
Citation: Fluchs, S.; Taştan, E.;

Trumpf, T.; Horch, A.; Drath, R.; Fay,

A. Traceable Security-by-Design

Decisions for Cyber-Physical Systems

(CPSs) by Means of Function-Based

Diagrams and Security Libraries.

Sensors 2023, 23, 5547. https://

doi.org/10.3390/s23125547

Academic Editor: Hai Dong

Received: 8 May 2023

Revised: 5 June 2023

Accepted: 8 June 2023

Published: 13 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Traceable Security-by-Design Decisions for Cyber-Physical
Systems (CPSs) by Means of Function-Based Diagrams and
Security Libraries
Sarah Fluchs 1,2,* , Emre Taştan 3, Tobias Trumpf 4 , Alexander Horch 4, Rainer Drath 3 and Alexander Fay 1

1 Institute of Automation, Helmut-Schmidt-University, 22043 Hamburg, Germany; alexander.fay@hsu-hh.de
2 admeritia GmbH, 40764 Langenfeld (Rheinland), Germany
3 Faculty of Technology, Pforzheim University, 75175 Pforzheim, Germany; emre.tastan@hs-pforzheim.de (E.T.);

rainer.drath@hs-pforzheim.de (R.D.)
4 HIMA Paul Hildebrandt GmbH, 68782 Brühl, Germany; t.trumpf@hima.com (T.T.); a.horch@hima.com (A.H.)
* Correspondence: sarah.fluchs@hsu-hh.de or sarah.fluchs@admeritia.de

Abstract: “Security by design” is the term for shifting cybersecurity considerations from a system’s
end users to its engineers. To reduce the end users’ workload for addressing security during the
systems operation phase, security decisions need to be made during engineering, and in a way
that is traceable for third parties. However, engineers of cyber-physical systems (CPSs) or, more
specifically, industrial control systems (ICSs) typically neither have the security expertise nor time
for security engineering. The security-by-design decisions method presented in this work aims to
enable them to identify, make, and substantiate security decisions autonomously. Core features of the
method are a set of function-based diagrams as well as libraries of typical functions and their security
parameters. The method, implemented as a software demonstrator, is validated in a case study with
the specialist for safety-related automation solutions HIMA, and the results show that the method
enables engineers to identify and make security decisions they may not have made (consciously)
otherwise, and quickly and with little security expertise. The method is also well suited to make
security-decision-making knowledge available to less experienced engineers. This means that with
the security-by-design decisions method, more people can contribute to a CPS’s security by design in
less time.

Keywords: cyber-physical systems; industrial control systems; cybersecurity; security by design;
visualization; function-based engineering

1. Introduction

All too often, IT security is left as an end users’ problem. It is commonly accepted
that all products and systems either already have security flaws or, if none are known yet,
security flaws will be discovered within the products’ lifespans, and that it is the end users’
responsibility to operate the system securely. This has recently been called out as a major
problem by the USA’s Cybersecurity and Infrastructure Security Agency (CISA) [1].

The term for shifting cybersecurity considerations from a system’s end users to its
engineers is “security by design”. Security by design means that IT/OT security issues are
identified and solved during the design phase of the system, rather than as an afterthought
when the system is already operational. Policy makers in many countries have recently
included security by design more prominently in strategy papers and regulation. For
example, it is the main pillar in the European Union’s draft for the Cybersecurity Resilience
Act [2] as well as in the US National Cybersecurity Strategy [3]. In April of 2023, national
security authorities from the USA, Canada, the Netherlands, Great Britain, Australia, New
Zealand, and Germany published a document stating the principles of security by design
and default, expressing a common interest in and priority for the topic [4].

Sensors 2023, 23, 5547. https://doi.org/10.3390/s23125547 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125547
https://doi.org/10.3390/s23125547
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4730-0126
https://orcid.org/0009-0003-8000-7607
https://orcid.org/0000-0002-1922-654X
https://doi.org/10.3390/s23125547
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125547?type=check_update&version=2

Sensors 2023, 23, 5547 2 of 30

Like for information technology and software, the importance of security for cyber-
physical systems (CPSs) is on the rise: Due to the more intensive networking of CPSs
with increasing use of internet technologies and common IT products, the possible and
easily accessible communication interfaces to CPSs are increasing. This makes them more
vulnerable and worthwhile for criminal cyber-attacks and increases the importance of
effective security measures to prevent such attacks.

However, security by design for CPSs and, more specifically, for industrial control
systems (ICSs) differs from security by design for software. Like for CPS and ICS, the
system’s design cannot be carried out solely at the component’s manufacturer. A large
part of the engineering process is carried out when multiple components are integrated
into a more complex system for automating a production process [5,6] such as producing
a pharmaceutical or an infrastructure service such as wastewater treatment or power
distribution. Therefore, if the responsibility for a system’s security is to be shifted away
from the end user for CPSs and ICSs, engineers working at components manufacturers,
integrators, and plant owners need to be empowered to perform security by design.

However, these engineers currently do not have the obligation to embed security,
and consequently they neither have the time, the security expertise, nor the processes or
methods to consider security timely in their design [7–9]. Therefore, empowering engineers
for security by design must include giving them guidance, providing know-how, and
saving them time. Empowering engineers to consider security during design not only
increases the products’ security; it also reduces cost: each security vulnerability that is
found after the design is finished causes a significant workload in eliminating the problem,
communicating with product users, and limiting reputational damage—all unplanned and
under time pressure.

The overarching goal of security by design is to decide which security measures are
needed (and, usually the harder decision: which are NOT needed) to create a defensible sys-
tem [10]. The required guidance for security by design can be divided into four challenges
around these central decisions:

1. Decision identification: The challenge is to identify which of the many system char-
acteristics and design decisions affect the system’s security.

2. Decision making: The challenge is to have all relevant information handy to make
profound, informed, and systematic security decisions.

3. Decision tracing: The challenge is to clearly understand and document the deci-
sions’ rationales.

4. Decision timing: The challenge is to make the security decisions regarding a certain
design aspect early enough, i.e., when this design aspect can still be influenced. This
means that the security decision making needs to be integrated early enough into the
existing engineering workflow.

This paper addresses all but the last of these four challenges, because decision timing
methods are still being validated by the authors at the time of this writing. Therefore, the
research questions for this paper are: How can CPS/ICS engineers with limited time and security
expertise be guided to (a) identify security decisions during their engineering workflows (decision
identification), (b) make security decisions autonomously (decision making), and (c) make
security decisions that can be reproduced and revised later and/or by others (decision tracing)?

It should be noted that the research questions do not address the quality of the security
decisions, but only the engineers’ ability to identify and make informed security decisions
autonomously, early enough in the design process, and document their rationales. While
the quality of the resulting security decisions certainly matters, it is very difficult to measure
objectively. In addition, the evaluation of whether the security decisions are implemented
correctly is out of scope of this article.

The remainder of this paper is organized as follows: In Section 2, the state of the
art for security decision identification, making, and tracing is summarized. Section 3
contains the proposed concept to guide engineers’ security-by-design decisions, built
around the cornerstones of new, function-based security diagrams and security parameters.

Sensors 2023, 23, 5547 3 of 30

In Sections 4 and 5, the results of the concept validation at HIMA, a specialist for safety-
related automation solutions, are presented and discussed. The validation is carried
out as a case study with a mix of quantitative and qualitative metrics to measure the
concept’s effectiveness in addressing the research questions. Section 6 concludes the paper
by pointing out the authors’ contribution to the problem introduced earlier and outlines
future research.

2. State of the Art

Before the state of the art of security decision identification, making, and tracing can
be discussed, it must be made clear which kind of security decisions are in focus. There
are two kinds of security decisions: Security design decisions (in scope of this paper) and
security operations decisions (not in scope). Security operations decisions are decisions
that affect the security of a system in its operation phase, such as monitoring for ongoing
attacks and newly disclosed vulnerabilities and deciding what to do about them. The goal
of security operations decisions can be summarized as “defend the system”, while the goal
of security design decisions can be summarized as “build a defensible system”.

A significant imbalance becomes apparent when the maturity of methods and tools
to support security operations decisions is compared to those to support security design
decisions. For security operations decisions such as “do we need to patch this vulnerability”
or “how do we react to a suspicious change in data traffic”, there are countless examples
for supporting tools: security incident and event monitoring (SIEM), intrusion detection
and prevention (IDS/IPS), vulnerability scanners, antivirus solutions, etc.

For security design decisions, methods and tools are less mature. In the following,
the state of the art is summarized separately for (1) decision identification and (2) decision
making and tracing.

2.1. Decision Identification

For identifying security design decisions for CPSs, i.e., identifying which security
measures to decide about, the state of the art is using security requirements checklists.

Often, these checklists are provided as standards or technical reports. Some of the
most popular lists are multiple parts of the ISA/IEC 62443 standard series (part 2-1 [11] for
asset owners, parts-4-1 [12] and -4-2 [13] for components, and part-3-3 [14] for integrated
systems), ISO/IEC 27001:2022 [15], or the NIST Cybersecurity Framework [16].

More specific checklists exist, for example, in [8], where Eckhart et al. list a mix of
security processes and technologies to be considered during CPS engineering. Even Ross
Anderson’s book “Security Engineering” [17] draws much of its strength from provid-
ing checklists for security measures that should be considered, along with contexts and
anecdotes to help the reader understand why they are needed.

The checklist approach for identifying security decisions has a long history outside
of CPSs. In a paper published in 1993, Baskerville analyzed security design methods for
information systems and categorized them in three generations [18]: checklist methods are
the first generation, first used in the 1970s.

Checklists are a simple, effective approach for making sure important decisions are
not overlooked. Obviously, this only works if all relevant decisions are on the list, causing
lists to grow longer. Only rarely are requirements removed from these checklists, as Dale
Peterson pointed out in his keynote at the S4x23 ICS security conference [19].

Nevertheless, security requirements checklists are incomplete because they tend
to only cover technologies and best practices that are explicitly in the security realm—
authentication, encryption, etc. However, there are additional, “undercover” security
decisions that are not commonly perceived as security-relevant but can have security im-
pacts anyway. This may be low-level decisions such as whether the design of a safety
shutdown is mechanical or electronical—the latter being more prone to being hacked
remotely. Another example is the question of how to determine if a sensor value can be
trusted and recover states from corrupted measurements [20]. This is security-relevant

Sensors 2023, 23, 5547 4 of 30

because state-of-the-art technologies for validating sensor values may not be capable of de-
tecting malicious manipulations if a sensor is being attacked. In addition, a large source for
suchlike security decisions are “insecure-by-design” features [21]—functional features that
are implemented purposefully to meet functional requirements but can also be exploited in
a security attack, such as the decision to enable the update of PLC logic during operations.

The fact that suchlike “undercover” security decisions are not systematically identified
nowadays means that engineers are often not aware that what they perceive as a functional
decision is a security decision as well. Thus, these security decisions are made, but without
security in mind.

To make it worse, “undercover” security decisions are typically made very early in
the design process, making them difficult to revise if their security relevance is caught late
in the engineering workflow [7].

2.2. Decision Making

Compared to identifying security decisions, making and tracing them are more com-
plex, and the state of the art covers a broader spectrum of approaches. As discussed earlier,
checklists are reasonable for identifying security decisions, but when it comes to making
decisions, they provide little guidance. The only way a checklist can be used to guide
decision making is by assuming all items on the list need to be implemented, so every
identified decision defaults to a “yes”. As Baskerville pointed out in [18], when checklists
were first used for security decision making, this was acceptable, because the number of
available security solutions was very limited, so applying all of them was actually realistic.
Even in 1993, Baskerville stated that with the increase in available security solutions, such
an approach was no longer realistic. Now, 30 years later, saying “yes” to all theoretically
available security solutions is even less realistic. Instead, security decision making—picking
the solutions that have the greatest benefit—has become more relevant.

