-grade ECG devices, yet this
particular device is herewith used for its low cost and off-the-shelf availability. The ADC
that simultaneously recorded the ECG and MCG signals, as well as the laptop computer
that stored the data were placed on a cart next to the participant.

Two studies are performed back-to-back, each lasting ~4.5 min. First, the participant
was instructed to lie back on a zero-gravity chair with no body movement. Here, we
purposely eliminated body movement to reduce noise to the largest possible extent. We
refer to this study as a “no movement study”. Next, the participant is instructed to sit in an
upright position (without his/her back lying upon the chair) and tap upon a cell phone
with RF features turned off. This setup is used to increase the noise due to motion and
better mimic a real-world scenario. Despite operating the phone in “airplane mode”, our
setup is by no means considered as “shielded”. This is because the RF signal from the
phone lies outside the frequency range of the MCG signal. Even if it were present, this
RF noise could easily be filtered out through DSP. The reason for operating the phone in
“airplane mode” is to prevent any sort of distraction on behalf of the participants rather
than shielding the experimental setup in any way. We refer to this study as a “minimal
movement study”.

2.4. Data Processing

To derive the MCG signal, we employ two DSP methods: (1) bandpass filtering, and
(2) averaging over different coils [18]. Compared to our previously proposed DSP [16], we
eliminate the need for any accompanying trigger signal to identify the repeating cardiac
cycles. In the past, to reduce noise, the MCG was recorded for a period of time together
with a trigger signal (i.e., ECG). Using the R-peaks identified in the ECG, each cardiac cycle
(1 s window containing one R-peak) was subsequently identified in the raw MCG signal.
These identified cardiac cycles in the MCG were then averaged to produce the final clear
MCG signal. Now, instead of ECG, averaging the MCG signal itself over seven (7) coils
produces a clear R-peak that can be used as a self-trigger to identify repeating cardiac cycles.
Here, the number 7 is identified as the minimum number of cycles needed to be averaged
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to see a clear MCG R-peak (per Section 2.2). Specifically, the raw MCG signals from each
of the 7 coils, viz., MCG_rawl ... MCG_raw?, first pass through a bandpass filter to reject
the frequencies outside of the target frequency range (4-30 Hz), generating the signals
MCGf_1 ... MCGf_7. The bandpass filter is implemented using the default MATLAB
built-in “bandpass” function. It is designed as a minimal-order Finite Impulse Response
(FIR) filter when the input signal (viz., MCG_rawl ... MCG_raw?) is long enough, or a
minimal-order Infinite Impulse Response (IIR) filter otherwise. In our case, all bandpass
filters are FIR with 60 dB stop band attenuation and 0.1 pass band ripple. The delay of the
filtered signal is compensated. The filtered signals (MCGf_1 ... MCGf_7) are then averaged
based on the winding direction, as discussed next, to derive the final real-time MCG signal
(MCGﬁ'nul)-

Here, it is important to note that the winding direction of each of the coils needs to be
considered in the averaging process. To determine the correct direction, a high-magnitude
pre-recorded ECG signal is fed into a circular loop wire using a function generator and the
converted magnetic signal is picked up by the proposed MCG sensing system. In this case,
the raw signals captured by all 7 coils are large enough, such that the direction of winding
for each coil can be determined without DSP. Specifically, we performed the calibration
using a 4 cm radius single-turn circular loop wire fed by a function generator at 10 V pk-pk
using a pre-recorded human ECG signal (the input impedance of the function generator
being 50 ). All 7 coils are fixed onto the flower-shaped structure (per Section 2.2) to secure
them in place and the whole structure is placed 15 mm away from the circular loop wire
picking up the perpendicular magnetic field. With such a strong original signal, the signal
that is being picked up can be clearly seen after averaging over repeating cycles (per [18]).
This direction can be calibrated out during the coil averaging process by adding a negative
sign to those signals with an opposite direction. With that, in our case, the MCGg;yy is
calculated as:

Y3 MCGf_i— MCGf_4+ MCGf5—Y" _MCGf_n

MCGfinal = 7

M

To evaluate the performance of the MCG sensing system, we carry out two tests:

