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Abstract: Models of the human body representing digital twins of patients have attracted increasing
interest in clinical research for the delivery of personalized diagnoses and treatments to patients. For
example, noninvasive cardiac imaging models are used to localize the origin of cardiac arrhythmias
and myocardial infarctions. The precise knowledge of a few hundred electrocardiogram (ECG)
electrode positions is essential for their diagnostic value. Smaller positional errors are obtained when
extracting the sensor positions, along with the anatomical information, for example, from X-ray
Computed Tomography (CT) slices. Alternatively, the amount of ionizing radiation the patient is
exposed to can be reduced by manually pointing a magnetic digitizer probe one by one to each sensor.
An experienced user requires at least 15 min. to perform a precise measurement. Therefore, a 3D
depth-sensing camera system was developed that can be operated under adverse lighting conditions
and limited space, as encountered in clinical settings. The camera was used to record the positions
of 67 electrodes attached to a patient’s chest. These deviate, on average, by 2.0 mm ± 1.5 mm from
manually placed markers on the individual 3D views. This demonstrates that the system provides
reasonable positional precision even when operated within clinical environments.

Keywords: electrode localization; 3D camera; real-time 3D recording; exposure control; white
balancing; system calibration; image processing; surface alignment

1. Introduction

Models of the human body have gained increasing interest in clinical research and
are essential for delivering personalized diagnoses and treatments to patients. They can
be used to build a digital twin of a patient’s body that can be used for planning curative
interventions, predicting the outcomes of intended treatments, or the likelihood of relapses
and complications. For most of these models, apart from the knowledge of the patient’s
exact anatomy, information about physiological processes is required such as the impedance
of fibrous tissue forming an infarction scar, which largely differs from the impedance of
intact myocardium.

Electrical impedance tomography (EIT) and electrical capacitance tomography (ECT)
are used to measure tissue parameters such as impedance or capacitance [1–3]. The origin
of cardiac arrhythmias or myocardial infarctions can be identified by integrating ECG
recordings [4–6], and the functions within the human brain [7,8] can be visualized using
models, including EEG recordings. All these methods require the positions of between
12 and a few hundred sensors to be exactly known. The larger the positional error, the
lower the diagnostic value of the results generated by the model. Consequently, they are
less suitable for treatment planning, guidance, outcome stratification, or prevention of
complications and relapses.

A commonly used approach is to extract the sensor positions, along with the anatomi-
cal details, from Magnet Resonance Image (MRI) stacks or X-ray Computed Tomography
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(CT) slices. Both approaches require special markers to be attached to the sensors, which
are visible in MRI [9,10] or CT scans [11]. Identifying the sensor positions from MRI or CT
scans yields the smallest positional errors compared to the true sensor position. However,
this approach significantly hinders the clinical uptake and widespread use of electrical
impedance tomography (EIT), electrical capacitance tomography (ECT), noninvasive imag-
ing of cardiac electrophysiology (NICE), and other model-based approaches. Patients either
have to be exposed to large amounts of ionizing radiation when using CT scans, limiting
the use of the aforementioned methods to three applications per year. Although MRI is
not bound by this limitation, it is only covered by insurance companies if it is required for
obtaining a proper diagnosis and evaluating outcomes.

Given these limitations, alternative approaches that decouple the generation of the
underlying anatomical models from the localization of the sensors have been tested [12–14].
Alternatives such as magnetic digitizer systems, e.g., the Polhemus Fastrak [12], tracked
gaming controllers [13], or motion capture systems, have been used to identify the positions
of electrodes relative to the patient’s body. The use of photogrammetry, visual odometry,
and stereoscopic approaches was already considered more than 15 years years ago [15,16].
The Microsoft Kinect 3D depth-sensing camera (3D DS) was one of the first compact and
affordable devices. Nowadays, modern coded light and stereo vision-based models are
portable and lightweight enough to be easily attached to or even integrated within a
standard tablet computer.

In the past few decades, 3D DS cameras have mainly been used in EEG-based studies
to locate EEG sensors on the patient’s skull [12,14,17]. All of them use the recorded EEG
signals to localize brain activity or identify the focus of a seizure within the cortex. In
contrast, very few studies report the use of 3D DS cameras to locate ECG sensors on the
chest or even the whole torso [18–20]. One reason for this may be that the skull is a rigid
structure that does not change its shape when the subject moves during the recording. In
contrast, when recording the sensor position on the torso, the patient needs to maintain a
specific posture. The instructions provided to the patient on how to achieve and maintain
this posture are integral to the entire recording procedure.

In the present work, the positions of 64 ECG electrodes mounted on the torso are
recorded using 3D DS camera readings only. Section 2 encompasses descriptions of the
overall structure of the developed 3D DS camera-based system, method, and algorithm
used for the real-time recording of the individual 3D views of the torso (Section 2.2); the
postprocessing steps necessary for extracting the electrode positions (Section 2.3); and the
recording protocol used and the instructions provided to each subject participating in the
clinical testing (Section 2.4). In Section 3, the results obtained from the five subjects are
presented, and in Section 4, these results are discussed.

2. Materials and Methods

The 3D depth-sensing (3D DS) camera-based measurement of electrode positions can
be divided into four main steps: (i) selecting the appropriate 3D DS camera, (ii) defining
an appropriate measurement protocol, (iii) recording the 3D surfaces in real time, and (iv)
extracting the electrode center points.

The most important component for recording the electrode positions is the 3D camera.
It can be characterized by various parameters such as the closest distance dnear and the
vertical ψV and horizontal ψH fields of view (FOV). These parameters define the volume in
front of the camera in which objects must be placed to be accurately captured by the depth
sensor. Based on these considerations, the Intel Realsense SR300 3D DS camera [21] was
selected. Descriptions of the exact selection criteria that led to this decision can be found in
Section 2.1.

The human torso represents a flexible object that offers several degrees of freedom for
movement and deformation in contrast to the rather rigid skull. The position of each ECG
electrode perceived by the 3D DS camera and its relative position to the other electrodes
is directly affected by the movements of the patient’s body. Therefore, it is essential to
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define an appropriate recording protocol before the first 3D data set is recorded. As large
displacements may prevent the successful extraction of the electrode positions, the patient
is required to actively maintain the same posture throughout the recording procedure.
Details on how this active engagement of the patient can be achieved are described in
Section 2.4. For the remaining steps, (iii) real-time recording and (iv) offline processing,
Figure 1 provides an overview of the necessary sub-steps and their interdependence:
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Figure 1. Schematic presentation of the overall approach used to extract ECG electrode positions
from 3D depth sensor camera data. It is split into a real-time and an offline processing part. The first
contains methods to control the cameras white balance, exposure settings and generate textured 3D
surface meshes from the recorded depth data. During the offline processing these surfaces are aligned
to extract the electrode positions within clusters of marker vertices found using texture images in
rg-chromacity color space and the 3D surfaces.
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Figure 1. Schematic presentation of the overall approach used to extract ECG electrode positions
from 3D depth-sensing camera data. The first step involves methods to control the camera’s white
balance and exposure settings and generate textured 3D surface meshes from the recorded depth
data. During the offline processing step, these surfaces are aligned to extract the electrode positions
within clusters of marker vertices found using texture images in the RGB chromacity color space and
3D surfaces.

A 3D DS camera combines a depth sensor and an RGB color sensor in a single device.
These two sensors simultaneously record an RGB color image Ξrgb and a 16-bit depth image
D16. The latter image encodes the distance d between the camera and the objects located in
front of the camera.

The developed real-time recording system is intended for use in diverse clinical
settings such as examination rooms in outpatient clinics or local cardiology practitioner
clinics. The lighting conditions encountered depend on the pointing direction of the
camera and the number of light sources, as well as their brightness and color hue. In order
to properly handle these conditions, the white-balancing settings, exposure time τ, and
overall gain γex of the color sensor are continuously adjusted in real time. Automatic white
balancing (AWB), which is described in detail in Section 2.2.1, uses Ξrgb to estimate the
color temperature KW of the dominant light source.

At the same time, a binary mask MD is generated from the depth image D16. This
MD splits D16 into foreground pixels representing the torso surface and objects in the
background (Section 2.2.3). MD is used to generate a 3D mesh S of the imaged torso surface
(Section 2.2.4) and tune the exposure time τ and global gain setting Γex of the color sensor.
This is achieved by combining MD with the brightness information I of the color image
Ξrgb obtained during the AWB step (Section 2.2.2). The mask MD is also used to outline the
patient’s contours on the real-time preview screen, along with various system parameters.

When the trigger is pressed, the triangulation component (Figure 1) generates a 3D
surface mesh S, which is stored along with the corresponding texture information Ξuvs of
the torso created from the RGB color image Ξ.

In the offline processing step, a pairwise iterative closest-point (ICP) algorithm is used
to align the recorded surfaces S with each other. The resulting transformation matrices <
are used to extract the 3D positions from the color-corrected texture images Ξuvs, which
have been stored alongside each S (Section 2.3.2). In order to facilitate the steps necessary
to identify the color markers attached to the electrodes, an additional color-correction step,
which is described in Section 2.3.1, is conducted. The aim of this step is to ensure that the
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patient’s skin color and marker colors are accurately represented across all the recorded
texture images Ξuvs. To achieve this, the Ξuvs are split into a chromacity image χrg and
the corresponding intensity image I. Both are used to identify the red and blue pixels and
related 3D points corresponding to each electrode marker. Details on how this is achieved
can be found in Section 2.3.3.

The centers of these markers are coaligned with the centers of the electrode clips and
patches. Their positions on the surface are computed by fitting a planar model (Section 2.3.4)
to the extracted red and blue points. In the final labeling step (Section 2.3.5), the electrode
positions are assigned to the corresponding ECG signals recorded from the patient’s torso.

The colors of the markers vary depending on the position and orientation of the
electrode clip relative to the torso and 3D DS camera. Therefore, a dedicated calibration
procedure is utilized, which is outlined in Section 2.3.6, to determine the ranges of the red
and blue color values that represent the electrode markers.