In Ref. [10], the authors described four different categories of security decision making:
compliance-driven, risk-driven, goal-driven, or library-supported. Which of the four
decision-making paths apply is each organization’s individual, strategic choice. Risk-
driven and goal-driven decision making involves defining one’s own security priorities,
expressed by a risk or unwanted event to prevent, or a design goal to meet. Compliance-
driven security decisions are more other-directed and, in case legally binding regulations
must be complied with, non-negotiable. Relying on library-supported decisions makes
sense if an organization’s systems are so standardized (and/or the decision-making process
is so mature) that it pays off to standardize security decisions too. The state of the art for
each decision-making path is presented in the remainder of this section. An overview of
advantages and limitations of each approach is given in Table 1.

Compliance-driven security decision making essentially means checklist-based de-
cision making, with the only addition that the checklist is part of a law or regulation that
needs to be complied with. Like checklist-based approaches, it does not provide much guid-
ance for security decision making, but in the context of an increasing amount of regulation
for critical infrastructure security (NIS 2 [22] and RCE [23] directives in the European Union,
PPD-21 [24] directive in the US, and equivalents in many other countries), compliance-
driven decision making is one of the most common ways CPS security decisions are made
in practice and therefore needs to be mentioned. Examples for checklists being followed in
today’s compliance-driven security decision making for CPSs are given in Section 2.1.

Risk-driven security decision making has historically been the first reaction to the
limitations of compliance-driven security decision making for software security [18].
Baskerville draws the following timeline for information systems security: In the 1970s,
risk assessments were introduced as an addition to checklist-based decision-making ap-
proaches as a means of finding the measures on the checklist with the best cost–benefit
ratio. However, in the 1980s, these methods evolved into more sophisticated risk-based
approaches. These added two additional steps in the workflow before arriving at security
requirements: First, describing a system by dividing it into “assets”; second, identifying

Sensors 2023, 23, 5547 5 of 30

threats to these assets. Security requirements do not come in before the first step, where
they are introduced to mitigate the identified threats. At that point, checklists are still being
used as a source of inspiration [18].

Table 1. Comparison of decision-making categories.

Category and Example References Advantages/Use Cases Limitations

Compliance-driven security
decision making
based on requirements lists such as

- Parts of the IEC 62443 series [11–14]
- ISO/IEC 27001 [15]
- NIST Cybersecurity Framework [16]
- Best practices as in [17]
- Secure development practices as

in [8,12]

- Efficient if there are clear,
maybe even legally binding,
security requirements catalogs.

- Not much security
expertise required.

- Not much guidance for decision
making.

- Decision making is only as good as
the consulted regulation/catalog.

- Decision is not traceable beyond
referencing the applicable
regulation and requirement.

Risk-driven security decision making
Abundance of publications, surveys, e.g., in

- Cherdantseva et al. [25]
- Lemaire et al. [26]
- Fluchs and Rudolph [27,28]

- Flexible if an organization
wants to set its own security
priorities based on events that
must not occur or risks to
be mitigated.

- Good for management
communication. Fits in well
with corporate risk
management that may be used
in other areas (e.g., finance).

- Relies on system understanding,
which is often neglected or
oversimplified (mechanistic world
view) in existing methods.

- Existing methods are fragmented;
there is no comprehensive method
that builds upon the system model
all the way through to
decision making.

- Improvements (more holistic
system models, more systematic
decision making based on these
models) all significantly increase
the amount of information to be
created and digested for decision
making and tracing. Thus, tool
support is needed to keep decision
making efficient.

Goal-driven security decision making
- In software requirements

engineering [29–33]
- In model-based systems

engineering·[34,35]
- Tropos/i* [36,37]
- use case-based approach [24,38–40]

- Flexible if an organization
wants to set its own security
priorities based on security
goals or features that the
systems should have.

- Intuitive for engineers,
especially if they are used to
(goal-based)
requirements engineering.

- More complex system models
including human stakeholders and
their intentions are needed.

- CPS engineers are often not familiar
with goal-based design.

Library-supported security
decision making
- Patterns [9,41–43]
- Common Criteria protection

profiles [44]
- Ontologies [45–47]
- MITRE ATT&CK for ICS [48]

- Efficient if an organization has
standardized systems and/or
very mature security
decision-making processes so
that security decisions can be
standardized.

- Encapsulates security
knowledge and makes it
re-usable, so security experts do
not need to be consulted for
every project.

- Library-supported decisions and
their traceability is only as good as
the library.

- Libraries need to be maintained and
kept up-to-date.

- Organizing knowledge in libraries
so that security decision makers
actually find what they need with
acceptable effort is not trivial and
most likely not doable without
tool support.

Most of the publications around CPS security decision making still follow this scheme.
There is an abundance of publications around risk-driven security decision making. For
the sake of brevity, some overview studies are listed below, along with their main findings,
especially those regarding weaknesses of the existing risk-driven approaches.

Sensors 2023, 23, 5547 6 of 30

The first weakness was already described by Baskerville in 1993: He calls this way of
decision making “mechanistic”, because the assets are identified based on a mechanistic
system view, dividing a system into its physical components and disregarding everything
else. This, he wrote, causes two problems: First, requiring a mechanistic system model
implies that the physical system must be fully specified when the security design is being
carried out, causing it to be (too) late in the engineering workflow and completely isolated
from the functional system design. In addition, modeling and understanding the entire
physical system in interconnected assets are complex, time-consuming, and require a
well-trained “super analyst” capable of overlooking the entire system specification in
detail [18].

Turning more specifically to CPSs, Cherdantseva et al. reviewed existing CPS risk
assessment methods in 2016 [25]. They proposed various ways to categorize existing
methods, but across all categories, one of their key criticisms is fragmentation: there is
no comprehensive method covering all phases of risk-driven security decision making.
Especially, the first phase, with the purpose of providing an in-depth understanding of
a “system, its components and the interdependencies between them, and external factors
affecting it” [25], is being neglected. In addition, existing methods provide almost no
guidance to connect the different security decision-making phases: if a system is described
for security, the results are not directly used for the threat and risk analysis phase, and/or
the requirements definition phase.

Another finding of Cherdantseva et al.’s review is the lack of tool support for risk
assessment methods, which “could expedite the progress of the domain remarkably” [25].
This is confirmed by Lemaire et al. [26] who reviewed security analysis tools for CPSs
in 2017 and concluded that for a comprehensive security analysis, none of the reviewed
tools (CSET, ADVISE, CyberSAGE, CySeMoL, and FAST-CPS) are sufficient. In addition,
it becomes clear from the analysis that none of the tools support the user all the way
through the actual risk-based security decision making. CSET provides checklists and
thus supports compliance-based security decision making, and all of the other tools focus
on identifying vulnerabilities based on system information the user must provide and
sometimes external databases.

Fluchs and Rudolph’s [27,28] 2019 review of risk analysis and systems engineering
methods for CPSs confirmed Cherdantseva et al.’s findings. Concerning the lack of a
comprehensive method covering all decision-making phases, they identified the need for a
comprehensive information model as a basis for such a comprehensive method. Concerning
the lack of coverage for the “system understanding” phase, they specifically point out that
interconnections between components and humans are mostly not represented in existing
system models, and propose the use of combinations of data flow diagrams and use cases
known from software engineering as improved system models.

Goal-driven security decision making treats security just as functional aspects, where
design goals are defined, often taking different stakeholders’ perspectives, and then refined
into requirements. It has been pursued to integrate security into software requirements
engineering [29–33] and model-based systems engineering [34,35], but not for CPSs. This is
probably due to the fact that goal-based engineering is popular in software engineering
(so it seemed natural to extend the same principles to software security engineering), but
largely unknown in CPS or ICS engineering.

However, one key characteristic of goal-based or agent-based engineering is that
perspectives and intentions from different human stakeholders are considered. There has
been a lot of research in using concepts to model human intentions (e.g., UML use case
diagrams [49] or the Tropos/i* modeling frameworks [36,37]) for security decision making,
and the use-case-based approach has also been applied to CPSs, ICSs, and the Internet of
Things (IoT) [27,38–40].

While goal-driven approaches yield a more complete understanding of the system
and its security problems, the inclusion of additional data points such as human stake-

Sensors 2023, 23, 5547 7 of 30

holders and their intentions inevitably results in an increased amount of security-relevant
information that the security decision maker must process.

Library-supported security decision making is an entirely different branch. It can be
applied whenever a similar decision has been made before and has been documented in a
format that allows re-use. This has the advantage that the necessary security know-how is
shifted from those making the security decision to those creating the decision library, and
of course re-using existing solutions saves time.

Security patterns are a popular concept for library-supported security decision making.
These are generic, re-usable security solutions in a standardized format, often including
guidance when to choose which pattern (“pattern system”). Compared to checklists
approaches, patterns or related concepts such as solution frames provide more decision-
making guidance because they include problem descriptions and indications for choosing
the right (generic) solution to a (generic) problem [9,41–43]. A specific case of security
patterns are the protection profiles used in the Common Criteria standards [44].

Like goal-driven security decision making, this approach has been widely researched
for software, but not for CPS. What has been researched in the context of CPS, though,
is creating security ontologies. Security ontologies collect knowledge for security-related
concepts such as assets, attack scenarios, vulnerabilities, security requirements, and security
measures. Some ontologies also include relations between, for example, a risk scenario and
recommended security measures, which can be regarded as a way of library-supported
security decision making. CPS-related examples can be found in [45–47]. In addition,
frameworks such as MITRE ATT&CK for ICS [48], including both popular attack techniques
and countermeasures, can be regarded as ontologies that can be used for library-supported
security decision making.

Library-supported security decision making has a similar weakness as compliance-
driven or all checklist-based decision-making methods: The resulting decisions can only
be as good as the libraries. As a result, similarly to security requirements checklists, the
libraries supporting these methods are ever-growing, increasing the amount of information
a security decision maker must digest. Therefore, library-supported decision-making
approaches are mostly not feasible without tool support.

There is also a branch of research that addresses the formal verification and valida-
tion of security decisions once they have been made. These methods require a formal
model of the system behavior in terms of continuous and discrete system variables. This
formal model can then be simulated, implemented, and evaluated to analyze if the model
implementation meets the requirements defined earlier [50,51].

These formal methods are not covered in the state of the art because they do not
address the research questions posed in the introduction. The scope of this work is to
provide CPS engineers with more guidance to identify security decisions, make them
autonomously, and document their rationales; the quality of the decisions and the question
of whether the implementation meets the defined requirements are not in scope.

In addition, the necessity to work with formal models is considered too much of
an entry barrier for CPS engineers (and even more so for ICS engineers) who have little
time for security engineering during design and are usually not familiar with theoretical
software engineering methods [8,52].

2.3. Summary: Problems of Existing Methods

Summarizing the above sections, Table 2 presents the major problems in state-of-the-
art methods for CPS security decision identification and decision making along with their
impacts. The column “potential solution” forms a bridge to the concept proposed in this
work (Section 3), outlining how it differs from the state of the art.

Sensors 2023, 23, 5547 8 of 30

Table 2. Problems of existing methods.

Problem (and Causes) Impact Potential Solution
(See Proposed Concept)

1. “Undercover” security decisions: System
characteristics that do not include obvious security
technologies but have an impact on the system’s
security posture are not identified as security decisions.

Cause: These decisions are not included in security
checklists, because they do not look security-relevant
at first sight but are “other domains’ business”.

Security decisions are missed
during development and made
without considering their
security impact.

Do not identify security decisions
based on potential security
requirements (or the lack thereof),
but based on security relevance of
existing design decisions across
all engineering domains.