(1) Validation test. This test serves to validate (a) the feasibility of real-time MCG
detection, and (b) the extraction of detailed MCG features through averaging over multiple
cardiac cycles (or, equivalently, over a period). For this proof-of-concept validation step,
we use data collected from the “no movement study” of a single participant (28 years old
female; height 1.63 m, weight 48.5 kg, and BMI 18.3 kg/m?). Specifically:

(@) The real-time MCG detection is validated by confirming the presence of synchronized
peaks in the ECG and MCGg;g signals. Here, synchronization refers to the ability of
the major spikes of ECG and MCGg;q (known as R-peaks) to identify the same number
of cardiac cycles across the same period. We remark that the exact alignment of the
R-peaks between the ECG and MCGgp signals is not anticipated in the time-domain
as MCG is actually the derivative of ECG.

(b) Next, the MCG signals are averaged throughout the test duration, viz., across 4.5 min,
to explore whether and which detailed features can be detected (such as P, T, and U
waves). The process of averaging over repeating cycles has been described in [18] as a
means of improving the MCG detection sensitivity. In the past, we used a concurrent
ECG signal to serve as a trigger and identify the MCG cycles. Here, the ECG trigger is
no longer required as the R-peaks can be detected in real-time using a stand-alone
MCG sensor configuration. Hence, we can readily identify repeating cardiac cycles
using the R-peak in the MCGg,, signal itself. We remark that averaging over the
entire test duration (~4.5 min) is by no means limiting; shorter or longer averaging
durations can be explored to derive the diverse features of the MCG signal.

(2) Repeatability tests. These tests entail intra-subject and inter-subject repeatability
tests and serve to evaluate (a) the sensor’s detection accuracy vs. gold-standard ECG and
(b) its tolerance to body movements. Specifically:
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(a) Data recorded during the “no movement study” are used to analyze the sensor’s
detection accuracy in terms of two different metrics, namely, QRS detection accuracy
and average R-R interval accuracy. The former compares the number of visible QRS
waves in the MCG signal (MCGggrs) as opposed to the number of visible QRS waves
in the gold-standard ECG signal (ECGggs) over the entire recording period and is
defined as:

MCGQRS

Accuracygrs = WQRS

x 100% )
To determine the average R-R interval accuracy, the average R-R interval is calculated
for only those sections of time with 100% QRS detection accuracy (i.e., the same number
of R-peaks detected in both the MCG and ECG). This is performed to eliminate the chance
of missing cycles, which can lead to erroneous R-R interval calculations. Assuming that n
number of R-peaks are detected within this timeframe and that R, represents the time when
the corresponding R peak is identified, the average R-R interval is calculated as the sum of
the times between all the two neighboring R-peaks divided by the number of R-R intervals.

YR — R
n—1

Average R-R interval = (3)
Average R-R intervals are calculated for both MCG and ECG, viz., MCGg g and ECGg g, and

the difference between the two is used as our second metric of accuracy for the MCG sensor:
Accuracyr_g = |MCGr_gr — ECGr_g| 4)

(b) The MCG sensor tolerance to movement is analyzed by comparing the data for the
two study scenarios, i.e., “no movement study” and “minimal movement study”,
throughout the test duration. The root mean square (RMS) of the isoelectric region and
the minimum averaging time (or, equivalently, the minimum number of cardiac cycles)
needed to identify the P and T waves are used to quantify the effect of the participants’
movement. Here, the isoelectric region, viz., the baseline region, is defined as the
MCGgipg signal having excluded all visible QRS waves. Since motion artifacts occur
within the spectral content of the original MCG signal [24,25], excluding the signal
itself from the source signal (where signal, motion artifacts, and other sources of noise
are combined), provides a signal that better represents the participants’ movement.
Here, other sources of noise are assumed to be consistent across the two studies (i.e.,
“no movement study” and “minimal movement study”) as the data are collected one
after another in almost the same time and environment. The QRS waves are excluded
by deleting a 100 ms region across each detected R-peak, with 100 ms chosen as the
widest QRS duration in healthy adults (per [26], QRS duration varies between 80 and
100 ms). Among standard measures of noise, viz., (1) root mean square (RMS) of
isoelectric region; (2) ratio of R-peak to noise in the isoelectric region; (3) crest factor;
(4) ratio between in-band and out-of-band power; and (5) power in the residual after
filtering [27], the RMS of the isoelectric region is selected as the most accurate and
direct means to represent the movement component of the noise. Additionally, (2) and
(3) introduce the magnitude of the MCG signal into the equation, which complicate
the process, while, for (4) and (5), the key component of the noise measured is the
powerline noise (60 Hz), which lies outside the frequency of interest.