2.1. Selecting the Camera

The selected Intel Realsense SR300 3D DS camera [21] is used in narrow or crowded
places such as examination rooms in outpatient clinics and cardiology practitioner clinics.
In these places, the patient is typically seated on an examination bed or chair placed close
to the wall. Consequently, the closest distance dnear relative to the depth sensor at which
objects may be placed has to be shorter than the shortest horizontal distance dH,min of the
patient’s torso to any surrounding obstacles such as walls or furniture. The horizontal
ψH and vertical ψV FOVs determine how tall or wide the closest object can be to be fully
captured in its height and width. The minimum required values for ψH and ψV can be
approximated based on the patient’s approximated htorso and the 3D DS camera’s dnear
using the following relationships:

dnear < dH,min

ψmin = 2 arctan(
htorso

dnear + dH,min
) (1)

max(ψH , ψV) >= ψmin

According to the datasheet [21] the depth sensor can capture objects located at dis-
tances between 20 cm and 150 cm from the camera. This range is more than sufficient to
record the surface of the torso. The depth information of each object is captured using an
infrared sensor in combination with a near-infrared projector [21,22].

The depth images D16 are recorded in 4:3 image format, covering a horizontal FOV of
69 degrees and a vertical FOV of 54 degrees at a depth resolution of less than 1 mm. The
color sensor of the camera generates the RGB images Ξrgb in 16:9 format. Its horizontal
FOV of 68 degrees is sufficiently well-paired with the horizontal FOV of the depth sensor.
With a ψV of 41 degrees, it covers only 2/3 of the depth sensor in height. This results in
a lack of color information for the pixels close to the top and bottom edges of the depth
image D16, which was considered when outlining the measurement protocol in Section 2.4.

2.2. Real-Time Recording
2.2.1. Automatic White Balancing

The color sensor used by the Intel Realsense 3D DS camera offers the possibility to
manually tune the color gains ΓR̂, ΓĜ, ΓB̂ indirectly by adjusting their color temperature
parameter KW . This was used to implement a custom AWB component (Figure 1), along
with the algorithm proposed in [23], which can handle these varying conditions. After
applying a lookup table v̂ = bvc based on linearization (gamma decompression) and
normalization to the interval [0, 1] of the red R̂ = bRc, green Ĝ = bGc, and blue B̂ = bBc
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color channels, the resulting linear RGB image Ξ is converted into an RGB chromacity χrg
image and a linear grayscale image I that encodes the brightness of each pixel.

Ii = R̂i + Ĝi + B̂i (2)

ri = R̂i/Ii, gi = Ĝi/Ii, bi = Ĝi/Ii

From χrg, all pixels (ri, gi, bi) are selected that encode shades of gray. The red r, green
g, and blue b chromacity values of these pixels are located within a small area around the
neutral color gamut point, which has a color temperature of 5500 K, as shown in Figure 2.
The basic assumption is that these pixels most likely correspond to object surfaces of a
neutral gray color. Consequently, a reddish-colored taint in these pixels must be caused
by a low K value of the predominant illumination, and a bluish cast most likely results
from a light source with a large K. Overexposed pixels are excluded, as their color most
likely results from the saturation of at least one of the three color channels and thus does
not properly represent the skin color of the patient or the color of the illuminant. Likewise,
underexposed pixels are not considered, as their color is most likely caused by camera
noise rather than the light reflected by the imaged object.

For adjusting the color temperature setting KW of the 3D DS camera, only pixels
(ri,W , gi,W , bi,W , Ii,W) that are located within a small area surrounding the neutral color
gamut point are selected, which is, according to Cohen [23], defined by the chromacity
values r = 0.363, g = 0.338, and b = 0.299. This area encloses all pixels that are located
within the following two ellipses centered at the color gamut point:

(ri,W − r)2

σ2
r

+
(gi,W − g)2

σ2
g

<= 1 and
(bi,W − b)2

σ2
b

+
(gi,W − g)2

σ2
g

<= 1 (3)

0.00155Imax < Ii < 0.955Imax (4)

Their primary and secondary axes are defined by the standard deviations for the red
σr = 0.0723, green σg = 0.0097, and blue σb = 0.0749 chromacity values with respect to
the neutral color gamut point, which was determined in [23]. The maximum intensity
encountered is max I = 3.

The lower Imin = 0.02 and upper Imax = 0.98 exposure limits, as defined for each
channel in [23], are linearized to Imin = 0.02/12.92 and Imax = ((0.98 + 0.055)/1.055)2.4

before applying them to the overall linear intensity values I.
To match KW with the color temperature K of the light source, the overall color gain

ΓK of the camera is estimated. The following model is used to simulate how the camera
adjusts the gain ΓR̂ of its red and blue ΓB̂ channels when KW is updated.

ΓR = ΓK, ΓB̂ =
1

ΓK
, ΓK =

2(KW − KW,min)

KW,max − KW,min
, KW = KW,n+1 = γKW,n (5)

Neither the lower and upper limits for ΓR̂ and ΓB̂, nor the color temperature cor-
responding to equal gain values ΓR̂ = ΓB̂ = 1, are documented for up-to-date 3D DS
cameras. It is assumed that ΓR̂ = ΓB̂ = 1 corresponds to the center color temperature
KW = (KW,min + KW,max)/2 between the minimum KW,min and maximum KW,max values
of the color sensor. On startup, KW is initialized to KW,0 = KW . For the recorded color
images Ξn+1, the corresponding KW,n+1 = γKW,n is estimated from the previous value of
KW = KW,n and a scaler γ reflecting the relative change of KW between two consecutive
Ξn. The color sensor of the used camera has a rolling shutter. Therefore, color images are
only considered for estimating the scaler γ and KW after the next exposure time interval
has elapsed.
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Figure 2. The small area in the rgb chromacity space corresponds to the pixels encoding shades
of gray [25]. The red r and green g chromacity values of the natural illumination color gamut of
5500 K define a point which is is shifted slightly off the mean rgb chromacity towards yellowish
colors. Standard 3D-DS cameras designed for indoor use like the Intel RealsenseTM typically allow
to adjust the gains for the red and blue channel to illumination color gamuts between for example
2800 K and 6500 K as indicated on the color gamut curve, whereas within real clinical settings gamuts
from 2000 K up to 10000 K may be expected, dependent upon the number of light sources and shades
casted by objects and people.
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Figure 2. The elliptic area in the RGB chromacity space corresponds to the pixels encoding shades of
gray [23]. The red r and green g chromacity values of the natural illumination color gamut of 5500 K
define a point that is shifted slightly off the mean RGB chromacity toward yellowish colors. Standard
3D DS cameras designed for indoor use such as the Intel RealsenseTM typically allow adjusting the
gains for the red and blue channels to illumination color gamuts between, for example, 2800 K and
6500 K, as indicated on the color gamut curve. However, in real clinical settings, gamuts from 2000 K
up to 10,000 K can be expected, depending on the number of light sources and shades cast by objects
and people.

The goal is to minimize the distance between the average rW , green gW , and blue bW
chromacities of the selected pixels and the r, g, b of the color gamut point that corresponds
to a color temperature of K = 5500 Kelvin. To achieve this, rW , gW , and bW are multiplied
by the unknown intensity

.
y = RW + GW + BW to obtain the corresponding mean red RW ,

green GW , and blue BW color values. These values are scaled by γ using (5). After scaling,
the updated rW , gW , and bW are computed using (2).

r =
rWΓK

.
I

rWΓK
.
I + gW

.
I + bW

.
I

ΓK

, g =
gW

.
I

rWΓK
.
I + gW

.
I + bW

.
I

ΓK

, b =

bW
.
I

ΓK

rWΓK
.
I + gW

.
I + bW

.
I

ΓK

(6)

It is obvious that the unknown intensity
.
I does not have any impact on the result. It

can be omitted from (6) and γ. Consequently, ΓK can be computed from r, g, b, rW , gW , and
bW directly.

In Figure 2, it can be observed that the curve along which the color gamut point moves
can be approximated for color temperatures K ≤ 5000 K by the line connecting the red
corner (r = 1, g = 0, b = 0) and the midpoint (r = 0, g = 0.5, b = 0.5) between the blue
(r = 0, g = 0, b = 1) and green corners (r = 0, g = 1, b = 0) of the chromacity space. For
color temperatures K > 5000 K, the curve can be approximated by the line connecting the
blue corner (r = 0, g = 0, b = 1) with the midpoint (r = 0.5, g = 0.5, b = 0) between the
red (r = 1, g = 0, b = 0) and green (r = 0, g = 1, b = 0) corners, respectively. The two
midpoints (r = 0.5, g = 0.5, b = 0) and (r = 0, g = 0.5, b = 0.5) correspond to the yellow
y = (r + g)/2 and cyan c = (g + b)/2 chromacities, respectively. Based on the ratio y/b,
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the average chromacity value gWγ of the green channel scaled by γ can be expressed. The
resulting expression is inserted into the quadratic Equation (8) obtained from the ratio r/c:

r
c
=

2r
g + b

=
2rWγ

gW + bW
γ

,
y
b
=

r + g
2b

=
rWγ + gW

2 bW
γ

(7)

γ2rW −
rbW

b
= 0 (8)

Solving (8) with respect to γ yields

γ =

√
rbW

rWb
(9)

Along with γ, the actual error E between the neutral illumination color gamuts r, g, b
and rW , gW , and bW ; the expected error E∗ after scaling rW and bW by γ; and the updated
value K+

W = KWΓK are computed using (5):

E = (r− rW)2 + (g− gW)2 + (b− bW)2 and (10)

E∗ = (r− rWγ)2 + (g− gW)2 + (b− bW
γ

)2 (11)

Based on these equations, the KW setting of the 3D DS camera is updated KW = KWΓK
if E∗ < E. During testing, it was found that numerical inaccuracies can prevent the
computation of the appropriate estimates for the color temperature K of the predominant
illuminant. Therefore, a numerically stable test is used instead to determine whether KW
has to be updated or its current value can be kept.

(E > 1.758× 10−8) ∧ (E− E∗ > 10−15) (12)

2.2.2. Patient-Locked Auto-Exposure

In addition to the overall color appearance, the light sources that are present also
affect the overall light intensity I, which among others, can vary depending on the viewing
direction of the 3D DS camera. For example, in the case shown in Figure 3a, the camera is
pointing toward a window. In Figure 3b, the camera is pointing in the opposite direction
toward the door.

In order to maintain a constant illumination intensity I of the patient’s torso, indepen-
dent of the viewing direction and the overall brightness of all present light sources, the
histogram-based auto-exposure AE algorithm proposed in [24] was adopted.