2. Lack of comprehensive guidance for security
decision making: There is no guidance that covers all
decision-making paths (compliance-driven,
risk-driven, goal-driven, library-supported).
Especially, goal-driven and library-supported decision
making is hardly present in state-of-the-art CPS
security research.
For risk-driven security decision making: fragmented
methods for single steps in the
decision-making-workflow, but none that give
comprehensive guidance from problem understanding
to decision making.

ICS/CPS engineers cannot turn to
any single method they can use for
their entire
decision-making workflow.
In addition, existing methods do
not reflect the variety of reasons
why they are making security
decisions in reality.
Both factors are lowering the
engineers’ willingness to adopt
cybersecurity methods
during design.

Develop an overarching method
that can incorporate different
kinds of specialized methods, but
that is simple enough to use by
engineers that are not
security experts.

3. Shortcomings in system understanding: There is
little guidance and no comprehensive model for the
system understanding phase at the beginning of
risk-driven or goal-driven (and potentially
library-supported) decision making.

Security decisions are made based
on fragmentary system
understanding.

Security decisions and the
assumptions that led to them are
not documented systematically.

Develop a security
decision-making concept with a
systematic, guided
system-understanding phase.

Develop a comprehensive security
system model that contains
security-relevant information for
all decision-making steps along
all different decision-making
paths (e.g., threats, risks, goals,
requirements, measures).

Make sure it is straight-forward to
use system models when making
security decisions.

4. Lack of security decision traceability: It is difficult
to clearly understand and document the rationale for
each security decision.

Cause: This is a result from problems 2 and 3. If the
system understanding is only documented
fragmentarily, and the logical steps from the system
understanding to making the security decisions are
not interconnected in a comprehensive method and
data model, it is difficult to trace back a security
decision to why it was made—which decision-making
path was followed, which goal was to be fulfilled,
which risk was to be mitigated, which regulation was
to be complied with, and which system functions were
to be protected.

It is difficult to explain to third
parties (e.g., clients or auditors),
management, or even engineering
colleagues why a security decision
was made.

When a system or its (threat)
environment changes and security
decisions need to be revised, they
need to be made all over again
because the rationales and
underlying assumptions for the
existing decisions are not known.

Develop an easy, efficient way to
document the reason behind each
security decision, regardless of
decision-making path.

Sensors 2023, 23, 5547 9 of 30

Table 2. Cont.

Problem (and Causes) Impact Potential Solution
(See Proposed Concept)

5. Large amount of information to be digested: The
amount of information that needs to be processed by
the security decision maker has always been large, and
it is increasing.

Cause: Many of the state-of-the-art approaches that
improve guidance for security decision identification
and making at the same time increase the amount of
relevant information: Adding “undercover” security
decisions increases the number of decisions to be
made. Overcoming the mechanistic system view and
adding human stakeholders, their goals or intentions,
and relations and dependencies between system
components makes the system model more complex.
The value of library-supported approaches increases
with library comprehensiveness, also increasing the
amount of potentially relevant information.
In addition, compared to software systems, the
engineering of CPS (and especially ICS) involves more
engineering domains than for a conventional software
system, again increasing the amount of potentially
relevant information for security decision making.

The overwhelming amount of
relevant information makes it more
difficult to identify the relevant
pieces of information for a decision
at hand.
It also makes security decision
making more complex and
time-consuming.

Find efficient ways to filter and
present the large amounts of
security-relevant information to
the security decision-maker.

6. Lack of tool support: There is no tool to support
security decision making during system design.
Lack of tool support was identified by many of the
reviewed publications, especially those that work with
libraries or ontologies or aim at automating certain
parts of security decision making.

With the increasing
comprehensiveness (and
complexity) of decision making, it
becomes increasingly unlikely that
engineers can follow a methodology
without the clear guidance of a tool.
Attempting to consider all
information without tool support is
error-prone and time-consuming.

Security decision making that is
inefficient and time-consuming is
very likely to be skipped altogether.

If security decisions are made,
documentation is not likely to be
produced without a tool, and it
probably cannot be exchanged
digitally with other engineering
domains.

Develop a tool that provides
guidance through security
decision making, efficiently stores
and presents all required
information, provides sound
documentation with little
overhead, and has interfaces to
other engineering tools.

3. Security-by-Design Decisions Method: Workflow for Making Traceable
Security Decisions

This chapter outlines a workflow for CPS security decision identification and making.
The workflow addresses all problems identified earlier. The innovative components that
facilitate the workflow are:

• Function-based security parameter libraries for decision identification;
• Function-based security diagrams, and in combination with an underlying
• Data model and tool, these diagrams guide decision making and enable traceable

security decisions to be made.

Both libraries and diagrams are function-based. We use “function” as a combination
of the function concept as defined in systems engineering [53,54] and the UML use case

Sensors 2023, 23, 5547 10 of 30

concept [49]: While a use case can be understood as the intention that a (human) user has
when interacting with a system, a function involves anything that the system needs in
order to implement a use case, but may also include functionality not directed toward any
visible use case. This difference matters when modeling either concept: For modeling a use
case, the system is regarded as a black box. For modeling functions, the system’s internal
functionality is important.

The advantages of this hybrid function concept as a basis for a security-by-design
method are: (1) it is a good way to bundle security-relevant information: a system’s internal
functionality, but also a system’s users and intended use; (2) it is suitable for modeling a
system early in the design phase without anticipating implementation details. For details
on the function concept, refer to [10,27,40]. Function examples are provided throughout
the remainder of this paper.

3.1. Workflow Overview

The security-by-design decisions workflow is summarized in Figure 1. There are three
general workflow steps (1. identify security decisions, 2. fill decision base, 3. make security
decisions), but within these steps, the concept provides a decision-making framework
rather than a strict workflow: In steps 2 and 3, all activities are optional. If they are
needed depends on the decision-making path that is chosen for a given project or a given
security decision.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 31

Both libraries and diagrams are function-based. We use “function” as a combination

of the function concept as defined in systems engineering [53,54] and the UML use case

concept [49]: While a use case can be understood as the intention that a (human) user has

when interacting with a system, a function involves anything that the system needs in

order to implement a use case, but may also include functionality not directed toward any

visible use case. This difference matters when modeling either concept: For modeling a

use case, the system is regarded as a black box. For modeling functions, the system’s in-

ternal functionality is important.

The advantages of this hybrid function concept as a basis for a security-by-design

method are: (1) it is a good way to bundle security-relevant information: a system’s inter-

nal functionality, but also a system’s users and intended use; (2) it is suitable for modeling

a system early in the design phase without anticipating implementation details. For de-

tails on the function concept, refer to [10,27,35]. Function examples are provided through-

out the remainder of this paper.

3.1. Workflow Overview

The security-by-design decisions workflow is summarized in Figure 1. There are

three general workflow steps (1. identify security decisions, 2. fill decision base, 3. make

security decisions), but within these steps, the concept provides a decision-making frame-

work rather than a strict workflow: In steps 2 and 3, all activities are optional. If they are

needed depends on the decision-making path that is chosen for a given project or a given

security decision.

Figure 1. Security-by-design decisions method: Workflow for making traceable security decisions

supported by function-based security libraries and function-based security diagrams, a security

data model, and a software tool. The workflow accommodates different security decision-making

paths: risk-driven (orange), goal-driven (blue), and compliance-driven (grey).

The workflow accommodates all four security decision-making paths introduced in

Section 2 and [10], but none are mandatory. Identification of security decisions is library-

supported (but it does work without libraries if desired). Security decisions can be made

following a goal-driven (marked blue in Figure 1), risk-driven (orange), and/or compli-

ance-driven path (grey), depending on the resources provided in the decision base. Re-

gardless of the chosen decision-making path, the rationale for each decision is docu-

mented, enabling the traceability of decisions. This is enabled through diagram and tool

support for the workflow.

It is important to note that the aim of the method is to provide decision makers with

all information to make their security decisions in a systematic, informed way, and make

sure decisions are traceable (i.e., decision rationales are documented).

The method does not recommend how security decisions be made, and neither does

it require following any specific decision-making path. Decisions can be made following

Figure 1. Security-by-design decisions method: Workflow for making traceable security decisions
supported by function-based security libraries and function-based security diagrams, a security data
model, and a software tool. The workflow accommodates different security decision-making paths:
risk-driven (orange), goal-driven (blue), and compliance-driven (grey).

The workflow accommodates all four security decision-making paths introduced in
Section 2 and [10], but none are mandatory. Identification of security decisions is library-
supported (but it does work without libraries if desired). Security decisions can be made
following a goal-driven (marked blue in Figure 1), risk-driven (orange), and/or compliance-
driven path (grey), depending on the resources provided in the decision base. Regardless
of the chosen decision-making path, the rationale for each decision is documented, en-
abling the traceability of decisions. This is enabled through diagram and tool support for
the workflow.

It is important to note that the aim of the method is to provide decision makers with
all information to make their security decisions in a systematic, informed way, and make
sure decisions are traceable (i.e., decision rationales are documented).

The method does not recommend how security decisions be made, and neither does
it require following any specific decision-making path. Decisions can be made following
multiple paths at the same time. Often, the result is simply multiple rationales for a single
decision (e.g., disabling remote support is needed for compliance reasons and because

Sensors 2023, 23, 5547 11 of 30

the risk is deemed too high), but of course, two decision-making paths may also result
in conflicts of interest. In these cases, it is upon the decision maker to make (and again:
document!) the decision.

This is especially true if a security decision is made based on functional requirements,
which is mostly the case for decisions that are not ideal or even detrimental from a security
perspective. However, it must be acknowledged that security is not an end in itself and
often requires a compromise between price, usability, feasibility, and security. Nevertheless,
there is a value in being aware of and documenting that a non-ideal security decision has
been made.

In the following, the different paths through the workflow are described in more detail.

Step 1: Identify security decisions

This first workflow step is the same for all paths. From a library, security decision
makers choose all functions that apply to the system under consideration. Functions may
also be modified if needed.

Example: From the library category “engineering”, the functions “update of PLC logic”, “test
and debugging of PLC logic“, and “sensor calibration” are selected.

There is a set of diagrams for each function (see Section 3.3 for details), and each
function contains one or more security parameters, each of which marks a security decision.
Thus, choosing applicable library functions is equivalent to identifying security decisions.
A security parameter has the form of a title and several possible values the parameter can
assume: title: {value 1, value 2, value 3, . . . }. The function and security parameter libraries
are described in detail in Section 3.2.

Example: For the function “update of PLC logic”, security parameters are “code block pro-
tection: {enabled, disabled}”, “change of operating modes: {key switch, password}, “updating
logic during operations: {enabled, disabled}, or “integrity protection of PLC logic: {none, check-
sum, hash}”.

Step 2: Fill decision base

Now, a security decision base is created and filled with everything that may help make
the security decisions that were identified before. All items are optional, and their existence
relies on the decision-making paths that an organization chooses to follow:

• Goal-driven decision making (marked blue in Figure 1): For goal-driven decisions,
the security decision base is filled with security goals for specific functions or function
components or the overall systems. Security goals are often composed of (combinations
of) confidentiality, integrity, and availability of certain functions, components, or pieces
of information, but they can also include reliability or compliance aspects [10]. Goals
can also be hierarchically organized into sub-goals to allow the break-down of high-
level goals into more specific ones. Example: For a chemical production plant, a security
goal could be “stable pressure in reactor” with a sub-goal “integrity of output value for
pump P”.