Finally, similar to the DSP procedure described in Section 2.5 (1) (b), cycle averaging is
added to detect the detailed MCG features (i.e., P and T waves). Our hypothesis is that,
with higher values of movement noise, the P and T waves will be harder to detect, leading
to longer values of minimum time (or, equivalently, an increased number of cardiac cycles)
needed for averaging. In turn, this minimum averaging time (or, equivalently, minimum
number of averaging cardiac cycles) is herewith used as a parameter to quantify the noise.
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It is determined by gradually reducing the length of the MCGp;,, vector used for cycle
averaging until the P and T waves cannot be visually identified. The minimum length of
MCGgpg that can retrieve visible P and T waves (MCGgpg_min) is used to calculate the
‘time,;,,” and ‘cycles,,;;,’. Here, ‘time,,;,” is calculated as the minimal length (MCGgipyq_min)
divided by the sampling rate of the ADC (Fs) and ‘cycles’ is defined as the number of
R-peaks within the selected length.

MCGfinal_miTl

s ©)

time,,i, =

2.5. MCG Verification

One possible concern that may arise with the wrap-around chest belt is the possibility
of the resulting signal being attributed to chest vibration (similar to seismocardiography)
as opposed to MCG. To verify that the signal is indeed MCG, we modified the previous
setup so that the 7-coil sensor is placed a few centimeters away from the subject’s chest
wall, i.e., none of the coils are touching the body. If the recorded signal is indeed MCG, it
should be visible without any skin contact (though the increased distance from the chest
may necessitate averaging over some extent of repeating cardiac cycles).

For this verification test, a 28-year-old female (height 1.63 m, weight 48.5 kg, and BMI
18.3 kg/m?) was recruited. Since the test only serves to confirm the MCG detection, only
one participant is recruited as a proof of concept. The experimental setup is shown in
Figure 2b, with the distance between the chest wall and the 7-coils array being ~13 cm. The
materials surrounding this experimental setup (including the chair, table, etc.) are made
of plastic, fabric, or foam, all of which have a relative permeability of close to 1. All the
coils are pre-calibrated so that the corresponding winding is represented in the DSP, per
Section 2.3, Equation (1). The coils are recording continuously, along with the 3-lead ECG
system described in Section 2.3. In this case, ECG is used as our gating signal to identify
the repeating cardiac cycles for averaging.

To keep it simple, DSP only utilizes three methods, namely, bandpass filtering, averag-
ing over repeating cycles, and averaging over multiple coils, as discussed in [16]. Taking a
step further, the time width of the QRS acquired during the MCG validation test is further
evaluated to confirm whether the measured waveform is indeed MCG. Here, the QRS is
measured manually in the final averaged signal. To compensate for the signal degradation
due to the additional 13 cm distance, data are recorded for ~20 min, so that we have enough
cycles for averaging.

3. Results
3.1. MCG Verification

Figure 3a shows the processed signal recorded 13 cm away from the chest. Expectedly,
given the increased distance between the chest and the sensor, the MCG signal cannot
be seen in real-time. Specifically, to generate the signal of Figure 3a, ~1 min out of the
~20 min recording is used (i.e., 75 cardiac cycles per coil). The QRS in the averaged MCG is
manually measured to be 110.2 ms, which is within the normal range when compared to the
results reported in [28,29]. We remark that, since this experiment only aims to confirm MCG
detection, the setup is by no means optimized. Notably, the cardiac activity is detected by
the sensor, confirming that the captured signal is indeed MCG.
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Figure 3. (a) MCG confirmation: cycle-averaged MCG over ~1 min of time recorded at 13 cm away
from chest; (b) Validation test: Real-time MCG (blue solid line) vs. ECG (red dash line) in earth
ambient noise; (c) Validation test: Cycle-averaged MCG over ~4.5 min.