This algorithm is implemented in the exposure component (Figure 1). It considers
only the pixels in Ξ that correspond to the patient’s torso. These pixels are selected by
segmenting the depth image D recorded by the 3D DS camera into a foreground object
(the patient) and the remaining background using the approach outlined in Section 2.2.3.
The binary mask MD obtained in this segmentation step is mapped to the color image
Ξ using the texture coordinates vuvs computed from the depth image D16 by the camera
control library. All brightness values Ii of all pixels covered by the mapped mask M′D are
considered for adjusting τ. Any other pixels and pixels that are over- or underexposed
according to Equation (4) are discarded.

The algorithm proposed by Chen and Li [24] uses the histogram of the gamma-
compressed grayscale image Ξ computed from Ξ. In order to avoid the computational
burden required by an explicit conversion between the linear illumination image I and Ξ,
the histogram H(V) is directly computed from the linearized illumination values Ii of the
selected pixels. This is accomplished by maintaining a lookup table that lists the linearized
bin boundary values ĥv corresponding to the uniform boundaries hv of the grayscale
histogram H(V). The histogram H(V) can then be generated for all considered Ii using a
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left bisection search to scan this lookup table, which is far less computationally demanding.
A further reduction can be achieved by precomputing the differences ∆2

H = (Ii − 128)2 and
∆3

H = (Ii − 128)3 for each bin, which are used to calculate the skewness S(V) of H(V).
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Figure 3. The histogram based auto exposure algorithm considers only the pixels which most likely
correspond to the patient and ignores any other. This ensures that the brightness of the patients skin
remains as constant as possible, independent whether the camera points towards a window (a) or the
darkest corner of the room (b).
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Figure 3. The histogram-based auto-exposure algorithm considers only the pixels that most likely
correspond to the patient and ignores any others. This ensures that the brightness of the patient’s
skin remains as constant as possible, regardless of whether the camera points toward a window (a) or
the darkest corner of the room (b). Each visible electrode is labeled with the corresponding channel
number and the ‘+’ markers indicate the projected location of the computed electrode position.

To compute the values of the exposure time τ and overall gain Γex to be set on the

camera, the overall exposure parameter
∗
τ is used.

∗
τn+1 =

∗
τn −

S(V)

τ∆
NτΓex,n

Γex,n+1 = max(min(
∗
τn+1
∗∗
τ

, Γex,max), Γex,min) (13)

τ = max(min(
∗
τ

Γex,n+1
, τmax), τmin)

∗∗
τ = max(min(

τf rame

τ∆
, τmax), τmin) (14)

The parameter τ∆ represents the size of one τ step in milliseconds, Nτ = 5 represents
the number of steps to take if S(V) = 1, and τf rame = 100 ms represents the optimal
exposure time for each frame. The value of τ∆ depends on the actual step size in ms offered
by the 3D DS camera.

2.2.3. Depth Segmentation

The binary mask MD is created from the 16-bit depth images D16 recorded by the 3D
DS camera. It splits the image into the patient and any surrounding objects, obstacles, and
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relevant edges. This implementation was inspired by the Canny edge detection algorithm
proposed in [25]. The algorithm uses two thresholds to find the edges in an image Ξ based
on the gradient ∆Ξ of its corresponding grayscale image Ξ. Pixels that have a gradient
value ∆xi that exceeds the upper limit are considered to be part of an edge. Pixels with a
value of ∆xi between the two limits are only included in an edge if they are adjacent to an
already identified edge pixel. To improve the obtained set of edges and reduce the number
of edges caused by noise, the grayscale Ξ is smoothed using a Gaussian filter.

This approach was adopted for processing depth images D16 that contain pixels for
which no valid depth value Di = 0 is available. The computation of the depth value
gradient ∆Di and one of the corresponding Gaussian filter weights wi are computation-
ally too demanding to be computed in real time. Therefore, the depth gradient values
∆Di =

√
∆d2

x,i + ∆D2
y,i of D are rounded to the closest 16-bit integer value ∆16D. The

resulting reduced number of ∆16D and corresponding distinct weights w16 are stored in a
precomputed weights table instead of directly computing wi on every iteration for each
pixel. This avoids the computationally demanding operations of computing ex and

√
x

in real time. A companion table with squared boundary values ∆2
16D = (∆2

j,16D+∆2
j+1,16D)/4

between the individual ∆16D ensures that the wi for a pixel Di of D can be generated
through a fast left bisection search. Pixels Di = 0 represent objects without a defined depth,
and their values are copied to the smoothed depth image D̃ image without any changes.

The smoothed D̃ is filtered using an octagonal Laplace kernel to find the initial set of
edge pixels de, −

1√
2

−1 − 1√
2

−1 4 + 2
√

2 −1
− 1√

2
−1 − 1√

2

 (15)

An octagonal kernel has the advantage that all distances between the eight-connected
neighbor pixels d8 and the central pixel dc are of equal length.

All pixels d that exhibit a sign change between opposing neighbor pixels ∇d8 on the
Laplacian image ∇D̃ are included in the initial set of edge points de. Pixels de that have at
least one neighbor dk,8 = 0 with an undefined depth are considered primary edge pixels eP.
Their actual ∆D̃(de) values are computed using the following approach:

∆D̃(de) = max




D̃+k,8 − D̃−k,8 if D̃−k,8 > 0 and D̃+k,8 > 0
2 ∗ D̃−k,8 − D̃i if D̃−k,8 > 0
2 ∗ D̃+k,8 − D̃i if D̃+k,8 > 0

 (16)

All de where ∆D̃(de) > ∆D̃P are marked dP, whereas any other de are only considered
if the Canny rule for minor edge pixels dM holds. This rule has been modified for use on
depth images D as follows:

(∆D̃(de) > ∆D̃M) ∧ ((∆D̃(de) > ∆D̃P) ∨ (
∆D̃(de)− ∆D̃M

∆D̃P − ∆D̃(de)
> 1)) (17)

The upper Canny limit ∆D̃P is set to 1.2 cm and the minor limit ∆D̃M is set to 0.35 cm.
A binary depth mask MD is created from all pixels di > 0 in D of a known depth.

Pixels de located at any of the edges are excluded from MD. The resulting MD is split into
9 segments MD,9. The pixels Mi within the central MD,9 are labeled with respect to the
different objects and components they represent. The labeled four-connected components
L4 are sorted by size. The largest L4 that touches the segment boundary is extended to
all other MD,9 segments using the flood-fill method, starting from the center of mass of
L4. At the end of this step, all adjacent edge pixels de are appended to the extended L+

4
representation of L4.

As the depth values at the boundaries of L+
4 can largely vary, the following approach

is used to remove any unrelated outliers. This approach is based on the observation that
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the boundaries of the patient’s torso are well-separated from the background along the
vertical direction and above the head.

Dclose < Di(Mi) < D f ar (18)

D f ar = min

(
max(Dr, f ar) +

max(Dr, f ar)−min(Dr,close)

3
, Dr, f ar + 3σ(Dr, f ar)

)
(19)

Dclose = max
(

min(Dr,close)−
max(Dr,close)−min(Dr,close)

3
, Dr,close − 3σ(Dr, f ar), Dnear

)
(20)

The values Dr,close and Dr, f ar correspond to the smallest and largest depth values
encountered for the mask pixels Mi within each row of L+

4 , and Dr,close, Dr, f ar, σDr,close,
and σ(Dr, f ar) represent their mean and standard deviations. Any pixel Mi for which the
condition in (18) does not hold is removed from L+

4 . In the case that either the number
of pixels of L+

4 is less than 200 or no appropriate values for D f ar or Dclose could be found,
the current L4 is discarded and the search for a suitable L+

4 representing the patient is
attempted with the next larger L4. If no suitable L4 is left, segmentation is aborted and
real-time processing continues with the next set of depth and color image frames recorded
by the 3D DS camera.

2.2.4. Surface Mesh Generation

The final surface mesh is generated by converting the depth image D into a corre-
sponding point cloud P. Therein, each point vi corresponds to a specific pixel di in D. In
the case of pixels di = 0 without a defined depth value, the origin point vi = O = (0, 0, 0)
is assigned. The unique correspondence between any di and its corresponding vi allows
creating S by mapping a pre-triangulated grid G to P. Any triangle T that includes at least
one vi for which di = 0 is dropped from G.

Before S is stored on disk using the .obj format, along with Ξuvs and the color temper-
ature setting KW it was recorded with, degenerated TA=0 and occluded triangles T−1 that
do not correspond to a valid surface patch are removed. The filtering of T−1 is facilitated
by the fact that 3D DS cameras, especially those that can capture objects located a short
distance from the camera, use a dedicated RGB color sensor to record Ξuvs. This sensor
is typically attached to the left or right side of the depth sensor system and thus views
the imaged object from a slightly different angle. This difference in viewing angle and
FOV between the depth and the color sensor is sufficiently large to identify triangles that
do not represent a part of the object’s real surface. This small difference in viewing angle
causes the surface normal n−1 to flip its direction between the representation of T−1 in the
depth image D and in Ξ. This flip is not plausible as it would mean that the color sensor
is capturing the back side of T−1, whereas the depth sensor captures its front side. This is
prevented by the fact that both sensors are mounted on the same support. The following
approach exploits this fact by identifying triangles where the sign, and thus the direction,
of the surface normal vector appears flipped in Ξ compared to D.

The pre-triangulated grid G is initialized such that the normal vector nT of each
triangle T on S points toward the camera and is oriented in the negative 〈m, Z〉 < 0 viewing
direction Z of the camera. For every valid T of initial surface mesh S, the normal vector
nuvs of its representation in Ξuvs Tuvs must also point in the −Zuvs direction. Triangles T−1
where the signs of n and nuvs are opposite, indicated by 〈nuvs, Zuvs〉 >= 0, suggest that
triangle T−1 likely does not represent a valid part of S and should be removed.

In addition, triangles TA=0 with a degenerated representation Tuvs in Ξuvs are removed.
This includes triangles with an area Auvs < 0.25 pixels, as well as cases where Tuvs has a
shortest edge of less than half a pixel and triangles that extend beyond the top and bottom
corners of Ξuvs.
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Further, skinny triangles Tϕ<13 are discarded if they enclose at least one angle ϕ
between any two edges ea, eb, and ec that is smaller than 13 degrees, and if the lengths |ec|
and |eb| of its longest two edges ec and eb conform to the following conditions:

(|ec| > |eKNN |+ 4σ|eKNN |) ∧ (eb| > |eKNN |+ 4σ|eKNN |) (21)

(|ec| > |eKNN |+ 4σ|eKNN |) ∧ (count(ϕ < 13) == 2) (22)

To compute the average length |eKNN | and standard deviation σ|eKNN |, only triangles
TKNN are considered that are formed by any three K-nearest neighbors vKNN located within
a radius of max(|eb| ∗ 0.9, |ea|) around the tip vertex vϕ<13 of Tϕ<13 and the midpoint of
its shortest edge ea. Additionally, any Tϕ<13 that has to be discarded according to (21) will
result in the deletion of all adjacent Tϕ<13 connected to its eb or ec. In addition, in the case
of any Tϕ<13 satisfying (22), only the Tϕ<13 adjacent to ec is removed. Finally, duplicate
vii ≡ vj encoding the same point and v not referenced by any triangle are removed from
the surface S, along with all small disconnected surface patches Sdis.