• Risk-driven decision making (marked red in Figure 1): For risk-driven decision
making, it can make sense to define High-Consequence Events (HCEs)—events that
would make for a really bad day at the organization and that must be prevented [10,55].
In addition, all kinds of attack scenarios potentially leading to HCEs are a meaningful
addition to the security decision base because they provide more detailed indicators
on how to prevent HCEs. Attack scenarios can be function-specific, detailing how
a specific function may be exploited to cause a specific HCE. Security parameters
contain some built-in guidance for constructing attack scenarios: parameter values
that may be used in an attack are marked as attack indicators in the library. See
Section 3.2 for details. Attack diagrams provide guidance by overlaying all relevant
information for modeling attack scenarios onto function diagrams. See Section 3.3 for
details. Example: For the same chemical production plant, a HCE could be “reactor explodes”.
For the function “update of PLC logic”, an imaginable attack scenario would be sending a
spearphishing attachment to a PLC engineer to gain access to her programming device, exploit

Sensors 2023, 23, 5547 12 of 30

a vulnerability allowing user execution on that device, and ultimately modify the PLC’s logic
to cause overpressure in the reactor.

• Compliance-driven decision making (marked grey in Figure 1): For compliance-
driven decision making, the decision base simply needs to be filled with the regulations,
laws, or standards affecting security that should be complied with. These can be
international, national, or even internal company regulations. Example: For the chemical
plant, it is determined that the company-internal policy “automation security guideline ABC”
needs to be complied with. It has eleven paragraphs that may each be referenced separately.

Step 3: Make security decisions

Finally, the decisions identified in step 1 are made. More specifically, making a
security decision means deciding to set a security parameter to one of its possible values.
Alternatively, the decision to eliminate a system function—along with all the entities it is
composed of and all security parameters—is a valid security decision.

All supporting facts collected in the decision base in step 2 can now be built upon
to make an informed security decision and to document a rationale for each decision.
Because the security decision base may have grown considerably large at this point, secu-
rity diagrams play a major role for decision making because they efficiently present the
information needed to make the security decisions (see Section 3.2 for details). In addition,
the decision maker is guided through the decisions function by function, which reduces
complexity for each decision. Again, all decision-making paths are supported:

• Goal-driven decision making (marked blue in Figure 1): For goal-driven decision
making, the security parameter contributes to fulfilling a security goal defined before.
This security goal forms the rationale for the security decision. Example: for the security
parameter selection “integrity protection of PLC logic: hash”, a goal-driven rationale could be

“stable pressure in reactor R”, or more specifically “integrity of output values for pump P”.
• Risk-driven decision making (marked red in Figure 1): For risk-driven decision

making, the security parameter helps mitigate a risk, or to be more precise, it helps to
reduce the impact or likelihood of a high-consequence event (HCE) occurring; thus,
the addressed HCE serves as a rationale for the risk-driven security decision. If attack
scenarios that include one of the security parameter’s attack indicators have been
defined, these may be referenced in the rationale as well. Example: for the same security
parameter selection “integrity protection of PLC logic: hash”, a risk-driven rationale could be
that the parameter value “integrity protection of PLC logic: none” is used in a potential attack
scenario leading to the HCE “reactor explodes”.

• Compliance-driven decision making (marked grey in Figure 1): For compliance-
driven decisions, the security parameter helps comply with a specific regulation or
standard. As a rationale, it is sufficient to reference the relevant regulation or standard.
Example: for the security parameter selection “CVE-2023-001: patched”, a compliance-driven
rationale could be “national critical infrastructure protection directive, §1” (assuming that,
in the example country, patching certain vulnerabilities is mandated in critical infrastruc-
ture regulation).

Thus, each decision (i.e., each selected security parameter value) has at least one
rationale—a goal for a goal-driven decision, an HCE and maybe an attack scenario for a
risk-driven decision, and a regulation or standards for a compliance-driven decision. For
some decisions, several rationales may be combined, so a parameter value may have been
selected to both mitigate a risk and to comply with regulation.

Lastly, there is a fourth type of security decision rationale:

• Functional-requirement-driven decision making: Sometimes, a security decision is
made for no security reason, but because the need to fulfill a functional requirement
has taken the security parameter out of the solution space available to security deci-
sion makers. Although it might sound counter-intuitive to call a decision a “security
decision” even though it has been made for no security reason at all, it should be
remembered that it is a security decision because it influences the system’s security

Sensors 2023, 23, 5547 13 of 30

posture, not because it was made for security reasons. Maybe even more than for
security decisions actually made for security reasons, it matters to be aware of these de-
cisions, because it means the overall security posture is (often negatively) impacted by
decisions made outside the security domain. Example: for the security parameter selection

“updating logic during operations: enabled”, a functional-requirement-based rationale could be
“enable on-line program changes to accommodate for fast adaptation of modular plants”.

3.2. Function-Based Security Parameter Libraries

The security parameter library has the main purpose of making decision identifica-
tion fast and easy for decision makers who neither have the time nor security expertise.
Therefore, each security parameter is tied to one or more functions, or to be more specific,
to one or more function entities. Therefore, the security parameter library really is com-
posed of four related libraries: security parameters, functions, entities (including humans),
and protocols.

For security decision identification, the decision maker does not select security param-
eters, but functions that the system under consideration is intended to fulfill (see an excerpt
of library function categories and functions in each category in Table 3). The security
parameters are tied to the function entities, so they are gathered automatically once all
relevant functions are selected.

Table 3. Excerpts from function library categories and example function titles in each category.

Library Category Exemplary Functions in This Category

IT administration Manage clients; administrate users; . . .

Security services Detect malware; monitor security events; . . .

Network operations Synchronize time; resolve names; . . .

Automated control Influence physical process; transmit measurements to
control system; . . .

Operate and monitor Display controller states; react to alarms; force
controller outputs; . . .

Cloud Offline data analysis; forecast operating data; . . .

Office operations Save files; place an order; pay a bill; . . .

Engineering Update PLC logic; test and debug PLC logic; calibrate
sensor; . . .

Building automation Monitor climate; operate lights automatically; . . .

Communication services Transfer file to third party; transfer file internally; send
e-mail; . . .

Process information services Archive process data; analyze process data; . . .

.

Example: The security parameter “logic update during operations” is tied to the entities “PLC”
and “Safety PLC”. Thus, it is identified as a security decision whenever a function containing a
PLC or safety PLC is selected in workflow step 1.

Security parameters in the library have fixed attributes. Security parameter attributes are
displayed in Table 4, using the parameter “logic update during operations” as an example.

The function-based security parameter library concept addresses the following of the
previously identified problems:

Problem 1: “Undercover” security decisions: The security parameter library serves
the purpose of facilitating a more complete security decision identification than usual
security requirements checklists. Security parameters make security decisions visible,
including configuration details that may not seem security-relevant at first sight or “insecure
by design” features.

Sensors 2023, 23, 5547 14 of 30

In addition, security parameters are unlike security requirements because they do not
have a required value. They have two or more possible values and neutrally inform the
decision maker about the security implications of each of these values.

Problem 2: Lack of comprehensive guidance for security decision making: As de-
scribed above, the security parameter library is function-based, so the decision maker does
not have to select from a list of security parameters, but simply which functions the system
under consideration is intended to fulfill. That way, the decision maker is guided through
the decision identification process by answering one simple, not-at-all security-related
question: What is my system intended to do?

Beyond providing guidance for decision identification, the libraries contribute to
guiding the decision maker through decision making because security parameters can
be decided upon function by function and because the security parameters contain built-
in guidance: explanations why they are security-relevant and which possible parameter
values could be used in a security attack (attack indicators).

Problem 3: Shortcomings in system understanding: Because selecting security pa-
rameters takes place through selecting functions, a basis for system understanding is
created on the fly. While a network map may also be created, functions contain more infor-
mation than only a network map: interactions/data flows between components, human
“components”, and the intention of the system components and interactions.

General problem 1: CPS engineers do not have security expertise: Security param-
eter libraries encapsulate the security knowledge that decision makers are lacking. They
contain the information regarding which of the many system aspects have an impact on
security, why that is, and which possible parameter values have which security implication.

General problem 2: CPS engineers do not have time for security: Libraries in gen-
eral are big timesavers because instead of creating information, decision makers simply
have to choose from existing information, which can be carried out much faster. Because the
security parameter libraries are function-based, time is saved not only for security decision
identification, but also for system modeling and understanding, which is a precondition to
informed security decision making.

Table 4. Security parameter attributes for example parameter “logic update during operations”.

ID and Title SP091: Logic Update during Operations

Description
Some controllers have a configuration that allows the controller logic to
be updated during operation (i.e., the controller does not have to be
shut down).

Entities 1 PLC; Safety PLC

Possible values Enabled; disabled

Attack indicators 2 Enabled

Security relevance

Updating during operation may be technically necessary. From a
security point of view, however, it makes it easier to manipulate the
controller, and because the PLC is in operation, the manipulated logic
would then also be directly productive, regardless of system state.

Reference 3 /
1 Entities to which the security parameter may apply. 2 Parameter values that may be used in a security attack
and thus regarded as critical. 3 Reference to related documents (guidelines, manuals, . . .). For some parameters
or entities, more detailed descriptions of options are available, e.g., in vendor manuals.

3.3. Function-Based Security Diagrams

In Ref. [56], the authors have analyzed in detail why and how visual representations
are beneficial for security decision making. These are the two main reasons:

First, the security information base can grow to a considerable size, and security
decision makers cannot be experts for all the information they have to digest because it
stems from a broad range of domains (hardware/software engineering, process engineering,

Sensors 2023, 23, 5547 15 of 30

network engineering, potentially safety engineering. . .). Research has proven that visual
representations are superior to other representations in scenarios where lots of information
need to be communicated to non-experts, because large portions of visualizations are
consumed subconsciously and thus highly efficiently [57–60].

Second, much of the information relevant for security decision making is difficult
to convey text-only. Especially for functions and network maps, there are core pieces of
information that cannot be adequately presented in texts or tables: location and relations of
the entities. However, for the proposed security decision-making workflow, functions (and
networks) are of fundamental importance in every workflow step.

Again in [56], the authors have carved out requirements and main pillars for use-
ful visualizations in the context of security decision making. Four diagram types were
developed that fulfill these requirements: High-consequence event diagrams, function
diagrams, security decision diagrams, and attack diagrams (see Figure 2). The security
decision diagram is designed to facilitate decision making, while the other three diagram
types help in filling the decision base. Table 5 summarizes how each of the diagram types
is used in the security decision-making workflow.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 31

Figure 2. Four proposed diagram types for security decision making [56]. All diagrams except for

the High-Consequence Event diagram are function-based: they use a function drawing as their base

and layer other relevant security concepts on top. The security decision diagram is designed to fa-

cilitate decision making, while the other three diagram types help in filling the decision base (see

Table 5 for details). The numbers in blue circles in the security decision diagram indicate the number

of security parameters for the respective entity. The numbers in red circles in the security attack

diagram indicate the sequence of events in the attack scenario.

Table 5. Use of the four diagram types in the security decision-making workflow.

Workflow Step Activity Diagram Type

1. Identify security

decisions
Choose/modify functions Function diagram

Gain overview of security decisions

that need to be made/have been made

Security decision

diagram

2. Fill decision base

Provide network architecture context Function diagram

Define security goals
Security decision

diagram

Define High-Consequence Events

HCE diagram

(opt.),

Security decision

diagram

Model attack scenarios leading to HCEs

Attack diagram

(opt.), Security de-

cision diagram

Define applicable regulation or standards
Security decision

diagram

3. Make security

decisions

Eliminate unnecessary functions Function diagram

Decide about security parameters and document

rationale(s)

Security decision

diagram

Figure 2. Four proposed diagram types for security decision making [56]. All diagrams except for the
High-Consequence Event diagram are function-based: they use a function drawing as their base and
layer other relevant security concepts on top. The security decision diagram is designed to facilitate
decision making, while the other three diagram types help in filling the decision base (see Table 5 for
details). The numbers in blue circles in the security decision diagram indicate the number of security
parameters for the respective entity. The numbers in red circles in the security attack diagram indicate
the sequence of events in the attack scenario.

Example: The function “update of PLC logic” is deemed relevant for the system under con-
sideration. The library function shows two ways of updating PLC logic, one over the network, and
one using a serial connection between the programming device and PLC. For the system under
consideration, the function drawing is modified to display only the serial option.