3.2. Validation Test
3.2.1. Real-Time MCG Detection

Figure 3b shows example MCG (blue solid line) and ECG (red dashed line) voltage
data recordings in real time. The x-axis represents the time stamp. Though the study starts
at 0 min and ends at 4.5 min, Figure 3b only shows data from 2.26 min to 2.39 min as
an example. As seen, all R-peaks in the MCG can be clearly identified, and each peak is
matched with a corresponding one in the gold-standard ECG. A similar correlation is found
throughout the entire 4.5 min of the recording. This trend confirms our hypothesis that
real-time MCG can indeed be captured with R-peaks that are clear in each cardiac cycle.

3.2.2. Detailed MCG Feature Extraction

Figure 3c shows the averaged MCG over the entire study duration (i.e., ~4.5 min)
which, in this particular recording, contains 313 cardiac cycles. We identify the cardiac
cycles using the R-peaks of the MCG signal (see Figure 3b) and cut windows of 500 ms
in duration in each side of the R-peak. In particular, the R-peaks are identified using the
Matlab function “findpeak” with a defined minimal distance between the two peaks and
defined minimal height of the peaks. In addition to the main QRS spikes, the P, T, and
U waves can all be fairly closely identified in Figure 3¢, confirming that, with minimal
averaging (~4.5 min), detailed MCG features can be extracted.

3.3. Repeatability Test
3.3.1. Detection Accuracy

The intra- and inter-subject QRS detection accuracy is calculated using Equation (2)
and listed in Tables 1 and 2, respectively. In the former case, a single participant (24 years
old male; height 1.70 m, weight 55 kg, and BMI 19 kg/m?) repeats the “no movement
study” seven different times. The QRS accuracy values (Accuracygrs) are calculated using
the entire data recording of ~4.5 min. The QRS/R-peak detection is again realized using the
“findpeak” function in Matlab with a defined minimal distance between the two peaks and
defined minimal heights of the peaks. As seen, clear MCG QRS waves are retrieved from
all intra-subject trials and from 9 out of the 11 participants. In particular, subjects #7 and
#9 are both female with thicker breast tissue and higher BMI (22.8 kg/m? and 22.2 kg/m?,
respectively), leading to increased distance between the signal source (heart) and the MCG
sensor and, hence, lower signal quality. To put this in perspective, the two females that are
included in this study have a BMI of 18.3 kg/m? and 20.3 kg/m?, respectively. In this work,
we exclude these two participants from subsequent data analysis, yet future advances in
the hardware and signal processing will aim to improve the sensor performance. Referring
to Tables 1 and 2, the QRS detection accuracy among all intra- and inter-subject trials is
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>99.13%, with 5/7 trials (intra-subject) and 6/9 subjects (inter-subject) achieving 100%
detection accuracy as compared to the gold-standard ECG.

Table 1. Intra-subject QRS detection accuracy.

Trial Number (#) ECGggRs MCGgps Accuracygrs
1 289 289 100%
2 230 228 99.13%
3 283 282 99.65%
4 273 273 100%
5 279 279 100%
6 279 279 100%
7 241 241 100%
Table 2. Inter-subject QRS detection accuracy.
Subject Number (#) ECGggrs MCGggs Accuracygrs
1 315 314 99.68%
2 289 289 100%
3 307 307 100%
4 346 344 99.42%
5 248 248 100%
6 399 399 100%
8 344 343 99.71%
10 372 372 100%
11 411 411 100%