The surface S is stored on disk in .obj format, along with the corresponding texture
information Ξuvs. Its triangle nT and vertex normals nv are recomputed, and a transforma-
tion < is applied to all vertices and normals. The latter ensures that the z-axis points in the
direction of the patient’s head and the positive x-axis extends from the left to the right side
of the torso. The origin point is selected such that it is located on the central viewing axis of
the camera. To compute its y-component, the point cloud is divided into 3 sections along
the vertical direction, roughly representing the chest, belly, and hips of the patient from
top to bottom. The points within the top third are further split into 5 subgroups from right
to left along the x-axis. For the rightmost and leftmost groups, the median coordinates ŷr
and ŷl are computed. Based on these values, the final y-coordinate of the origin point is
computed as y = ŷr+ŷl/2.

This ensures that all surfaces are located close to each other and that they partially
overlap. At the same time, the actual relative shift between the surfaces and the angle at
which the camera views the surface is retained as much as possible. This is crucial for the
registration process described in Section 2.3.2.

2.3. Offline Processing

The electrode positions are computed using a set of at least 14 recordings of the
torso surface, covering a minimum angle of approximately ≈270 degrees in the horizontal
plane. The necessary steps, depicted in Figure 1, are presented in the following subsections.
These steps include the pairwise alignment and registration of the recorded surfaces S, as
described in Section 2.3.2; the extraction of the points v representing the colored electrode
markers, as described in Section 2.3.3; and the fitting of a model of the marker to identify
its central point, as described in Section 2.3.4. In the final step, a unique label is attached to
each position, which uniquely links the individual ECG signals and the 3D position of the
corresponding electrode.

2.3.1. Color Correction

The color sensor of the Intel Realsense SR300 camera (Intel corporation, Santa Clara,
CA, USA) offers only a limited range (between KW,min = 2500 and KW,max = 6500) within
which the color temperature parameter KW can be tuned using the algorithm discussed in
Section 2.2.1. This range is optimized for indoor use [21,22], where typical light sources
include incandescent tungsten lamps (K = 2500), fluorescent lights (K = 3800), and
standardized CIE sources such as CIE55 (K = 5000) or CIE65 (K = 6500).

The space limitations encountered in clinical settings, for example, outpatient and
cardiology practitioner clinics, result in more challenging illumination conditions that can
vary significantly depending on factors such as the patient’s seating position or the camera’s
direction. Specifically, individual objects and parts of the room may be shaded by other
objects, for example, the electrodes on the patient’s back. Shaded areas are characterized by
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color temperature values K > 7000, which are significantly larger than the KW,max = 6500
upper limit assumed by the color sensor. Examples of this situation are shown in Figure 4a,c.
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Figure 4. Examples for texture images recorded from the front a) and back c) of the torso and the
corresponding color corrected versions b) and d). On b) and d) each visible electrode is labeled by the
corresponding channel number. The ’+’ markers indicates the projected location of the computed
electrode position. Markers with a black outline have been disabled and are not considered in the
analysis.
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Figure 4. Examples for texture images recorded from the front (a) and back (c) of the torso, and
the corresponding color-corrected versions (b,d). In (b,d), each visible electrode is labeled with the
corresponding channel number. The ‘+’ markers indicate the projected location of the computed
electrode position.

An additional color-correction process is applied to the recorded texture images Ξ
and the 3D surfaces. A virtual camera is used to simulate the recording of Ξ with a
different KW setting than the actual one. This virtual camera offers an AWB range between
KW,min = 2000 and KW,max = 9000. It uses the model introduced in Section 2.2.1 to adjust
the gain of its red ΓR̂ = ΓK and blue ΓB̂ = 1/ΓK color channels.

The virtual camera internally stores a linearized and normalized representation Ξ̂= of
Ξuvs. This representation corresponds to an image recorded with an equal gain ΓK = 1 and
KW = 5500.

ΓK,= =
2(KW,uvs − KW,min)

KW,max − KW,min
, R̂i,= =

R̂i
ΓK,=

, Ĝi,= = Ĝi, B̂i,= = B̂iΓK,=, ΓK = ΓK,= (23)

Its white-balancing parameter KW is initialized to the color temperature Kuvs at which
Ξ̂uvs was recorded by the color sensor of the 3D DS camera.

After initialization, the color-correction approach described in Section 2.2.1 is used
to adjust the KW of the virtual camera until a suitable value for K+

W is found. If K+
W

jitters around its ideal value for at least 20 repetitions, the color correction stops when the
following condition is met:

− 1 <= K+
n+1,W − K+

n,W <= 1 (24)
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In this case, K+
W is set to the mean value K+

W of the last 3 minimum updates for which
the difference between consecutive K+

W values is less than 10. With each update of KW , a
new version of Ξuvs is created by multiplying the red color values R̂= of Ξ̂= by the updated
Γ+

K , multiplying the blue values by 1/Γ+
K , and performing a left bisection search on the

lookup table V̂ = bVc established in Section 2.2.1. Pixels that are overexposed according to
(4) are not modified. Pixels that appear overexposed after scaling and exceed a maximum
value of 1 in at least one channel are assumed to be fully saturated in all three channels,
which are each set to the maximum value. Pixels that appear underexposed, with at least
one channel having a value less than 10−8, are assumed to be unexposed in all channels.
Therefore, in such cases, all three channels of the pixel are set to 1 when fully saturated and
0 when unexposed. Additionally, all channels are clipped to the maximum possible value
of 1 if necessary. The color-optimized version of Ξuvs (Figure 4b,d) is then used to extract
the 3D points of the electrode markers, as described in Section 2.3.3.

2.3.2. Surface Registration

To align the surfaces, a point-to-plane algorithm was chosen. This kind of ICP algo-
rithm minimizes the distances l = |<vS − vT | between corresponding vS and vT along the
direction of the surface normals nT of ST .

E(<) = ∑
(vS ,vT)∈K

‖(vT −<vS)nT‖2 = min (25)

A precise alignment between ST and SS across all surface pairs is achieved when
Equation (25) is also minimal in the reverse case with ST and SS swapped. The following
simple symmetric point-to-plane approach is used by the registration component (Figure 1)
to align the surfaces. It was chosen in favor of other symmetric point-to-plane algorithms
such as [26], as it can be directly implemented using unidirectional ICP functions from
open3D library [27]. In the first step, the forward transformation matrix < f is computed
for the set of corresponding points (vT , vS) ∈ C f by applying (25). In the second step, the
reverse transformation <R is computed for the points (vS, vT) ∈ Cr corresponding to the
reversed setup. The initial<0,r is initialized as<−1 f . The set (vT , vS) ∈ C f is selected from
a subset of vS that is located within the maximum correspondence distance lc of vT . The
same selection criterion is used for the reverse set (vS, vT) ∈ Cr with respect to any vS. In
the final step, the optimal transformation < and the new correspondence distance lc,+1 are
selected from < f , <r, lc+1, f , and lc+1,r using the following criteria:

<, lc+1 =

{
<r, lc+1,r if E(<r) < {E(<), E(< f )} ∧ lc+1,r < {lc, lc+1, f }
< f , lc+1, f if E(< f ) < {E(<), E(Rer)} ∧ lc+1, f < {lc, lc+1,r}

(26)

lc+1, f = l f + 2σl f , lc+1,r = lr + 2σlr

l f = mean
(vT ,vS)∈K f

(|vS − vT |), σl f = std
(vT ,vS)∈C f

(|vS − vT |)

lr = mean
(vS ,vT)∈C f

(|vT − vS|), σlr = std
(vS ,vT)∈Cr

(|vT − vS|)

The surfaces S recorded using the approach described in Section 2.2 are aligned such
that they more or less share the same space, apart from the small rotation ∆ϕ along the
horizontal direction and the relative vertical movement ∆z between the cameras. No
information about their orientation in space or how much each pair overlaps is recorded.
For obtaining sufficiently precise positions of the electrodes, the optimal correspondence
distance lo between any (vT , vS) should be lo . 1 mm. Therefore, the symmetric ICP
registration is repeated for each pair in multiple runs. The results obtained for < and lc+1
in the previous run are used to initialize <0 and lc in the next run. If the condition in (26)
for updating< and lc fails, one last run is attempted with lc = lmin ≈ 1 mm if lc < lmin and
lc−1 − lc > σl0 holds. For the first optimization run, <0 is initialized to roughly reflect the



Sensors 2023, 23, 5552 14 of 28

relative rotation about the z-axis between two recorded surfaces ST and SS and its relative
shift ∆z along the z-axis. The following approach is used to estimate the relative rotation
angle ∆ϕ between ST and SS:

∆ϕ = arccos
( 〈v̂l,S − v̂r,S|v̂l,T − v̂r,T〉

|hS||hT |

)
(27)

The right v̂r,S, v̂r,T and left v̂l,T , v̂r,T median points define the horizontal directions of
the sagittal planes with respect to SS and ST . They are computed using the same approach
described in Section 2.2.4 to define the final position of the origin along the y-coordinate.

Suitable estimates for lc,max, lc,min, and σl0 are essential for achieving a sufficiently
precise alignment of ST and SS. When testing the implementation of the symmetric ICP, it
was empirically found that the values for lc,max, in particular, varied significantly depending
on the relative distance and angle between two consecutive surfaces. Initially, constant
values were assigned to lc,max and lc,min. However, these values resulted in an insufficient
alignment between the surfaces on average. Specifically, the alignment of the surfaces at
the left side where the front and back sides of the torso meet was rather challenging, and in
some cases, not possible at all.