Next, the security decision base is filled. The high-consequence event (HCE) “reactor explodes”
is selected from the high-consequence event diagram because abusing the function “update of PLC
logic” could potentially lead to this HCE. An attack diagram is opened to show all potential attack

Sensors 2023, 23, 5547 16 of 30

points for this function, and some of them are used to model an attack scenario leading to the HCE.
Back in the security decision diagram, a security goal is recorded—critical infrastructure regulations
need to be complied with.

The security decision diagram shows four security parameters to be decided for this function.
To decide, the security decision base is consulted. All relevant information can be layered on top
of the security decision diagram: the security goals, the attack scenario, and which attack points
have been used in the attack scenario. Based on this information, it is decided that CVE-2023-001 is
to be patched (because of the compliance security goal and because the CVE plays a major role in
the modeled attack scenario). In addition, the attack scenario suggests that it matters to protect the
integrity of PLC logic, so the “hash” option is selected for this parameter. It may also help prevent
the attack scenario if the update of logic during operations would be disabled, but this is not an
option, because it is a functional requirement—this security decision has already been made, as the
security decision diagram shows (also see Figure 5).

Table 5. Use of the four diagram types in the security decision-making workflow.

Workflow Step Activity Diagram Type

1. Identify security decisions Choose/modify functions Function diagram

Gain overview of
security decisions
that need to be made/have
been made

Security decision diagram

2. Fill decision base

Provide network
architecture context Function diagram

Define security goals Security decision diagram

Define High-Consequence
Events

HCE diagram (opt.),
Security decision diagram

Model attack scenarios leading
to HCEs

Attack diagram (opt.),
Security decision diagram

Define applicable regulation
or standards Security decision diagram

3. Make security decisions

Eliminate unnecessary functions Function diagram

Decide about security
parameters and
document rationale(s)

Security decision diagram

Examples for the function and security decision diagrams are given in Figures 3–5 (the
use of the other two diagram types is optional). All examples are mockups that were used
for the requirement definition for the software demonstrator (see Section 3.4).

The function-based security diagram concept addresses the following problems identi-
fied earlier:

Regarding problem 2: Lack of comprehensive guidance for security decision mak-
ing: For the security decision base, it helps to have all relevant information available, but
it can grow quite large and an unstructured pile of information does not exactly qualify
as decision-making guidance. The four diagram types help to only present the relevant
information needed for each activity in the decision-making workflow.

Additionally, the fact that diagrams are function-based reduces the complexity because
decision makers can be walked through all their decisions function by function instead of
looking at an overwhelmingly large number of open decisions and relevant information.

Regarding problem 3: Shortcomings in system understanding: The most important
means for system understanding in the proposed workflow is the function concept, and, as
discussed earlier, functions cannot be completely represented without diagrams.

Sensors 2023, 23, 5547 17 of 30

Regarding problem 5: Increasing amount of information to be digested: Diagrams,
as mentioned earlier, are superior to other representations in scenarios where lots of
information need to be communicated [56–60].

Regarding general problem 1: CPS engineers do not have security expertise: Di-
agrams, as mentioned earlier, are superior to other representations in scenarios where
information needs to be communicated to non-experts [56–60].

Regarding general problem 2: CPS engineers do not have time for security: As
mentioned earlier, communicating information in diagrams saves times because large
portions of visualizations are consumed subconsciously and thus highly efficiently [56–60].

Sensors 2023, 23, x FOR PEER REVIEW 17 of 31

Example: The function “update of PLC logic” is deemed relevant for the system under con-

sideration. The library function shows two ways of updating PLC logic, one over the network, and

one using a serial connection between the programming device and PLC. For the system under

consideration, the function drawing is modified to display only the serial option.

Next, the security decision base is filled. The high-consequence event (HCE) “reactor ex-

plodes” is selected from the high-consequence event diagram because abusing the function “update

of PLC logic” could potentially lead to this HCE. An attack diagram is opened to show all potential

attack points for this function, and some of them are used to model an attack scenario leading to the

HCE. Back in the security decision diagram, a security goal is recorded—critical infrastructure

regulations need to be complied with.

The security decision diagram shows four security parameters to be decided for this function.

To decide, the security decision base is consulted. All relevant information can be layered on top of

the security decision diagram: the security goals, the attack scenario, and which attack points have

been used in the attack scenario. Based on this information, it is decided that CVE-2023-001 is to

be patched (because of the compliance security goal and because the CVE plays a major role in the

modeled attack scenario). In addition, the attack scenario suggests that it matters to protect the

integrity of PLC logic, so the “hash” option is selected for this parameter. It may also help prevent

the attack scenario if the update of logic during operations would be disabled, but this is not an

option, because it is a functional requirement—this security decision has already been made, as the

security decision diagram shows (also see Figure 5).

Examples for the function and security decision diagrams are given in Figures 3–5

(the use of the other two diagram types is optional). All examples are mockups that were

used for the requirement definition for the software demonstrator (see Section 3.4).

Figure 3. Function diagram mockup for example function “update of PLC logic” in the context of

an exemplary network model.
Figure 3. Function diagram mockup for example function “update of PLC logic” in the context of an
exemplary network model.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 31

Figure 4. Decision diagram mockup for example function “update of PLC logic” in the context of an

exemplary network model. The numbers in blue circles indicate the number of security parameters

for the respective entity.

Figure 5. Decision diagram including decision rationales for example function “update of PLC

logic”. The numbers in blue circles indicate the number of security parameters for the respective

entity.

The function-based security diagram concept addresses the following problems iden-

tified earlier:

Regarding problem 2: Lack of comprehensive guidance for security decision mak-

ing: For the security decision base, it helps to have all relevant information available, but

it can grow quite large and an unstructured pile of information does not exactly qualify

as decision-making guidance. The four diagram types help to only present the relevant

information needed for each activity in the decision-making workflow.

Additionally, the fact that diagrams are function-based reduces the complexity be-

cause decision makers can be walked through all their decisions function by function in-

stead of looking at an overwhelmingly large number of open decisions and relevant in-

formation.

Figure 4. Decision diagram mockup for example function “update of PLC logic” in the context of an
exemplary network model. The numbers in blue circles indicate the number of security parameters
for the respective entity.

Sensors 2023, 23, 5547 18 of 30

Sensors 2023, 23, x FOR PEER REVIEW 18 of 31

Figure 4. Decision diagram mockup for example function “update of PLC logic” in the context of an

exemplary network model. The numbers in blue circles indicate the number of security parameters

for the respective entity.

Figure 5. Decision diagram including decision rationales for example function “update of PLC

logic”. The numbers in blue circles indicate the number of security parameters for the respective

entity.

The function-based security diagram concept addresses the following problems iden-

tified earlier:

Regarding problem 2: Lack of comprehensive guidance for security decision mak-

ing: For the security decision base, it helps to have all relevant information available, but

it can grow quite large and an unstructured pile of information does not exactly qualify

as decision-making guidance. The four diagram types help to only present the relevant

information needed for each activity in the decision-making workflow.

Additionally, the fact that diagrams are function-based reduces the complexity be-

cause decision makers can be walked through all their decisions function by function in-

stead of looking at an overwhelmingly large number of open decisions and relevant in-

formation.

Figure 5. Decision diagram including decision rationales for example function “update of PLC logic”.
The numbers in blue circles indicate the number of security parameters for the respective entity.

3.4. Workflow Support by Security Data Model and Tool

The proposed decision-making method is implemented in a software demonstrator.
The demonstrator is built as a web application with a React frontend based on Javascript and
a Flask backend based on Python. For data storage, a Neo4j graph database is used. There-
fore, the data model is graph-based as well. It contains all concepts previously introduced
in this chapter: functions, entities, protocols, high-consequence events, security parameters,
attack indicators, attack scenarios, security goals, and standards/regulations. Most impor-
tantly, the software demonstrator contains the function and security parameter libraries
and can display interactive versions of all security diagrams introduced in Section 3.3.
“Interactive” means that all parts of the diagrams can be edited, and additional decision
base information (security parameters, attack points, security goals, high-consequence
events, standards, etc.) can be dynamically shown, hidden, and filtered based on keywords.
In addition, it guides the user through the decision-making workflow displayed in Figure 1.

To enable the technology-independent exchange of engineering data, the demonstrator
has an import/export interface to an AutomationML information model representing all
of the above concepts. For details on the AutomationML model, see [61]. In addition, a
corresponding UML information model is currently being created at NAMUR WG 1.3
(Information models).

The security data model and tool address the following problems identified earlier:
Regarding problem 2: Lack of comprehensive guidance for security decision mak-

ing: A tool does not only make a workflow more efficient as it drastically reduces docu-
mentation efforts; it can also serve as guidance.

Regarding problem 4: Lack of security decision traceability: The true reason why
the proposed workflow enables decision traceability is the carefully selected concepts
(functions, security parameters, HCEs, security goals, attack indicators, attack scenarios,
regulations), which cover all possible security decision-making paths [10]. However,
traceability does not come from the isolated use of any of these concepts. To the contrary,
each decision must be tied to a number of concepts to provide a precise rationale to why it
was made.

The rationale would be complicated and tiresome to document (and a nightmare to
maintain!) without a data model and tool capturing all additions to the decision base and
all decisions made including their relation to decision base elements while the decision
maker is working.

Sensors 2023, 23, 5547 19 of 30

Regarding problem 6: Lack of tool support.
Regarding general problem 1: CPS engineers do not have security expertise: As

an addition to Problem 2 (lack of guidance): especially if a workflow is not exactly daily
business for the users, a tool can help remember the workflow steps.

Regarding general problem 2: CPS engineers do not have time for security: As
explained in Chapter 3.3, diagrams are an indispensable prerequisite for enabling the
security decision-making workflow. A big benefit of the proposed diagram concept is the
selection of only a fraction of the entire security decision-base to be displayed at once to
enable focused decision making. However, this flexibility increases the number of different
diagrams that are needed.

Without a data model and tool that saves all decisions and the entire decision base as
a “single source of truth” from which the diagrams are generated dynamically as needed,
the workflow would not be realistic in any context, and even less so in a context where
time is very limited to begin with.

3.5. Limitations and Open Issues
3.5.1. Library Maintenance

As for all libraries, maintaining security parameter libraries is a challenge. There are
two advantages that make maintenance easier:

First, functions change little over time—it will always be needed to update PLC logic
in some way or the other. Thus, for the function part of the library, little maintenance
is expected.

Second, security parameters are mostly independent of the dynamic cybersecurity
threat landscape because they affect design decisions that are made anyway. What changes
with the threat landscape is the decision base for the risk-driven decision path: New threat
scenarios may arise or their likelihood may increase, and additional parameter values may
turn into attack points. This potentially changes how the security decision is made, but it
mostly does not add new decisions, because the design options remain the same. The only
exception is the security parameters that explicitly contain vulnerabilities, but these can
relatively easily be kept up-to-date by querying CVE databases (if this is not carried out as
part of vulnerability management anyway).

The library maintenance concept includes not having one centralistic library but
having organizations build their own libraries. The authors intend to collaborate with
CPS manufacturers in the future, because they have the knowledge required to build the
security libraries for their components. With upcoming regulations such as the EU Cyber
Resilience Act [2], manufacturers will be incentivized to transparently document their
components’ security capabilities and recommended security configurations anyway, and
maintaining a security-parameter library along with recommended parameter values can
be an efficient way to do so.

3.5.2. Additional Security Decisions (Lifecycle Decisions)

As described in Section 3.2, decision identification in the presented work is completely
based on the function-based security parameter library. This implies that each decision
must be expressed as a security parameter and tied to one of the entities that the functions
are composed of; otherwise, it would not be identified in workflow step 1.