The averaged R-R intervals (£SD) and the R-R accuracy are calculated using
Equations (3) and (4) and are summarized in Tables 3 and 4 for the intra- and inter-subject
tests, respectively. Here, Time;p9, refers to the continuous time duration with a 100% QRS
accuracy rate. Among all, the difference between the MCGg.g and ECGg.r is always <5.8 ms,
with 6/7 trials (intra-subject) and 5/9 subjects (inter-subject) exhibiting 100% identical
intervals. Comparing Tables 3 and 4, the number of cases with Accuracygr.g = 0 are slightly
higher for the intra-subject tests. On the other hand, compared within Tables 3 and 4, the
standard deviations for MCGg_g are slightly higher than those for ECGr_g. Nevertheless,
for all intra- and inter-subject tests, the discrepancy between the averaged R-R intervals
and the standard deviation calculated in MCG and ECG are negligible.

Table 3. Intra-subject averaged R-R interval and R-R accuracy.

Trial Number Accuracyr-r

@) ECGRg-g [ms] MCGR.g [ms] Timeqqgo, [s] [ms]
1 1002.5 4 47 1002.5 = 68 289.7 0
2 1035.4 + 70 1035.4 + 92 190.5 0
3 1005.0 = 63 1010.8 += 94 180.9 5.8
4 962.7 £+ 47 962.7 + 143 262.9 0
5 1008.9 £ 69 1008.9 + 114 281.5 0
6 9279 + 58 927.9 + 58 258.9 0
7 1026.9 4+ 59 10269 + 64 247.5 0
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Table 4. Inter-subject averaged R-R interval and R-R accuracy.

NE::)]::: # ECGR-g [ms] MCGR-R [ms] Timeqggo, [s] ACCLE:ZSC]y R-R
1 850.8 £ 38 850.8 £ 40 161.0 0
2 1002.5 £+ 47 1002.5 + 68 290.0 0
3 584.6 £ 41 588.4 £ 76 181.0 3.8
4 777.7 + 45 777.4 + 94 179.0 0.3
5 741.1 + 42 7411 +75 184.1 0
6 752.5 + 43 752.5 + 89 301.3 0
8 8224 + 23 8252 + 115 198.2 2.8
10 810.8 + 57 810.8 + 59 301.8 0
11 747.0 + 46 748.8 + 102 308.0 1.8

3.3.2. Tolerance to Movement

Table 5 shows the RMS of the isoelectric region of the MCG in two scenarios, viz., no
movement and minimal movement. As expected, higher RMS values are observed in all
minimal movement studies due to the additional motion artifacts that are introduced into
the recording. Here, data from the entire test duration (~4.5 min) are used to calculate the
RMS value, and the 100 ms regions surrounding the R-peaks are deleted for those R-peaks
that are detectable in Matlab. Since the MCG sensor has already proven to exhibit a QRS
accuracy of >99.13% (see Table 1), only very few regions are left out. For each participant,
the RMS values of the isoelectric region are different due to each test being conducted on
different days with different environmental noise. Nevertheless, all values are in a similar
level of signal strength (~1075 V).

Table 5. RMS of isoelectric region: no movement vs. minimal movement.

Subject Number (#) No Movement [puV] Minimal Movement [puV]
1 16.59 16.87
2 17.44 22.18
3 29.88 37.70
4 18.93 22.58
5 20.81 22.36
6 21.96 22.99
8 17.73 19.52
10 29.94 36.57
11 29.94 40.10

Table 6 shows the minimum time and minimum number of cycles needed to identify
the detailed MCG features, specifically the fairly closed P, T waves, for each of the “no move-
ment” and “minimal movement” studies. As would be expected, for all nine participants, a
longer averaging time is needed to identify the P, T waves when retrieving MCG under
minimal body movement. On average, the P, T waves can be identified by averaging over
23.15/30 cardiac cycles during the “no movement study” and 32.64 s/45 cardiac cycles for
the “minimal movement study”. In all cases, the detailed MCG features can be extracted in
less than 50 s/76 cardiac cycles. We remark that, since different participants have different
heart rates, the number of cardiac cycles used for averaging is a better representation of the
DSP process. For example, the participants with faster heart rates have an advantage in
terms of the minimum time needed for average as, within the same period of time, more
cardiac cycles are present.
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Table 6. Minimal averaging time: no movement vs. minimal movement.