In order to improve the results and ensure a proper alignment between the surfaces,
the following approach is used to determine suitable estimates of lc,max, lc,min, and σl0 for
each pair of ST and SS. These estimates are computed based on the distances between
the vertices vT and v′S within the volume VT∩S′ = VT ∩V′S, which represents the common
region of the axis-aligned bounding boxes VT and V′S encompassing the target surface ST
and the source surface S′S. The latter S′S is obtained by applying an initial transformation<0
to the source surface SS. The transformation <0 shifts all v′S ∈ VT∩S′ such that their center
of mass v̂′S aligns with the center of mass v̂T of all vS ∈ VT∩S′ . The value for lmax is obtained
by applying (26) to the distances between the points in the forward correspondence set
(vT , v′S) ∈ C f ,0 and the backward correspondence set (vT , v′S) ∈ Cr,0. Both sets are found
through a KNN search [28,29], which also considers the surface normals nT and n′S in each
vT and v′S. This approach has the advantage of considering only vT and v′S as corresponding
when their surface normals nT and n′S are closely aligned. From the resulting C f ,0 and
Cr,0, any vT and v′S are removed if the deviation between their surface normals n′S and nT
exceeds 30 degrees, ensuring that 〈n′S|nT〉 < 0.98.

The estimate for lmin is based on the overall mean(|vT |, |v′S|) of the shortest neighbor
distances within all vT ∈ VT∩S′ and v′S ∈ VT∩S′ .

From the final< of all consecutive pairs of ST and SS, the global alignment of each Si is
determined by the cumulative transformation< = ∏i

j<j, starting with identity Re = I for
the first surface S1. Alternatively, the transformation of the first surface can be initialized by
the horizontal camera inclination angle ϕ about the z-axis using (27). From this, the relative
angle between S1 and the x-axis of the patient’s frontal plane is computed. This already
provides a rough alignment of the resulting point cloud of the torso with its frontal plane.

2.3.3. Electrode Marker Extraction

In the current setup, the electrodes are attached to g.LADYbirdTM active electrode clips
from g.tec medical engineering GmbH, Schiedlberg, Austria. These clips have a circular
head, with its center aligned with the center of the electrode. The clip itself is covered with
red-colored epoxy to protect the integrated electronics from water and other liquids. The
circumference of the head is painted blue to model a circular electrode marker with a blue
boundary and a red central disk. Figure 5 shows an example of this basic setup.

The blue boundary color (see Figure 5b) is selected such that the electrode marker
easily can be detected within the RGB chromacity space representations χ̂rg of the surface
texture images Ξuvs. The χ̂rg values are obtained as a byproduct of the white-balancing and
light color–temperature correction approaches described in Section 2.3.1.
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Each χ̂rg is scanned for red xr = rr, gr, br and blue xb = rb, gb, bb pixels that are fully
described by one of the following two ellipses within the RGB chromacity space.

(δrr cos(φr)− δgr sin(φr))2

σ(rr)
+

(δrr sin(φr) + δgr cos(φr))2

σ(gr)
<= 1 (28)

with δrr = rr − rr, δgr = gr − gr

(δrb cos(φb)− δgb sin(φb))
2

σ(rb)
+

(δrb sin(φb) + δgb cos(φb))
2

σ(gb)
<= 1 (29)

with δrb = rb − rb, δgb = gb − gb

The values rr, gr, rb, φr, gb, and φb define the red and green coordinates of the center
point of the ellipsis and the rotation angle by which each of them is rotated with respect
to the red axis of the RGB chromacity space. Their values are determined through the
calibration procedure described in Section 2.3.6. All matching xr and xb pixels are mapped
to their corresponding 3D vertices vr and vb on the torso surface S. This mapping is
accomplished by computing the barycentric coordinates of each xr and xb within the
representation of the surface triangle T in Ξuvs.
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Figure 5. The electrodes mounted on the patients torso (a) are attached to the red electrode clips. The
blue painted boundary of each clip head (b) forms together with the red color of the clip a circular
marker. Based on the red and blue color each markers can be recognized from the texture images
recorded along with 3D surface information.

considers the surface normals nT and n′
S in each vT and v′

S. This has the advantage that 501

only vT and v′
S are considered corresponding when their surface normals nT and n′

S are 502

also closely related. From the resulting C f ,0 and Cr,0 all vT and v′
S are removed for which 503

n′
S and nT deviate by more than 30 degree and thus 〈n′

S|nT〉 < 0.98 holds. 504

The estimate for lmin is based upon the overall mean(|vT |, |v′
S|) of the shortest neighbor 505

distances within all vT ∈ VT∩S′ and v′
S ∈ VT∩S′ . 506

From the final ℜ of all consecutive pairs of ST and SS the global alignment of each Si 507

is defined by the cumulative transformation ℜ = ∏i
j ℜj starting with identity Re = I for 508

the first surface S1. Alternatively the transformation of the first surface can be initialized by 509

the horizontal camera inclination angle ϕ about the z axis using using 27. Thereby 27. From 510

this the relative angle between S1 and the x-axis of the patients frontal plane is computed. 511

This already provides a rough alignment of the resulting point-cloud of the torso to its 512

frontal plane. 513

2.3.3. Electrode marker extraction 514

The electrodes are attached in the current setup to g.LADYbirdTM active electrode 515

clips from g.tec medical engineering GmbH. These clips have a circular head the center 516

of which is coaligned with the center of the electrode. The clip itself is covered by red 517

colored epoxy to protect the integrated electronics against water and other liquids. The 518

circumference of its head is painted blue to model a circular electrode marker with a blue 519

boundary and a red central disk. Figure 5 shows an example of this basic setup. 520

The blue boundary color (figure 5.b) is selected such that the electrode marker easily 521

can be detected within the rgb-chromacity space representations χ̂rg of the surface texture 522

images Ξuvs. The χ̂rg are obtained as a by-product of the white-balancing and light color, 523

temperature correction approach described in section 2.3.1. 524

Figure 5. The electrodes mounted on the patient’s torso (a) are attached to the red electrode clips.
The blue boundary of each clip head (b) forms a circular marker with the red electrode clip. Based on
the red and blue colors, each marker can be recognized from the recorded texture images along with
3D surface information.

The resulting marker point cloud PM formed by all vr and vb is filtered with respect to
vr and vb, which likely correspond to a valid electrode marker, as defined by the color of
the clip head. This is achieved by a radius-based KNN search for at least one neighbor of
the opposite color. The radius is set to the radius of the clip head for all vr and the width
of the blue boundary ring for all vb. If the neighborhood of radius ρ does not contain any
points of the opposite color, v is removed from PM.

The filtered PM is split into individual clusters of vel ∈ vr ∪ vb, representing the
individual electrode clips. This is accomplished by applying the HDBSCAN algorithm [30].
The results are more robust compared to the basic DBSCAN algorithm [31], especially in the
presence of groups of outliers, for example, generated by a bluish shadow cast on the cables
and electrode clips. In addition, a minimum distance εsplit can be defined, and clusters are
not split any further. In contrast to the basic DBSCAN [31] algorithm, εsplit defines a lower
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boundary limit rather than a strict cutting distance. In other words, less dense clusters
with an average density exceeding εsplit are not necessarily forced to split into distinct leaf
clusters. The parameters of the minimum cluster size NC,min and the minimum samples
XC,min = 20 are used to fine-tune and control the extraction of clusters that represent the
individual electrode markers, considering the actual number of electrodes Nel .

εsplit = rnh (30)

NC,min = max(
count(vr)

4Nclip
, XC,min) (31)

In order to simplify the subsequent processing steps, the overall point cloud PS, as
well as PM, is realigned such that the frontal plane of the torso is in line with the x-z plane
of the coordinate system. This is achieved by once again splitting PS into chest, belly, and
hip sections. The points of the chest section are further split along the x-axis into three
parts, representing the right shoulder, neck, and left shoulder. The final transformation< is
computed by aligning the vector between the median points of the left and right shoulders
to the x-axis of the frontal plane.

2.3.4. Fitting Marker Model

The red points vr and blue points vb within each cluster are fitted to a planar marker
model consisting of a red disk enclosed within a blue ring. Before fitting, all vr and vb are
projected onto the plane Qcl , which is parallel to all vel .

v′el = vel − 〈vel − vel , nmj〉nmj (32)

This ensures that all vel are located on Qcl , which is defined by the predominant
surface normal vector direction nmj within all surface normal vectors nel vel and their center
of mass vel .

nmj =
r

∑
i

UiσiVi with UΣV = svd(nG(vel)) (33)

r = imax =⇒
1≤i≤K

−10 log10

(
∑i

j σj

∑K
k σk

)
> 3

The shifted v′el are then fitted to the following model, which is based on the distances
ρ(v′el) between the individual v′el) and the electrode center X on Qel .

ρ(v′el) = |v′el − X|, δρ(bb) = ρ(vb)− ρdisc)

ε = ∑ δρ2(vb) + ∑ ρ2({v′r|ρ(v′r) < ρdisc}) + ∑ ρ2(v′b) + 〈X − vel , nmj〉2 (34)

δρ represents the relative distances of the blue points v′b from the boundary of the
enclosed red disk with a radius ρdisc. From all the red points vr within a cluster, the model
selects those that are within a radius ρr < ρdisc from the current X. The model in (34) is
optimized with respect to X using the L-BFGS-B algorithm provided by the SciPy minimize
function. This numerically robust algorithm was selected because it can achieve satisfactory
optimization results for least-squares optimization problems. Its implementation details
can be found in the SciPy manual and [32,33]. For all clusters for which an εmin(X) could
be found, Xmin is stored, along with nmj. Any remaining clusters for which no appropriate
Xmin could be found are not further considered.

In some cases, it is possible that a clip is split into two smaller clusters. For example,
if an electrode array is carelessly attached to the torso, electrode leads can shadow the
relevant parts of the clip head. This might be the case when the following condition holds
with respect to the counts of vr or vb:
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1
3
<

count(vr)

count(vb)
< 3 (35)

Two neighboring clusters are considered pieces of the same marker only if at least
10 closest neighbors of any vel in the first cluster are closest to at least 85 distinct vel in
the other cluster. The cylindrical model is fitted to the largest piece of the marker only.
This prevents nearby image artifacts in the Ξuvs from causing misalignment of the affected
electrode marker and distracting the center point from its true location.