The authors are aware that this limits the decisions that can be identified. Not all
security decisions can be tied to a function or a specific technical or human entity. In fact,
next to these function-based security decisions, a second group of security decisions called
lifecycle security decisions is included in the security parameter library as additional
security parameter attributes.

Lifecycle security decisions are not included in this work, because they have not been
included in validation yet. They are called lifecycle security decisions because they can
be tied to specific points in the systems’ lifecycle beyond design (including the operations
phase) for the system under consideration:

Sensors 2023, 23, 5547 20 of 30

• Procurement: Decision of which security parameters should be included in procure-
ment as SHALL or SHOULD criteria;

• Audits: Decision of which security parameters shall be audited (and how) in factory
acceptance tests (FATs), site acceptance tests (SATs), or other tests/audits;

• Operations (monitoring): Decision of which security parameters should be visualized
on an HMI or alarmed;

• Operations (procedures): Decision of which security parameters need organizational
procedures to be adhered to or are inputs to specific procedures.

4. Validation
4.1. Validation Setup

The validation of the security-by-design decisions concept introduced in this paper was
carried out in a case study/technical action research: An already completed engineering
project at HIMA, a specialist for safety-related automation solutions, was conducted again
(“validation project”), but this time using the proposed security-by-design decision making
concept implemented as a software demonstrator, as described in Section 3.4.

The test persons, i.e., the security decision makers, were HIMA engineers familiar with
the original project. They were not familiar with the proposed security decision-making
method before the validation. The HIMA engineers were responsible for integrating HIMA
products into the plant owner’s plants; they were not the product designers.

The researchers that developed the methodology were actively moderating, but only
to make sure the methodology was being adhered to. They did not comment on or suggest
decisions in any of the three workflow steps outlined in Section 3.1. The validation was
conducted in three workshops over the course of one week.

The subject of the validation project was the review of a legacy automation system for
a plant that produces chloroformates. In the course of digitizing the automation system,
availability and security requirements needed to be reviewed. The automation system scope
extended over various HIMA functional safety controllers, OPC servers, and workstations
as well as network infrastructure and signal interfaces to third-party control systems.

4.2. Validation Method, Questions, and Metrics

The validation was planned following the Design Science Methodology by Wieringa [62].
The validation goal was to answer the three research questions (summarized as decision
identification, decision making, decision tracing) from Section 1. For being able to measure the
validation’s success, the research questions were concretized into the measurable validation
questions along with a mix of quantitative and qualitative metrics for answering them (Table 6).
A question for decision re-use was added to explicitly measure the validity of the function-
based security parameter libraries. For the quantitative metrics, the researchers took counts
during the validation projects. Comparisons to the original project were made either based
on the past project’s documentation or by asking the test persons about differences. For the
qualitative metrics, feedback was collected from the test persons during an interview directly
after the validation project.

Table 6. Validation metrics to measure achievement of the validation goals (research questions),
including results from the validation project described in this paper for the quantitative metrics. For
the quantitative metrics, marked with an arrow (→), the results are explained in Section 4.4.

Validation Question Metric

Decision identification: Do decision makers identify more security
decisions?

148 Decisions identified in 3.5 h.
27 Additional 1 decisions identified

Decision identification: Do decision makers identify the same
security decisions independently from each other?

% Decisions identified by all test persons
NOT MEASURED (only one group of test persons)

Sensors 2023, 23, 5547 21 of 30

Table 6. Cont.

Validation Question Metric

Decision making: Can decision makers make security decisions
autonomously based on the information offered?

61 Decisions made in 4 h (≈15 decisions/h) 2

6 additional architectural decisions made
27 (44%) Additional 1 decisions made
4 (7%) Decisions changed 1

0 (0%) Decisions that could not be made
→Were you the right person to make the decisions?
→Why could you not make decisions/
which information was missing?

Decision tracing: Can a third party understand why each security
decision was made this way?

3 high-consequence events (HCEs), 10 attack scenarios,
11 security goals, 6 standards identified in 1 h.
18 (30%) Goal-driven decisions
22 (36%) Risk-driven decisions
9 (15%) Compliance-driven decisions
35 (57%) Decisions based on a functional requirement 3

0 (0%) Decisions without a rationale
→ Likelihood of use for management/
client communication?

Decision re-use: Can artifacts used/produced during decision
making be re-used in future projects?

14 Applicable library functions (13% of library)
9 (64%) library functions modified
0 (0%) library functions newly created
135 Applicable security parameters (86% of library)
→ Likelihood of re-use in future projects?

1 Compared to the original project conducted without the new methodology. 2 13 decisions not applicable to the
project scope; 74 could not be made, due to time limitations. 3 or based on a functional restriction (some options
not technically feasible).

4.3. Validation Setup Limitations

The strength of the validation setup is that a real project from a real company could be
used as a case study. The major limitation is that the sample size was limited—it was only
one project at one organization (HIMA) in one country (Germany).

However, the project was not accompanied with the new methodology in real time but
revisited in a “lab environment”. This has both advantages and disadvantages: There was
less time pressure, so the test persons could take the time to really understand the method-
ology to be validated. In addition, software and usability issues caused by the software
demonstrator being in an early stage of development did not distort the results. However,
in reality, some time pressure will always be present and one of the underlying assumptions
in the research questions was that engineers had limited time. To address this issue, limited
time was allocated for the validation (and time limitations were communicated up-front).
Additionally, the validation period was set to only one week.

Another limitation is that the organization who conducted the validation project,
HIMA, is a specialist for safety-related automation solutions with a very limited product
range (safety controllers). As pointed out in Section 1, the proposed methodology addresses
engineers at asset owners, integrators, and component manufacturers, so at least the asset
owner view is missing in the validation setup.

The validation project was an authentic engineering project with a broad range of used
HIMA products, which was good. However, it had a specific security focus: the security of
already existing systems and their network architecture were to be improved. This made it
more difficult to “re-evaluate” the project with the security-by-design decisions method,
because the project itself was already a security “re-evaluation”. The advantage of this
setup is that the bar for identifying and making additional security decisions was quite
high, so where additional security decisions were identified, it could be regarded a real
success for the new method.

Sensors 2023, 23, 5547 22 of 30

The test persons who conducted the validation project using the new method were
also part of the team who conducted the original project (without the new methodology).
While this has the advantage of them knowing the project well and being able to compare
the results with and without the new methodology, it also bears the risk of them being
biased toward the decisions they made in the original projects or being reluctant to admit
that they may have overlooked something or made a security decision that was not ideal.
In addition, the test persons did not completely fit the target audience for the security-by-
design decisions methodology (engineers with little time for security and little security
expertise), because they were skilled in security.

For decision identification, it would have been interesting to observe if test per-
sons arrive at the same results independently. However, only one group of test persons
was available.

4.4. Validation Results

The results for all quantifiable validation metrics are summarized in Table 5 and,
alongside the qualitative results, explained below.

Decision identification was performed by selecting functions from the function li-
brary and modifying them to fit the validation project (see Figure 6 for an example).
Afterward, the network architecture (Figure 7) was modeled by combining all entities from
the functions. The selection and modification and architecture modeling took about 3.5 h.
As a result, 148 security parameters associated with the modeled functions were identified.
Among those were 27 that contained decisions that were not identified in the original
project. The test persons stated that the resulting system model reflected their system well.

Sensors 2023, 23, x FOR PEER REVIEW 23 of 31

The test persons who conducted the validation project using the new method were

also part of the team who conducted the original project (without the new methodology).

While this has the advantage of them knowing the project well and being able to compare

the results with and without the new methodology, it also bears the risk of them being

biased toward the decisions they made in the original projects or being reluctant to admit

that they may have overlooked something or made a security decision that was not ideal.

In addition, the test persons did not completely fit the target audience for the security-by-

design decisions methodology (engineers with little time for security and little security

expertise), because they were skilled in security.

For decision identification, it would have been interesting to observe if test persons

arrive at the same results independently. However, only one group of test persons was

available.

4.4. Validation Results

The results for all quantifiable validation metrics are summarized in Table 5 and,

alongside the qualitative results, explained below.

Decision identification was performed by selecting functions from the function li-

brary and modifying them to fit the validation project (see Figure 6 for an example). Af-

terward, the network architecture (Figure 7) was modeled by combining all entities from

the functions. The selection and modification and architecture modeling took about 3.5 h.

As a result, 148 security parameters associated with the modeled functions were identi-

fied. Among those were 27 that contained decisions that were not identified in the original

project. The test persons stated that the resulting system model reflected their system well.

Figure 6. Modified library function “Engineering of safety systems”. The cogwheels indicate iden-

tified security decisions (security parameters). The red circles indicate the number of security pa-

rameters for each entity.

Figure 6. Modified library function “Engineering of safety systems”. The cogwheels indicate iden-
tified security decisions (security parameters). The red circles indicate the number of security
parameters for each entity.

Switching perspectives between function view (Figure 6) and network architecture
view (Figure 7) yielded interesting results. From the function drawings, it becomes apparent
which entities need to communicate (and how) to fulfill a certain purpose. In the network
architecture drawing, the information from the function is set into context—with other,
uninvolved entities, network segments, maybe security components such as firewalls—and
it becomes obvious if one of the interactions needed for the functions becomes problematic
within the network architecture—for example, because network segments need to be
connected that were supposed to be isolated.

This occurred for at least one function (“archiving of notifications”) in the validation
project: the communication path in the function seemed clear, but in the proposed network
architecture, it became clear that there was no connection intended between two of the
involved entities.

Sensors 2023, 23, 5547 23 of 30Sensors 2023, 23, x FOR PEER REVIEW 24 of 31

Figure 7. Function “Engineering of safety systems” displayed in network architecture context. Cog-

wheels indicate identified security decisions (security parameters). The red circles indicate the num-

ber of security parameters for each entity.

Switching perspectives between function view (Figure 6) and network architecture

view (Figure 7) yielded interesting results. From the function drawings, it becomes appar-

ent which entities need to communicate (and how) to fulfill a certain purpose. In the net-

work architecture drawing, the information from the function is set into context—with

other, uninvolved entities, network segments, maybe security components such as fire-

walls—and it becomes obvious if one of the interactions needed for the functions becomes

problematic within the network architecture—for example, because network segments

need to be connected that were supposed to be isolated.

This occurred for at least one function (“archiving of notifications”) in the validation

project: the communication path in the function seemed clear, but in the proposed net-

work architecture, it became clear that there was no connection intended between two of

the involved entities.

After decision identification, the decision base was filled in one hour. Three high-

consequence events (HCEs), ten attack scenarios, eleven security goals, and six standards

or regulations were created to guide decision making.

Decision making was limited by the available workshop time. Four hours were

enough time to go through 74 decisions. A total of 13 of those did not apply to the valida-

tion project, but the remaining 61 decisions were made, resulting in about 15 decisions

made per hour.

Of these 61 decisions, 27 (44%) were additional decisions. There were 4 completely

new decisions that had not been considered in the original project at all, addressing where

and how passwords are saved, how the legitimacy of software is checked before installa-

tion, and how tampering with the IP to ARP assignment is prevented. The remaining 23

additional decisions were made in the original project, but without considering their se-

curity impact at all. These decisions often affected topics that are not typically associated

with security: sensor redundancies, alarm times, alarm priorities, and alarm texts for po-

tentially security-relevant alarms, parallel sessions, bridging and forcing of signals, OSI

layer 1–3 signal processing choices, how new software is deployed, use of shared hosts,

etc.

Figure 7. Function “Engineering of safety systems” displayed in network architecture context.
Cogwheels indicate identified security decisions (security parameters). The red circles indicate the
number of security parameters for each entity.

After decision identification, the decision base was filled in one hour. Three high-
consequence events (HCEs), ten attack scenarios, eleven security goals, and six standards
or regulations were created to guide decision making.