Subject No Movement Minimal Movement
Number (#) Time,;, [s] Cycles,uiy Time,,;, [s] Cycles,uiy,
1 11.40 13 15.97 19
2 24.40 25 40.23 49
3 29.30 47 31.86 63
4 21.69 27 31.42 41
5 20.36 27 26.47 37
6 29.05 39 36.32 45
8 29.66 36 40.86 49
10 12.25 15 21.04 29
11 29.77 40 49.61 76
Average 23.10 30 32.64 45

To better understand the impact of movement, Figure 4 shows the processed MCG
plot for one of the participants: (a) using 11.40 s/13 cardiac cycles of averaging time for the
“no movement study” (identified in Table 6 as the minimum time needed for averaging
when no movement is present), (b) using 15.97 s/19 cardiac cycles of averaging time
for the “minimal movement study” (identified in Table 6 as the minimum time needed
for averaging when minimal movement is present), and (c) averaging over 13 cardiac
cycles (same number of minimum cycles used for “no movement study”) for the “minimal
movement study”. As seen, the P, T waves are quite visible in Figure 4a,b as most of the
uncorrelated noise (i.e., motion artifacts) is eliminated with the increased averaging time in
the second case. By contrast, the P wave is not visible in Figure 4c as the reduced number
of averaging cycles is not sufficient to fully remove the motion artifacts. Here, the P wave
is of a similar amplitude to that of the other waves in the isoelectric region. By contrast,
the T wave is somewhat visible due to its higher amplitude. To sum up, regardless of the
recording situation (e.g., “no movement” vs. “minimal movement”), the MCG signal can
be retrieved with modifications in the recording time and the signal level for the same
participant should be the same.

1o X107 Averaged MCG 10 x107° Averaged MCG 1 X107 Averaged MCG
> > >
o o o
o j= o
8 8 s sl
= 2 | | (Y ! ¥ M R = H
o o ' o
> > i >
0 /\/\/\ 0 \/\fv\/v\/\ i 0
U
1
P T P T | T
5 5
100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000
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(a) (b) (0)

Figure 4. Example of processed averaged MCG using the minimum averaging time (from subject #1):
(a) no movement and (b) minimal movement; (c) averaging over 13 cardiac cycles (same minimal cycles
used in no movement study) for minimal movement study. Solid blue line represents the averaged MCG
trace and the red dashed line represents the identified specific waves in the recorded MCG.

4. Discussion

The proposed real-time unshielded MCG detection system provides a promising
solution for low-cost and continuous MCG monitoring outside the hospital setting. The
results indicate the possibility of using such devices for (1) R-peak monitoring in real-time
(e.g., to retrieve heart rate variability), (2) detailed MCG feature detection with ~4.5 min of
averaging, and (3) MCG tracking with no and minimal movement.
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To confirm that detailed MCG features are indeed valid features and not artifacts,
we superimposed the cycle-averaged ECG (red dashed line) on top of the cycle-averaged
MCG (blue solid line) using the data obtained in the validation test (Figure 5a). Here,
real-time R peaks (identified in MCGg;,, per Section 2.3) are used as our trigger to identify
repeating cardiac cycles for both ECG and MCG. As seen, only P-waves can be identified in
the final cycle-averaged ECG signal as we are using a low-cost, off-the-shelf device. The
location of this P-wave aligns with that of the MCG signal though, of course, and perfect
alignment is not anticipated (note that the voltage induced is proportional to changes in the
magnetic flux over time). Additional data regarding the time widths of QRS, PQ, and QT
for all recruited subjects during the minimal movement study are included in Appendix A
(Table A1) to further validate that the detected waveforms in all cases are indeed MCG.
In the future, we expect that more extensive signal averaging and more advanced signal
processing will further clear up the MCG signal, while clinical-grade ECG equipment will
help demonstrate the correlation for other detailed features of the cardiac waveform (such
as T and U waves).