The identified cluster centers X are triangulated using the ball-pivoting method [34,35]
implemented in the open3D library. The radii ρ1 = x/

√
2 and ρ2 = x for two distinct balls

are derived from the average distance x = mean(|X9−X|) between each X and its 9 closest
neighbors. Outliers are removed if |X9− X| > x + 2 ∗ σ(|X9− X|) before computing x. For
a final check to determine if the X of neighboring clusters resemble two pieces of the same
marker, the surface connectivity between individual X is computed. The marker attached
to the largest group, where two X for which |X1 − X2| < 2/3ρ0 holds, is retained, whereas
the other is removed. Ball-pivoting triangulation and the removal of small clip pieces are
repeated until no more nearby groups, represented by distinct X, are found. The remaining
X that are included in the resulting triangular surfaces represent the frontal and dorsal
patches of the electrode grid layout proposed in [36]. Clusters that are too far away to be
included in the mesh by the ball-pivoting process are considered single electrodes, similar
to those used, for example, in Einthoven I, II, and III.

In the final step, the triangular meshes of the frontal and dorsal electrode patches are
normalized. In this process, any vertical edge that intersects the horizontal line between
two common neighbors of its endpoints is swapped with the edge that connects the
common neighbors.

2.3.5. Label Assignment

Starting from the point with the smallest y-coordinate, the triangulation of the frontal
patch is scanned line by line. All electrodes that can be connected along consecutive
horizontal edges are joined into one row of the frontal patch [36] and stored in right-to-left
order. The rows are ordered from bottom to top. After all rows of the frontal patch have
been collected, the same approach is applied to collect the electrodes of the dorsal patch.
Again, the electrodes are stored in right-to-left and bottom-to-top order.

On the frontal patch, the number labels for each channel are assigned in ascending
order from bottom right to top left. The dorsal assignment starts at the top right and ends
at the bottom left. The remaining electrode points X that have not been included within
the triangulation of the frontal and dorsal patches either correspond to the three Einthoven
leads I, II, and III if they are located on the arms close to the front of the left and right
shoulders and on the left hip. The electrode array includes two additional electrodes that
are placed frontal and dorsal close to the right side of the torso.

2.3.6. Calibration

The proposed method to identify the color electrode markers requires proper calibra-
tion of the mean values rr, gr, rb, and gb; the standard deviations σ(rr), σ(gr), σ(rb), and
σ(gb); and the rotation angles φr and φb of the ellipses in Equations (28) and (29). In the first
step, the color-corrected chromacity representation χ̂rg of the texture images Ξuvs obtained
as a byproduct in Section 2.3.1) is roughly segmented. The pixels representing a blue or red
pixel of the clips are initialized with the following values: rr = 0.75, σ(rr) = 0.1, gr = 0.08,
σ(gr) = 0.06, rb = 0.05, σ(rb) = 0.02, gb = 0.13, σ(gb) = 0.06, and φr = φb = 0.

These values were empirically identified from the chromacity space triangle of the
3D DS camera’s color sensor, generated from the pixels of all χ̂rg. The resulting raw pixel
masks Mχ̂,raw are stored along with the corresponding χ̂rg obtained from the data sets of at
least three patients. In addition, a binary mask MI selects pixels of Ξuvs that are properly
exposed according to (4). For storing the ˆchirg on disk, the 16-bit PNG format is used. They
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are loaded along with the corresponding Mχ̂,raw in an image processing program such as
GimpTM or Adobe PhotoshopTM for manual segmentation of the clips.

The resulting Mχ̂, created by manually removing any pixel that does not represent a
clip or electrode marker from Mχ̂,raw, is used in combination with MI to extract the pixels
that are part of the electrode clips and markers visible on each 16-bit χrg image. Any pixel
that does not correspond to a clip, is over- or underexposed, or meets the condition in (3) is
not further considered in the following calibration steps. From all other pixel values, a 2D
heat map NH with 256 bins for red r and green g chromacity values each is generated and
median-filtered using a 7 by 7 neighborhood.

The red and blue color shades of the electrode markers appear as distinct, Gaussian-
shaped peaks PH on NH . They (1, 2) are clearly visible as bright spots on the heat map,
as shown in Figure 6. A Gaussian mixture model [37,38] is used to extract the individual
clusters CH that represent each peak. Each peak is described as a 2D Gaussian distribution,
which can be characterized by its center point or centroid and the standard deviations
along each direction with respect to this center. By fitting the individual Gaussian models
to the heat map N − H, the actual position, orientation, and area covered by each peak can
be found. To compute the initial positions of the cluster centroids, the heat map is binarized
and labeled. In this process, any 4-connected set of at least 5 bins is considered a peak if all
bin counts nH conform to the following condition:

nH > |nH |+ 1.9σ(nH) with nH = {nH |nH > 0} (36)

Figure 6. Chromacity heat map of the pixels representing the electrode markers created from
the texture images of three patients. The brighter the color, the higher the pixel count for the
corresponding point in the RGB chromacity space, represented by its red r and green g chromacity
values. For better readability, the RGB chromacity values are displayed in RGB gamma-compressed
form. The Gaussian peaks (dash doted ellipses) representing the red (1) and blue (2) pixels of the
electrode markers are clearly visible. They can easily be distinguished from the peak (3) representing
the color highlights and reflections. Peak (4) is caused by inappropriately chosen values for the
parameters required to convert raw color sensor data to the RGB color space.
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The cluster CH,r with the highest mean rr red component is used to compute σ(rr),
σ(gr), and φr. The values for σ(rb), σ(gb), and φb are derived from CH,b for which 1− rb −
gb = max holds.

Σr Ur = eig(cov(CH,r)) Σb Ub = eig(cov(CH,b))

σ(rr) =
√

σ1,r, σ(gr) =
√

σ2,r, φr =
〈u1,r|r〉
|u1,r|

σ(rb) =
√

σ1,b, σ(gb) =
√

σ2,b, φb =
〈u1,b|r〉
|u1,r|

(37)

σ1,r, σ2,r, σ1,b, and σ2,b represent the first and second eigenvalues Σ of the covariance
matrices cov(CH,r), cov(CH,b) of CH,r and CH,b, and u1,r and u1,b are the corresponding
initial eigenvectors. These values are stored along with the centroids of CH,r and CH , which
define the mean values rr, gr, rb, and gb on disk that are to be used in the extraction step
described in Section 2.3.3.

The remaining clusters 3 and 4 are not further considered as they correspond to
the color highlights on the clips (3) or are caused by inappropriately chosen parameters
affecting the conversion of the raw sensor signals to the RGB color space (4).

2.4. Recording Protocol

The technical approach outlined in Sections 2.2 and 2.3, requires that the patient
maintains the same posture throughout the recording. This is only possible if the patient is
directly engaged and actively participating in the measurement.

Therefore, prior to the application of the electrodes, the patient is instructed to sit
down on a chair. The height of the chair is then adjusted so the patient can comfortably
sit upright throughout the recording process. The feet of the patient should rest flat on
the floor and the knees should be bent by no more than 90 degrees. If the chair cannot be
adjusted in height, an alternative solution is to stack multiple chairs to increase the patient’s
comfort and encourage them to straighten their back. To ensure optimal recordings without
any obstacles, the chair should not have armrests or a backrest and be placed at least 1 meter
from any furniture or other objects that can cause shadows. This ensures that the FOV of
the 3D DS camera can be optimally used and the operator is able to capture a surface at
least every 20 degrees.

After the electrodes have been attached to the torso, the patient is instructed to place
the hands on the thighs. The fingers should point inward and the thumbs should point
straight toward the hips. The optimal position of the hands is a thumb length before the
hips. While the electrode positions are recorded, the patient is instructed to maintain a
straight and upright back. Most patients are able to easily maintain this position by slightly
straightening their elbows (about 120 degrees between the upper and lower arm). This
helps them to move their chest and shoulders into a position that is as upright as possible.
This has the effect that the patient is forced into an isometric posture, which can easily be
maintained while the electrode positions are recorded. In addition, this position facilitates
the recording of electrodes placed under the left axle, for example, the Wilson electrodes V5
and V6.

3. Results

In the following section, the results are presented.
The narrow vertical field of view of the color sensor is one of the main reasons why

the 3D images of the torso are recorded in portrait mode. In a typical clinical setting, where
space is limited, it is likely that the patient is seated close to furniture or walls. For proper
recording of the 3D images, a space of at least 2.5 m by 2.5 m is required. This includes a
standard chair without armrests or a backrest, with a diameter of 50 cm, that can provide at
least 1 m of space on all four sides of the patient for the operator to move around while
recording the images. The remaining space between the patient, the operator, and any
surrounding furniture or walls should be 50 cm or less. Both sensors of the camera must be
able to properly capture the dorsal part of the patient’s torso at distances between 20 cm
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and 50 cm. This can only be achieved by cameras with FOV angles conforming to (1) such
as the Intel Realsense cameras, which have wide viewing angles of≈70 degrees for both the
depth and color sensors when used in portrait recording mode. This is especially important
for capturing the dorsal views of the torso.

The color sensor has a viewing ratio of 16:9 between the horizontal and vertical FOVs.
This results in a vertical viewing angle of about 40 degrees, which is a lot smaller than the
≈60 degrees of the depth sensor. This can lead to a situation where, for example, around
≈60 columns on the top and bottom of the depth image lack texture information. However,
this is acceptable given that consecutive 3D images are recorded in portrait mode with an
overlap of about two-thirds, ensuring that the texture images sufficiently overlap.

Thanks to the vertical nature of the patient’s torso, in portrait mode, it is easy to keep
the patient centered in the image while moving the camera to the next recording position.
As the patient’s torso covers most of the image space, only very few objects and obstacles
located behind the patient are captured by the cameras, which can easily be removed before
storing the 3D surface images.

Scanning always starts with the right frontal view of the torso and ends at the right
dorsal side. If possible, the right lateral side of the torso can be recorded. This is not
essential for extracting the electrode positions and can be omitted in standard recording
procedures. It is recommended to explicitly record the right lateral torso surface when
there is sufficient space to the right of the patient.

The preview image of the torso, shown in the main area (1) of the user interface
shown in Figure 7, is split into a 3-by-3 grid. The center segment of this grid is used as the
focus area, representing the central part of the patient’s torso. The contours of the largest
object containing the focus segment are highlighted in orange. As the camera points at the
patient’s torso, the contours highlight the boundaries of the patient’s torso. The recording
of a torso surface segment is initiated by pressing the trigger of the camera. The color of
the contour line switches to green and the live preview freezes to indicate that the captured
depth and color image have been processed and the 3D surface has been generated and
stored. Once the underlying point cloud has been triangulated, occluded and degenerated
triangles, as well as detached surface patches, are removed. Then, the contour is updated to
mark the parts that will be stored on disk. After the 3D surface information, corresponding
texture image, and meta information have been stored, the live preview is started again
and the color of the contour reverts to orange. The live preview is updated at a maximum
rate of 10 FPS. With the Python-based prototype, update rates between ≈4 FPS and ≈7 FPS
can be realistically achieved.