Decision making was limited by the available workshop time. Four hours were
enough time to go through 74 decisions. A total of 13 of those did not apply to the validation
project, but the remaining 61 decisions were made, resulting in about 15 decisions made
per hour.

Of these 61 decisions, 27 (44%) were additional decisions. There were 4 completely new
decisions that had not been considered in the original project at all, addressing where and
how passwords are saved, how the legitimacy of software is checked before installation, and
how tampering with the IP to ARP assignment is prevented. The remaining 23 additional
decisions were made in the original project, but without considering their security impact
at all. These decisions often affected topics that are not typically associated with security:
sensor redundancies, alarm times, alarm priorities, and alarm texts for potentially security-
relevant alarms, parallel sessions, bridging and forcing of signals, OSI layer 1–3 signal
processing choices, how new software is deployed, use of shared hosts, etc.

A quantity of 4 out of the 61 decisions were changed compared to the original project.
However, the significance of this number is limited because the test persons were the
same engineers who also carried out the original project, so they (understandably) rather
explained and justified their decisions made in the original project than change them.

There were no decisions that could not be made at all, and in the follow-up interview,
the test persons said they were mostly the right ones to make the decisions. However, for
seven decisions, they stated that either the asset owner or product designers were the ones
that ultimately had to decide.

The test persons stated that as additional information for decision making, they would
have liked to include more details in the architecture drawing, e.g., zones and conduits
according to IEC 62443-3-2 [63]. In addition, they said an overview of the resulting compli-
ance with selected standards for their decision making would have been helpful. They also

Sensors 2023, 23, 5547 24 of 30

suggested a feature to postpone a decision to decide later, and they said they would have
wished for more guidance regarding the sequence in which they made the decisions.

Decision rationales were given for all decisions—there were no decisions for which
no rationale could be selected. Most decisions (57%) were made based on functional
requirements (or functional restrictions, when some options were not technically feasible).
In other words, most security decisions were not made for security reasons. The number of
risk-based and goal-based decisions was roughly the same (36%/30%). These two rationales
were often given at the same time because risks and goals are often closely coupled. For
example, if a decision is made to meet the goal “Access to components only for authorized
persons”, it likely also mitigates the attack scenario “forcing of a sensor value”. Likewise, a
decision that contributes to the goal “engineering station cannot be abused maliciously”,
likely also prevents the attack scenario “manipulation of safety PLC logic”.

Only for 15% of decisions, test persons selected a compliance-based rationale. This
was an especially interesting result because they beforehand expressed the feeling that the
majority of their security decision making was for compliance reasons.

In the interview, test persons estimated that they could use the decision rationales
for communication toward clients or management if there were enough accompanying
details—i.e., the exact risk, goal, or standard requirement for risk-driven, goal-driven, or
compliance-driven decisions.

Regarding decision re-use, the re-use of functions and security parameters, re-use of
decision base elements (HCEs, security goals, attack scenarios, and standards), and re-use
of made decisions and their rationales must be differentiated between.

For functions, a relatively small portion of library functions was used (13%), but this
was no surprise, since HIMA is also a manufacturer for safety controllers, and therefore all
parts of the library containing ordinary PLCs, control systems, or office-related activities
such as printing did not apply at all. Of the selected library functions, a relatively large
percentage (64%) was modified to fit HIMA’s specific architecture and protocols, but no
function had to be newly created, indicating a good completeness of the function library.

However, although only 13% of functions were selected from the library, 86% of the
library’s security parameters were deemed applicable. This is due to the fact that many
security parameters from the library are assigned to multiple functions and entities.

Test persons estimated that the resulting function and architecture models would be
re-usable for future projects, because HIMA as a component manufacturer obviously tends
to use the same components and protocols for the same reasons across many projects. The
same was true for the decision base. The HCEs, attack scenarios, and security goals were
deemed so universal that they could probably be completely copied for the next project.
Regarding the security decisions and their rationales, test persons said the potential for re-
usability would be highly dependent on the client, the client requirements, the automated
process (i.e., the client industry), and the applying standards.

As overall feedback, the test persons stated that the biggest advantages they saw
were hints to security-relevant aspects they had not considered before.

They were both experienced engineers who knew their systems and their security
features well and said that while, for them personally, the method did not make as much of
a difference, they imagined it valuable to systematically document know-how, allowing
less experienced colleagues to make security decisions as well without needing to consult
the rare specialists. In addition, they stressed that the export of security decision data to
pdf and ideally also machine-readable formats was important, and they wished that there
was an “update service” and/or a trigger for revising security decisions.

5. Discussion

In the following, the key findings from the validation are discussed.
The first observation is that visualizations have generally been perceived as one of

the method’s strengths. The function library seemed to have a good quality, because no
additional functions needed to be created to fully model the scope of the validation project.

Sensors 2023, 23, 5547 25 of 30

Although 64% of the functions had to be adjusted, the library-based modeling was efficient
because adjusting an existing model is faster than creating a new one.

In addition, the comparison of interplay of function and architecture drawings even
yielded completely new insights because functionally needed interactions could be com-
pared with those architecturally intended.

When asked which additional feature they would prefer, the test persons chose the
additional modeling of attack scenarios, stating that they saw a high value in visualization.

The strength of the strongly visualized parts of the methods correlates with some
weaknesses where long lists of information with little visualization needed to be consumed:
the security parameters. The overwhelming number of 148 security decisions in the form
of 148 security parameters was difficult to digest in the list-based form that it currently
has. Although the authors tried to bring structure to the list by assigning parameters to
modeled entities, this did not add much structure, because most parameters applied to a lot
of different entities: although only 13% of library functions were deemed applicable, 86% of
library parameters were attached to these 13% of library functions. Consequently, the test
persons rightfully complained that there was too little guidance regarding the sequence
of security decision making, and the visualizations that helped identify decisions were
put to too little use for decision making. The necessary improvements of the structure
of and navigation through security parameters are among the biggest learnings from
the validation.

The rationales for decisions made held a surprise: By far, the highest number of secu-
rity decisions was not made for security reasons, but because of functional requirements
and/or restrictions. This correlates with the relatively high percentage (44%) of decisions
that were newly identified (as security decisions) using the methodology.

In combination with the test persons’ statement that one of the most important ad-
vantages of the methodology was helping them to think about aspects they may not have
covered so far, this is a strong encouragement to lay an emphasis on adding security pa-
rameters from engineering domains to the library that may not look security-relevant at
first sight. These are exactly the “undercover” security decisions introduced in Section 2.

Lifting the cover from undercover security decisions is obviously important if they
are otherwise made in a way that is detrimental to security, but it also matters if they were
otherwise unconsciously made in a way that is beneficial for security, even if the decision is
good: if it is not explicitly a security decision, it cannot be communicated as such to clients
or fellow engineers, and if it is ever changed, the security impact will be overlooked.

Additionally, the validation results call for a more diverse understanding of security
decisions. While, so far, the method equates a security decision with setting a security
parameter, the validation made clear that architectural decisions such as adding network
segments or security components such as firewalls, data diodes, or other security appliances
such as intrusion detection systems should explicitly be treated as security decisions,
including the traceability of their rationales.

The test persons also indicated an interest in the lifecycle security decisions introduced
in Section 3.5.2, especially those covering security alarms and security acceptance tests.

Lastly, it became clear from the validation that the method so far covers security-by-
design aspects for integrators and asset owners, but it requires a whole different level
of modeling and security parameters to also cover security by design for product de-
velopers. To cover security for products, function and security parameter libraries for
intra-component entities such as CPUs, RAM, and clocks are needed. These product de-
sign libraries should ideally be tested in another round of validation specifically targeting
product developers.

6. Conclusions and Outlook

The security-by-design decisions method presented in this paper has proven to help
CPS engineers autonomously identify and make security decisions that they may not
have made (consciously) without it—fast and with little security expertise. This means

Sensors 2023, 23, 5547 26 of 30

that more of the CPS experts with little time, but also more people with a lower level of
CPS and/or security expertise, can contribute to addressing security issues in products,
automated plants, and critical infrastructures before users put a hand on the systems
(“security by design”).

The problem analysis in this paper has shown that the major problems with security
decision making for CPSs are that non-obvious security decisions are overlooked, that there
is no comprehensive guidance for making security decisions during system design, that
existing methods do not reflect the multitude of reasons why security decisions are made in
practice, that the system understanding phase and the traceability of security decisions are
especially underrepresented in state-of-the art methods, and that many improvements of
CPS security by design correlate with an increasing amount of security-relevant information
to be digested, which can only be performed efficiently if there is tool support.

The presented concept addresses these problems by providing a software demonstrator
that guides security decision makers through the decision-making process and supports
them with interactive diagrams, pre-filled security libraries, and an automatically populated
data model to store all decisions and their rationales.

One of the biggest proven strengths of the method is to draw attention to security
decisions that may otherwise not have been identified as such. Each consciously made
security decision that may otherwise have been overlooked means that there is one fewer
potential vulnerability; one fewer potential vulnerability that end users need to be notified
of, assess, and fix; one potential vulnerability that—if not fixed—could result in industry
incidents harming people or the environment, or causing outages in critical infrastructures
such as food, water, or power supply.

One of the biggest challenges of the method is to adjust the level of detail for the
security libraries so that they are still maintainable, but specific enough to be useful, and to
present the identified security decisions in a way that is intuitive and efficient to navigate for
the security decision makers without having to comb through long lists. In addition, library
maintenance is a challenge. The authors intend to collaborate with CPS manufacturers in
the future, because they have the knowledge required to build the security libraries for
their components. With upcoming regulations such as the EU Cyber Resilience Act [2],
manufacturers will be incentivized to transparently document their components’ security
capabilities and recommended security configurations anyway, and maintaining a security-
parameter library along with recommended parameter values can be an efficient way to
do so.

The software demonstrator used to validate the presented method was an early version
that did not yet cover all planned parts of the method. In future research, it will be
completed, adding extra modules to model attack scenarios and help with the timing of
security decisions within existing engineering workflows (see [64–66] for groundwork).

In addition, the key findings from the validation described in this paper will be
addressed: additional decision types will be introduced, and more guidance for navigating
through all identified security decisions will be provided.

While the validation was so far carried out with integrators, additional rounds of
validation with product designers and asset owners are being planned.

For practitioners who are looking into integrating security into their CPS engineering
processes according to the proposed method, important first steps are to develop a system
understanding through creating function-based system diagrams as early as possible during
system design, and to think about what drives (or is supposed to drive) their security-
by-design decision making: risk, security goals, compliance, similar decisions made in
earlier projects, functional requirements, or a combination or all? This is the groundwork
for creating a useful security decision base and making more informed security decisions.
Practitioners (CPS manufacturers or operators alike) who want to develop their own
security libraries or support the author’s library-building are welcome to reach out to
the authors.

Sensors 2023, 23, 5547 27 of 30

The presented work also has implications for security policymakers. The problem
analysis shows that for incorporating security by design into CPS engineering, decision
makers need flexibility regarding the reasons and paths upon which they arrive at a secu-
rity design decision. Security-by-design regulation should not prescribe specific security
requirements, but instead require transparency and sound rationales for all security deci-
sions made—and ideally also work toward a harmonized, machine-processable format to
document these decisions.

Author Contributions: Conceptualization, S.F.; methodology, S.F. and E.T. (AutomationML); valida-
tion, T.T., A.H., S.F. and E.T.; writing—original draft preparation, S.F.; writing—review and editing,
T.T., R.D. and A.F.; visualization, S.F.; supervision, R.D. and A.F.; project administration, S.F.; funding
acquisition, S.F. and R.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Bundesministerium für Bildung und Forschung (German
Federal Ministry of Education and Research), grant number 16KIS1269K [67].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The data presented in this study are partially available upon request
from the corresponding author. Some data are not publicly available, due to confidentiality agree-
ments with an affected third party. These data are sensitive because they contain architectural details
and security considerations that could potentially be used for a security attack.