Voltage V
Magnetic field mT
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Figure 5. (a) Cycle-averaged MCG vs. ECG over ~4.5 min, and (b) Cycle-averaged MCG when
converted to magnetic field unit (Tesla).

Time min

The main goal of this study is to visualize the R-peaks of MCG in real-time so they can
be subsequently used as a self-triggering signal. As such, we purposely select the 4-30 Hz
frequency components of MCG as they contain most of the key features, particularly the
R-peak. These detected R-peaks can then be used as a self-trigger for the MCG waveform
filtered across a wider frequency range per application needs (e.g., 0.03-125 Hz [30] to
identify ischemic ST elevation). Comparing Figure 3a with Figure 3¢, the averaged MCG
signal is obtained on the same subject with some distance (Figure 3a) and without any
distance (Figure 3c) between the sensor and the chest wall. As seen, the R peaks can be
detected in both cases, but with a reduced signal strength level when recording at a certain
distance away. This is expected since the magnetic field strength produced by the heart is
gradually degrading as the distance between the coil sensor and heart increases. In turn,
detailed MCG features can barely be identified in Figure 3a.

Here, all MCG signals are represented in terms of voltage as a more straightforward
representation, given that the cardiac magnetic flux is translated into voltage by the coil sen-
sors. This voltage can be translated back to the magnetic flux (Tesla) by using a Helmholtz
coil and providing a known uniform magnetic field in a shielded environment. The cal-
ibration can then be performed with the known magnetic field and the corresponding
recorded voltage. When converting to magnetic field, the environmental and instrumental
noise may complicate the process, making the converted results more prone to error. For
instance, the uniform magnetic field produced by the Helmholtz coil can be altered by
the additional noise present in the shielded environment. That is, the translation relies
greatly on the effectiveness of the shielding. Since we are working with extremely low
field strengths, even a small alteration in the background field can greatly impact the final
results. That being said, Figure 5b shows an example plot with the signal converted from
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voltage to magnetic field using the data obtained in the validation test (Figure 3c), while the
rest of the plots have been converted to a magnetic field and are included in Appendix A,
Figure A1l. Note that the converted signal strength (R-peak amplitude) in Figure 5b is in
the range of 107 T (~1.5 x 1077 T), which is bigger than the MCG amplitude typically
expected from state-of-the-art sensors (~10~19T). This may be due to the distance between
the heart and the recording sensor being smaller when compared to the typical recording
setup using SQUIDs (>10 cm) [31]. In our case, the sensor is placed directly on top of the
chest wall. Similar studies that utilize newer sensors recording at a shorter distance away
from the heart have also shown similar results (i.e., R-peak values of ~1077 T) [32,33]. As
expected, the converted plot magnifies the lower frequency components and reduces the
higher frequency components. Further, to perform such conversion (i.e., from voltage to
magnetic field), Fast Fourier Transform (FFT) and Inverse Fast Fourier Transform (IFFT)
need to be performed, which introduce additional error. This error becomes significant
when dealing with weak signals. Along these lines, the manuscript shows the originally
captured units (Volts) as the most representative means to represent the recorded MCG
signal. As such, when voltage is used as the direct means of measurement, such conversion
is not typically adapted in the literature [14,34-36].

We acknowledge that the current signal quality is far from ideal for clinical appli-
cations, especially when compared to already well-established MCG recording systems,
such as SQUIDs or AMs [10-13]. As a comparison, current clinical grade SQUID systems
can achieve a sensitivity of ~10-100 fT/,/Hz around 10 Hz in shielded environments,
whereas our current system can achieve ~30 pT//Hz around the same frequency, yet in
non-shielded environments. As such, some detailed MCG features, such as P and T waves
are not as clear as those presented in SQUID-recorded MCG. In the future, bigger coils,
ferrite cores, partial shielding, and even coolant approaches can be incorporated into the
sensor to further improve its sensitivity. We also emphasize that the goal of this paper is
not to retrieve the clearest possible MCG signal but rather to demonstrate the possibility
of real-time R-peak detection as a subsequent self-trigger for clearing up the MCG signal
per application needs. That is, the results presented in this work provide a starting point
that opens doors for several sensor improvements and potential clinical opportunities in
the future. We also note that, when retrieving detailed MCG features, the U wave is not
always visible and the exact reason for this is still unknown and subject to research. We
also remark that, when analyzing the effects of movement, as a proof-of-concept, the RMS
of the isoelectric region is evaluated. This is by no means the optimal method for quantify-
ing the noise introduced by the movement, as some of the MCG waveform information
overlaps with the isoelectric region. Future work will focus on designing better parameters
to quantify the impact of movement.