The main preview area (panel 1 in Figure 7) has the same shape as the depth image.
For the parts on the left and right sides that are not captured by the RGB image, the edges
identified on the depth image are displayed instead. The outline of the patient’s torso does
not extend beyond the edges of the RGB image. In panel 2 of the preview screen (Figure 7),
several recording and camera parameters, such as the frame rate in FPS, exposure time τ
in ms, etc., are shown, along with the intermediate parameters computed for automatic-
exposure control and color correction. In panel 3, the full set of edges identified on the
current depth image is displayed. The two vertical lines delineate the area of the depth
image that is covered by the color image.

The prototype for real-time recording of the 3D torso surface patches, as well as for
postprocessing and calibration, was implemented in Python version 3 using a recent version
of NumPy and SciPy [39]. The librealsens version 2 library [40] was used to control the
acquisition, convert the depth values into a point cloud, and compute the corresponding
texture uvs map for the RGB image. The OpenCV library [41] was used to generate the
preview display, and the generation and cleaning of the 3D meshes were accomplished
using the open3D library [27]. The most computationally demanding components, the
depth-edge detection (Section 2.2.3), automatic white balancing (Section 2.2.1), and patient-
locked auto-exposure control (Section 2.2.2), were converted into Python-C modules using
Cython [42].
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Figure 7. The preview screen is divided in three panels. The main panel (1) displays the image
recorded by the color sensor of the 3D-DS camera. The parts of the 3D image for which no color
information can be recorded are replaced by the edges extracted from the depth image shown on
panel 3. The current values of color temperature, exposure time, frames per second and other process
parameters are displayed on panel 2. The two vertical lines indicate the area the views of both
cameras overlap.
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Figure 7. The preview screen is divided into three panels. The main panel (1) displays the image
recorded by the color sensor of the 3D DS camera. The parts of the 3D image for which no color
information could be captured are replaced with the edges extracted from the depth image shown in
panel 3. The current values of the color temperature, exposure time, frames per second, and other
process parameters are displayed in panel 2. The two vertical lines indicate the area where the views
of both cameras overlap.

In total, five male subjects between 38 and 70 years of age participated in the present
study. Each subject was seated on a chair or examination bed, depending on the available
space. After applying the ECG electrodes to the chest and back, the subjects were instructed
to maintain the posture described in Section 2.4. The measurement of the torso surface and
the recording of a 30 -min long ECG with 67 channels took about 30 min to 45 min. After
each measurement, the data were analyzed and the prototype improved accordingly.

The data set recorded from the first subject turned out to be quite limited and, therefore,
is not included in the presented results, as it was affected by the automatic white balancing
and exposure control of the color sensor, which could not cope well with the diverse and
complex lighting conditions. Further, the 3D points recorded by the depth sensor were
directly transformed to match the color image captured by the color sensor. This posed
several challenges related to occluded surface parts causing undesirable distortions and the
introduction of noncausal surfaces. Starting with the data for the second subject, the direct
mapping was replaced with the texture mapping approach, which yielded better results
and allowed for the implementation of the algorithms for occlusion management and the
removal of noncausal triangles, as described in Section 2.2.4.

For each patient, 12 to 15 views were recorded. Each of the views contained a 3D sur-
face described by ≈170,000 vertices and ≈300,000 triangles. As shown in Table 1, between 7
and 21 iterations of the symmetric ICP algorithm were necessary to align the surfaces. The
maximum correspondence distance between the points of the surface pairs was reduced in
every iteration step, starting from 7 cm–12 cm and reaching 0.7 mm–1.2 mm. More iterations
were necessary to align the surfaces joining the frontal and dorsal views on the left side
of the torso. In cases where the available space around the subject was insufficient, the
number of iterations required to align the surfaces was increased. In the most challenging
scenario, the proper alignment of the surfaces was not possible at all. This situation was
encountered in the data set recorded from subject 5, where part of the torso surface on the



Sensors 2023, 23, 5552 22 of 28

left side was obscured by the backrest of the chair. Among other challenges, this required
an increased number of 21 iterations to align the leftmost frontal and dorsal views.

Table 1. The symmetric ICP alignment metrics obtained from the data sets of four out of five subjects
participating in the study. For an average of 14 angular views, the computation of the pairwise
transformation matrix was repeated between 7 and 21 times, with an average repetition rate of
9.7 repeats per surface pair. The average initial distance between corresponding points was 7 cm,
the average root mean square error was 0.7 mm, and the average final correspondence distance was
1 mm.

Subj. # Views # repeats
pair

Correspondence Distance (mm) Final Rmse (mm)
Initial Final

Min. Mean Max. Min. Mean Max. Min. Mean Max. Min. Mean Max.

2 12 9 10.1 12 37.4 71.6 124.9 0.7 0.9 1.2 0.5 0.6 0.8
3 14 7 9.4 17 51.4 76.1 105.0 0.9 1.0 1.1 0.6 0.7 0.7
4 14 8 9.4 17 42.9 61.2 105.2 0.9 1.0 1.1 0.6 0.7 0.8
5 15 8 9.9 21 50.0 71.3 117.2 0.9 1.0 1.1 0.6 0.7 0.7

Mean 14 7 9.7 21 37.4 70.0 124.9 0.7 1.0 1.2 0.5 0.7 0.8

Across all subjects, a final root mean square error between consecutive surfaces of
0.7 mm was achieved. Using the proposed approach, 12 to 15 surfaces per patient were
registered within 13 min. As shown in Table 2, the extraction of the electrode marker points
and the computation and labeling of the electrode positions were completed after another
≈8 min.

Table 2. Performance measures obtained from four out of five subjects participating in the study. The
positions mounted on a patient’s torso were extracted from 14 recorded angular views, on average,
within ≈21.8 min. The symmetric ICP-based pairwise alignment of the corresponding surfaces of
about 139,527 vertices and 254,351 triangles took approximately ≈2/3 of this time.

Subj. # Views # Vertices # Triangles Time (min.)
Min. Mean Max. Min. Mean Max. ICP Pos. Total

2 12 63,204 101,446 132,813 112,547 178,654 235,112 6.58 5.75 12.51
3 14 131,090 198,732 232,417 252,514 380,923 448,766 17.75 9.94 28.28
4 14 155,025 189,075 223,063 292,232 357,555 426,261 14.62 7.78 22.94
5 15 172,548 203,327 241,228 322,431 384,722 458,542 15.24 7.79 23.48

Mean 14 63,204 176,301 241,228 112,547 331,879 458,542 13.55 7.82 21.80

The recording sessions were part of a larger clinical pilot study investigating the
prognostic value of index arrhythmias with respect to the outcome of pulmonary vein
ablation, for which the participants provided informed consent. Apart from the 3D camera
and ECG recordings, this study was based on clinical data recorded during the patient’s
clinical treatment. Therefore, CT recordings and other independent means of recording
the electrode positions relative to the torso were included. To assess the accuracy of
electrode localization, the electrode positions were backprojected onto the individual views
of the torso and marked on the corresponding color images. Examples are shown in
Figures 3, 4b,c and 8.

The annotated RGB images were presented to an expert who used the cross-hair tool
shown in Figure 8b to manually adjust the position of each marker. In order to facilitate this
task, two markers were used: the green marker indicates the backprojected position of the
marker and the red marker corresponds to the manually adjusted position. All positions
were checked during this process and if necessary, they were moved to better reflect the
perceived center positions on each view. When finished, all positions were reprojected onto
a 3D space.
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For the set of corrected positions of each electrode, the mean point, as well as the
mean distance and standard deviation to this mean point, were computed. The resulting
values are shown in Table 3, along with the mean and standard deviations of the computed
electrode positions with respect to the manually determined mean. Both sets of results
were influenced by the accuracy of the registration process and the fact that no unique
solution exists for the backprojection of the electrode positions onto the individual views. In
addition, the mean and standard deviation of the registration errors and the error between
the mean and standard deviation of the distances between the individual projections and
their mean point are listed.
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Subj. # views # vertices # triangles time [min]
min mean max min mean max ICP Pos. Total

2 12 63204 101446 132813 112547 178654 235112 6.58 5.75 12.51
3 14 131090 198732 232417 252514 380923 448766 17.75 9.94 28.28
4 14 155025 189075 223063 292232 357555 426261 14.62 7.78 22.94
5 15 172548 203327 241228 322431 384722 458542 15.24 7.79 23.48
Mean 14 63204 176301 241228 112547 331879 458542 13.55 7.82 21.80

Table 2. Performance measures obtained from four of the five subjects participating in the study. The
positions mounted on a patients torso can be extracted from on average 14 recorded angular views
within ≈ 21.8 minutes. The symmetric ICP based pairwise alignment of the corresponding surfaces
of about 139527 vertices and 254351 triangles needs ≈ 2/3 of this time.
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Figure 8. Manual evaluation of the proposed approach for locating the electrode positions on a
patients torso. The electrode positions are back projected onto each recorded torso surface segment (a).
An electrode position can be moved by clicking on the corresponding green cross shaped graphical
marker displayed on the texture image. Its new position is selected by pointing and clicking to
it (b). In case the position pointed to is not backed by a valid surface triangle the new point (red
cross) is moved to the closest possible position. By right clicking an electrode marker can be disabled
and/or enabled on the presented view. Any disabled markers are not considered suitable for further
evaluation.

the frontal views with the dorsal ones on the left side of the torso. In case the space on all 744
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the participating subjects received. Therefore neither CT recordings nor other means of 761

Figure 8. Manual evaluation of the proposed approach for locating the electrode positions on a
patient’s torso. The electrode positions are backprojected onto each recorded torso surface segment
(a). An electrode position can be moved by clicking on the corresponding green cross-shaped
graphical marker displayed on the texture image. Its new position is selected by pointing and clicking
on it (b). In case the position pointed to is not backed by a valid surface triangle, the new point (red
cross) is moved to the closest possible position. By right-clicking on an electrode marker, it can be
disabled and/or enabled on the presented view. Any disabled markers are not considered suitable
for further evaluation.

Table 3. The electrode positions computed using the proposed approach and defined by manually
marking the clip center on each view deviated from each other, on average, by ≈1.9 mm ± 1.5 mm.
In addition, the distance between the computed electrode position and the mean point obtained by
the projection of each electrode onto each individual view, as well as the average position found
by manually marking the center of the clip on each view, are provided. Along with the variation
resulting from the ICP-based surface alignment, both values allow for the assessment of how well the
proposed approach can approximate the true positions of the electrodes.

Subj. Manual (mm) Manual−marker (mm) Mapping (mm) Registration (mm)
Mean std. Mean std. Mean std. Mean std.

2 1.4 0.9 1.7 1.4 0.6 0.9 0.6 0.2
3 2.1 1.4 1.6 1.5 0.9 1.4 0.6 0.2
4 2.9 1.8 2.2 1.5 1.1 1.8 0.7 0.2
5 2.7 1.6 2.4 1.8 0.9 1.6 0.6 0.2

Mean 2.3 1.4 2.0 1.5 0.9 1.4 0.6 0.2

The corrected electrode positions deviated, on average, by 2.3 mm ± 1.4 mm from
the mean point, and the computed electrode positions deviated from the mean point by
[2.0 mm ± 1.5 mm]. This is in accordance with the limitations posed by the backprojection,
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where the reprojected points deviated from the computed position by 0.9 mm ± 1.4 mm,
and the ICP registration resulted in an average deviation between corresponding points of
0.6 mm ± 0.2 mm. Given the amount of data to be processed per subject, the overall time of
22 min. required to extract and align the electrode positions is quite impressive, considering
that only the computations of the asymmetric ICP and the HDBSCAN algorithms are
implemented as part of the native open3D library and as Cython scripts, respectively. The
rest of the implementation was carried out in Python using NumPy arrays only. In contrast,
the expert required between 30 min. and 45 min. to point and place the electrode markers
on the 14 views of a single data set.

4. Discussion

The results are promising given the fact that the torso is a far less rigid structure
compared to the skull. Further, the limited space conditions and adverse environmental
conditions typically found in clinical settings, e.g., outpatient and local practitioner clinics,
are quite challenging. This is evident in the results shown in Table 3 for subjects 4 and 5. In
both cases, nearby obstacles such as backrests or furniture limited access to the patient’s left
side, resulting in increased positional variations of 2.2 mm± 1.5 mm and 2.4 mm± 1.8 mm
in relation to the mean of the manually defined electrode positions. This is compared to
1.7 mm± 1.4 mm and 1.6 mm± 1.5 mm for subjects 2 and 3, respectively.

These values are still in the range reported for recently proposed approaches for
localizing electrodes mounted on the human body. As shown in Table 4, few studies exist
that evaluate the use of 3D DS cameras [19,20] and photogrammetry methods [18] for
localizing ECG electrodes on the torso. The achieved results varied between 1.16 mm and
11.8 mm, depending on the metrics and positional references used. The authors of [20] used
the Hausdorff metric to compare the positions obtained from a Microsoft Kinect 3D DS
camera to positions found on MRI or CT scans. On average, they achieved a positional
error of 11.8 mm, which is an order of magnitude larger than the error between 1.16 mm
and 2.5 mm achieved by Schulze et al. [18], Alioui et al. [19] and the present study, all of
which used the Euclidean metric instead.

The majority of studies proposed methods for the localization of EEG sensors mounted
on the scalp. Apart from Homölle and Oostenveld [8], the achieved average positional
errors ranged from 1.5 mm [12] to 3.26 mm [14] using various reference measurements,
including the mean of manually placed marks [12,14] and positional references generated
using a magnetic digitizer [8,13,16] such as the Polhemus Fastrak. Comparing the posi-
tional error of 9.4 mm achieved by Homölle and Oostenveld [8] to all other results, it can
be assumed that this was mainly caused by unavoidable inaccuracies when taking the
magnetic digitizer measurements.

Considering that the positions of ECG electrodes mounted on the torso are directly
affected by any movements, the positional error of 2.0 mm achieved in the present study
is a clear indication that the active engagement and participation of the patient in the
measurement is essential. The instructions on how the patient can easily maintain a posture
that facilitates the recording of the electrode positions have a huge impact on the outcome of
the measurements. If the instructions are not clearly defined by the measurement protocol,
or not properly understood or followed by the patient, the positional error will increase. For
example, subject 4 (see Table 3) changed the position of his arms during the measurement
twice. This immediately resulted in an increased positional error of 2.2 mm ± 1.5 mm.

In addition to the limited space, the lighting conditions encountered in the clinical
environment, as well as tight schedules, have a direct impact on the average positional error.
Varying lighting conditions, including multiple light sources with differing light tempera-
tures, on the other hand, can have a negative impact on photogrammetric approaches and
3D DS camera-based measurements of the torso surface and the electrode positions thereon.
Algorithms for automatic white balancing and exposure control have been adopted to
improve color constancy across multiple 3D views of the torso and maintain a constant
exposure of the torso independent of the viewing direction and angle. In combination with
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the developed calibration method, this resulted in increased accuracy in identifying those
pixels representing the color markers.

Table 4. Comparison of the proposed approach for localizing ECG electrodes on the torso using a 3D
DS camera with recent developments. In contrast to the large number of publications addressing the
localization of EEG electrodes, only a few could be found using 3D DS cameras. The results obtained
in the present study are within the ranges found by other studies.

Source Sensor/Method Multi-View Ref. # El. µ σ max.
Registration (mm) (mm) (mm)

ECG

Presented 3D DS Symmetric ICP manual mean 67 2.0 1.5 –
reprojection 0.9 1.4 –

manual marking manual mean 2.3 1.4 –
Perez E. (2018) [20] 3D DS Kinect Software MRI/CT 128 11.8 – 64.8
Alioui S. (2017) [19] 3D DS only one view N/A 3 2.5 – –
Schulze W. (2014) [18] Photogrammetry Least Squares marker plate 80 1.16 0.97 –

EEG

Chen S. (2019) [14] 3D DS Least Squares multiple repeats 30 3.26 1.05 –
Homölle S. (2019) [8] 3D DS Scanner Software Magnetic digitizer 61 9.4 – 10.9
Cline C. C. (2018) [13] IR-Scanner Scanner Software Magnetic digitizer/ 128 1.73 0.37 –

Magnetic digitizer IR-Scanner 2.98 0.89 –
VR-Digitizer 3.74 0.71 –

Clausner T. (2017) [43] Photogrammetry Photogrammetry Face Scan 68 1.30 0.6 –
Magnetic digitizer software 7.80 2.1 –

Butler R. 2017 [9] MRI – manual mean 63 0.5 – –
Dalal S. S. (2014) [12] Magnetic digitizer – FaceScan + 68 6.8 – 13.3

Flying Triangulation manual mean 1.5 – 2.9
Kössler L. (2010) [16] Laser scanner Scanner software Magnetic digitizer 68 1.83 1.16 –

Time, in particular, is a very limited resource, which largely limits the routine use
of magnetic digitizers within clinical environments. For precise positional measurement,
the exact placement of the magnetic probe on each electrode and manual triggering of the
measurement are required. An experienced user requires about 15 min. to accomplish this
task. Any attempt to reduce this time can only be achieved by the less accurate placement
of the probe on each electrode, which can result in increased positional errors of 7.8 mm
and higher, as encountered by Clausner et al. [43].

In general, keeping the required human interactions and number of related errors
as low as possible is one key goal for establishing NICE-based tools and procedures in
clinical environments. The time required to localize the electrode positions on the human
torso, as well as the amount of ionizing radiation the patient is exposed to, are key factors
that can either prevent or facilitate a successful uptake. Alternative approaches currently
used to obtain the electrode positions include manually placing markers on CT and MRI
scans [9,12,19]. and automatically segmenting and pointing a magnetic digitizer probe
to each individual electrode [8,13,16]. These approaches require a significant amount of
time (about 45 min.) to point to each electrode, which is more than the 15 min. required for
magnetic probe-based measurements. The mentioned approaches suffer from an additional
bias related to the individual human perception of the electrode and marker shapes, as well
as inaccuracies in the way the pointing probes are placed onto the electrode.

In contrast, the proposed 3D DS camera-based approach is not affected by these kinds
of errors. When implemented on a tablet computer, the presented approach will enable
clinicians to acquire the electrode positions and torso surfaces within 10 min. Therefore,
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average positional errors of less than 2.5 mm will be feasible even under limited spatial
conditions and tight schedules.

Some aspects essential for the successful clinical uptake of the presented approach
still have to be addressed. On all color sensors, the raw signals recorded for red, green,
and blue channels have to be converted into the RGB color space before they can be used.
If the required parameters are not properly calibrated, the resulting images may show a
bluish hue that can not be corrected by any white-balancing algorithm. This was the case
for subject 5 shown in Figure 3, and caused the additional peak (4) in the calibration heat
map shown in Figure 6. During the preparation of future studies, it is necessary to establish
an appropriate procedure for verifying and optimizing the settings for these parameters
before the first measurement and at regular intervals.

Each 3D DS camera data set also provides a point cloud representation of the torso
surface. This is used in current studies to build electroanatomical models for electrocar-
diographic noninvasive imaging methods from clinical cardiac CT slices only. Further
applications of the proposed approach are currently being investigated for enhanced elec-
trical impedance tomography.

5. Conclusions

In the presented work, a complete 3D DS camera-based system was developed for
localizing 67 ECG electrodes identified by color markers. Issues such as varying lighting
conditions, including multiple light sources with different light temperatures, and the
alignment of individual 3D views were addressed. The implemented recording protocol
provides precise rules on how to seat the patient and includes well-defined instructions for
the patient to easily maintain a specific isometric posture while all views are recorded. The
resulting active engagement and participation of the patient in the measurement helped
to minimize positional errors caused by the patient moving during the measurement. In
combination with the symmetric ICP algorithm implemented, average positional errors of
2.3 mm or less could be achieved for each measurement.

The implemented prototype system localizes the electrodes on the torso with minimal
human interaction. It can handle diverse lighting conditions and operate in narrow spaces,
as encountered in clinical settings such as outpatients of local practitioner clinics.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalogram
ECG Electrocardiogram
EIT Electrical Impedance Tomography
ECT Electrical Capacitance Tomography
MRI Magnetic Resonance Tomography
CT Computed Tomography
3D DS camera 3D Depth-Sensing camera
RGB Red, Green, Blue
AWB Automatic White Balancing
FOV Field of View
AE Auto-Exposure
ICP Iterative Closest Point
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