Comparing the intra- and inter-subject test results, the overall performance is better
for the intra-subject tests, viz., the number of cases in which Accuracyr_g = 0 is higher as per
Tables 3 and 4. This can be explained by the fact that, as the participant performs multiple
trials, they become more familiarized with the procedure, reducing motion artifacts in the
recordings and leading to more accurate R-R interval values. Concurrently, for each subject
and trials, MCGg_r tends to vary in values more than ECGg_g, viz., standard deviations
for MCGg.g are slightly higher than ECGr.g. This may be due to the MCG signal, and
particularly the MCG-derived R-peaks, being slightly distorted by noise. It is also worth
noting that two female participants that have higher BMI (22.8 kg/m? and 22.2 kg/m?,
respectively) are excluded for all inter-subject studies due to low signal quality. Here, the
higher BMI is not the sole reason for poor signal quality, but rather the key association lies
in the distance between the heart and the sensor. For example, for male participants, even
with higher BMI (subject #4 and subject #8, male, both having a BMI of 26.1 kg/m?), the
MCG signal can still be retrieved. For this reason, the participants were divided not only
based on BMI but also on gender. Considering this is a prototype recording system and a
proof-of-concept experimental setup, more robust system hardware and better experimental
setups will be explored in the future.
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5. Conclusions

In this work, we presented a coil array that can detect the full frequency spectrum
of a human MCG with visible R-peaks in real-time without any shielding. We further
demonstrated the coil array’s ability to detect clear QRS detailed MCG features (P, T, and
U waves) with ~4.5 min of averaging in non-shielded environments, without the need for
any accompanying device to identify the cardiac cycles. The performance of the coil array
was evaluated within and across subjects in terms of detection accuracy and tolerance to
body movement. The in vivo experiments on human subjects confirmed that the detection
accuracy for all intra- and inter-subject tests is >99.13%. The discrepancy in the averaged
R-R intervals vs. gold-standard ECG is always <5.8 ms. When no movement is present,
23.1 s or 30 cardiac cycles are the minimal averaged time/cycles needed to identify the
closed P, T waves. For minimal movement, these increased to 32.64 s and 45 cardiac cycles.

The reported sensor enables portable and low-cost MCG detection in real-time and
non-shielded environments, showing promise for cardiac monitoring in the pre-clinical
environment. In the future, leveraging e-textile technology, this device can be seamlessly
integrated into garments enabling constant cardiac sensing.
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) ¥10 7 Averaged MCG J Real-time MCG vs. ECG

Magnetic field mT
Magnetic field mT
Voltage V

1000 200 300 400 500 600 700 800 900 1000

232 234 236 238
Time ms Time s

(a) (b)

Figure A1. Converted magnetic field plot: (a) MCG confirmation: cycle-averaged MCG over ~1 min
of time recorded at 13 cm away from chest, and (b) Validation test: Real-time MCG (blue solid line)
vs. ECG (red dash line) in earth ambient noise.
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Table Al. Time widths of QRS, PQ, and QT in ~5 min averaged MCG for no movement study.

Subject Number (#) QRS [ms] PQ [ms] QT [ms]
1 116.2 172.4 463
2 117.2 148.6 375.4
3 118.8 214 486
4 81.8 207.2 4384
5 100.8 168.4 3724
6 84.4 127.4 422
8 104 131.6 383.6
10 100.4 177.4 417.8
11 79 136.4 433
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