Acknowledgments: The software demonstrator for the method validation was programmed by
Marc Kassel, Martin Lang, Sabrina Schorer, Christof Neugebauer, and Alexander Santel of admeritia.
Dietmar Marggraff, Tobias Halmans and Jonas Prämaßing of admeritia contributed to creating the
function and security parameter libraries. All of the above, plus Tobias Trumpf and Mike Bauermeister
of HIMA, supported the validation and the measuring of validation metrics.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Easterly, J.; Goldstein, E. Stop Passing the Buck on Cybersecurity: Why Companies Must Build Safety Into Tech Products. Foreign

Aff. 2023, 102. Available online: https://www.foreignaffairs.com/united-states/stop-passing-buck-cybersecurity (accessed on 1
April 2023).

2. European Parliament/European Council. Proposal for a Regulation on Horizontal Cybersecurity Requirements for Products with
Digital Elements (COM/2022/454): Cyber Resilience Act (CRA). 2022. Available online: https://digital-strategy.ec.europa.eu/
en/library/cyber-resilience-act (accessed on 1 April 2023).

3. Biden-Harris Administration. National Cybersecurity Strategy; The White House: Washington, DC, USA, 2023. Available
online: https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf (accessed on 1
April 2023).

4. CISA; NSA; FBI; ACSC; NCSC-UK; CCCS; BSI; NCSC-NL; CERT NZ; NCSC-NZ. Shifting the Balance of Cybersecurity Risk:
Principles and Approaches for Security-by-Design and -Default. 2023. Available online: https://www.cisa.gov/resources-tools/
resources/secure-by-design-and-default (accessed on 25 April 2023).

5. Hollender, M. Collaborative Process Automation Systems; ISA: Durham, NC, USA, 2009; ISBN 978-1-936007-10-3.
6. NAMUR e. V. NA35—Engineering and Execution of PCT Projects in Process Industry; NAMUR: Leverkusen, Germany, 2019.
7. Kieseberg, P.; Weippl, E. Security Challenges in Cyber-Physical Production Systems. In Software Quality: Methods and Tools for

Better Software and Systems; Winkler, D., Biffl, S., Bergsmann, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018;
pp. 3–16. ISBN 978-3-319-71439-4.

8. Eckhart, M.; Ekelhart, A.; Luder, A.; Biffl, S.; Weippl, E. Security Development Lifecycle for Cyber-Physical Production Systems.
In Proceedings of the IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17
October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 3004–3011, ISBN 978-1-7281-4878-6.

9. Ruiz, J.F.; Maña, A.; Rudolph, C. An Integrated Security and Systems Engineering Process and Modelling Framework. Comput. J.
2015, 58, 2328–2350. [CrossRef]

10. Fluchs, S.; Drath, R.; Fay, A. A Security Decision Base: How to Prepare Security by Design Decisions for Industrial Control
Systems. In Proceedings of the 17th EKA (Fachtagung “Entwurf Komplexer Automatisierungssysteme”), EKA 2022, Magdeburg,
Germany, 11–12 June 2022; ISBN 978-3-948749-23-1.

https://www.foreignaffairs.com/united-states/stop-passing-buck-cybersecurity
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://digital-strategy.ec.europa.eu/en/library/cyber-resilience-act
https://www.whitehouse.gov/wp-content/uploads/2023/03/National-Cybersecurity-Strategy-2023.pdf
https://www.cisa.gov/resources-tools/resources/secure-by-design-and-default
https://www.cisa.gov/resources-tools/resources/secure-by-design-and-default
https://doi.org/10.1093/comjnl/bxu152

Sensors 2023, 23, 5547 28 of 30

11. IEC 62443-2-1; Industrial Communication Networks—Network and System Security—Part 2-1: Establishing an Industrial
Automation and Control System Security Program. IEC: Geneva, Switzerland, 2010.

12. IEC 62443-4-1; Security for Industrial Automation and Control Systems-Part 4-1: Secure Product Development Lifecycle Require-
ments. IEC: Geneva, Switzerland, 2018.

13. IEC 62443-4-2; Security for Industrial Automation and Control Systems-Part 4-2: Technical Security Requirements for IACS
Components. IEC: Geneva, Switzerland, 2018.

14. IEC 62443-3-3; Industrial Communication Networks-Network and System Security-Part 3-3: System Security Requirements and
Security Levels. IEC: Geneva, Switzerland, 2013.

15. ISO/IEC 27001:2022; Information Security, Cybersecurity and Privacy Protection—Information Security Management Systems—
Requirements. ISO/IEC: Geneva, Switzerland, 2022.

16. NIST. Framework for Improving Critical Infrastructure Security, Version 1.1. 2018. Available online: https://nvlpubs.nist.gov/
nistpubs/CSWP/NIST.CSWP.04162018.pdf (accessed on 29 March 2023).

17. Anderson, R. Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd ed.; Wiley: Indianapolis, Indiana, 2008;
ISBN 978-0-470-06852-6.

18. Baskerville, R. Information systems security design methods: Implications for information systems development. ACM Comput.
Surv. 1993, 25, 375–414. [CrossRef]

19. Peterson, D. Explore . . . (S4x23 Keynote). Available online: https://dale-peterson.com/2023/02/21/explore-s4x23-intro/
(accessed on 29 March 2023).

20. An, L.; Yang, G.-H. Distributed secure state estimation for cyber–physical systems under sensor attacks. Automatica 2019, 107,
526–538. [CrossRef]

21. Peterson, D. Insecure by Design/Secure by Design. Available online: https://dale-peterson.com/2013/11/04/insecure-by-
design-secure-by-design/ (accessed on 9 May 2022).

22. Directive (EU) 2022/2555 on Measures for a High Common Level of Cybersecurity Across the Union: NIS 2 Directive; Official Journal of
the European Union L333/80; European Union: Luxembourg, 2022.

23. Directive (EU) 2022/2557 on the Resilience of Critical Entities: RCE Directive; Official Journal of the European Union L333/164;
European Union: Luxembourg, 2022.

24. Presidential Policy Directive–Critical Infrastructure Security and Resilience: PPD-21. 2013. Available online: https://www.cisa.
gov/sites/default/files/2023-01/ppd-21-critical-infrastructure-and-resilience-508_0.pdf (accessed on 1 April 2023).

25. Cherdantseva, Y.; Burnap, P.; Blyth, A.; Eden, P.; Jones, K.; Soulsby, H.; Stoddart, K. A review of cyber security risk assessment
methods for SCADA systems. Comput. Secur. 2016, 56, 1–27. [CrossRef]

26. Lemaire, L.; Vossaert, J.; de Decker, B.; Naessens, V. An Assessment of Security Analysis Tools for Cyber-Physical Systems. In Risk
Assessment and Risk-Driven Quality Assurance; Großmann, J., Felderer, M., Seehusen, F., Eds.; Springer International Publishing:
Cham, Switzerland, 2017; pp. 66–81. ISBN 978-3-319-57857-6.

27. Fluchs, S.; Rudolph, H. Making OT security engineering deserve its name—A guide to security engineering for OT engineers.
CONTROL Glob. 2019. Available online: https://www.controlglobal.com/articles/2019/making-ot-security-engineering-
deserve-its-name (accessed on 1 April 2023).

28. Fluchs, S.; Rudolph, H. Wie OT-Security-Engineering eine Ingenieurwissenschaft wird-Ein Denkmodell und ein Datenmodell
[Making OT Security Engineering an Engineering Discipline-A Thought Model and a Data Model]. Atp Mag. 2019, 61, 74–86.
[CrossRef]

29. Haley, C.B.; Laney, R.; Moffett, J.D.; Nuseibeh, B. Security Requirements Engineering: A Framework for Representation and
Analysis. IEEE Trans. Softw. Eng. 2008, 34, 133–153. [CrossRef]

30. Mead, N.R.; Stehney, T. Security quality requirements engineering (SQUARE) methodology. ACM SIGSOFT Softw. Eng. Notes
2005, 30, 1–7. [CrossRef]

31. Mouratidis, H.; Giorgini, P. Secure Tropos: A security-oriented extension of the Tropos methodology. Int. J. Softw. Eng. Knowl.
Eng. 2007, 17, 285–309. [CrossRef]

32. Elahi, G.; Yu, E. A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs. In Conceptual Modeling-ER 2007;
Parent, C., Schewe, K.-D., Storey, V.C., Thalheim, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 375–390. ISBN
978-3-540-75562-3/978-3-540-75563-0.

33. Hatebur, D.; Heisel, M.; Schmidt, H. A Security Engineering Process based on Patterns. In Proceedings of the 18th International
Conference on Database and Expert Systems Applications (DEXA 2007), Regensburg, Germany, 3–7 September 2007; IEEE:
Regensburg, Germany, 2007; pp. 734–738, ISBN 978-0-7695-2932-5.

34. Vasilevskaya, M. Designing Security-Enhanced Embedded Systems: Bridging Two Islands of Expertise; Linköping University Electronic
Press: Linköping, Sweden, 2013; ISBN 978-91-7519-486-8.

35. Vivas, J.L.; Montenegro, J.A.; López, J. Towards a Business Process-Driven Framework for Security Engineering with the UML. In
Information Security; Goos, G., Hartmanis, J., van Leeuwen, J., Boyd, C., Mao, W., Eds.; Springer: Berlin/Heidelberg, Germany,
2003; pp. 381–395. ISBN 978-3-540-20176-2/978-3-540-39981-0.

36. Department of Information Engineering and Computer Science, University of Trento. The Tropos Methodology. Available online:
http://www.troposproject.eu/node/93 (accessed on 1 April 2023).

https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://nvlpubs.nist.gov/nistpubs/CSWP/NIST.CSWP.04162018.pdf
https://doi.org/10.1145/162124.162127
https://dale-peterson.com/2023/02/21/explore-s4x23-intro/
https://doi.org/10.1016/j.automatica.2019.06.019
https://dale-peterson.com/2013/11/04/insecure-by-design-secure-by-design/
https://dale-peterson.com/2013/11/04/insecure-by-design-secure-by-design/
https://www.cisa.gov/sites/default/files/2023-01/ppd-21-critical-infrastructure-and-resilience-508_0.pdf
https://www.cisa.gov/sites/default/files/2023-01/ppd-21-critical-infrastructure-and-resilience-508_0.pdf
https://doi.org/10.1016/j.cose.2015.09.009
https://www.controlglobal.com/articles/2019/making-ot-security-engineering-deserve-its-name
https://www.controlglobal.com/articles/2019/making-ot-security-engineering-deserve-its-name
https://doi.org/10.17560/atp.v61i8.2410
https://doi.org/10.1109/TSE.2007.70754
https://doi.org/10.1145/1082983.1083214
https://doi.org/10.1142/S0218194007003240
http://www.troposproject.eu/node/93

Sensors 2023, 23, 5547 29 of 30

37. Yu, E.S. Social Modeling and i*. In Conceptual Modeling: Foundations and Applications; Borgida, A.T., Chaudhri, V.K., Giorgini, P.,
Yu, E.S., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 99–121. ISBN 978-3-642-02462-7/978-3-642-02463-4.

38. Morkevicius, A.; Bisikirskiene, L.; Bleakley, G. Using a systems of systems modeling approach for developing Industrial Internet
of Things applications. In Proceedings of the 2017 12th System of Systems Engineering Conference (SoSE), Waikoloa, HI, USA,
18–21 June 2017; IEEE: Waikoloa, HI, USA, 2017; pp. 1–6, ISBN 978-1-5090-5945-4.

39. Lemaire, L.; Lapon, J.; de Decker, B.; Naessens, V. A SysML Extension for Security Analysis of Industrial Control Systems. In
Proceedings of the 2nd International Symposium for ICS & SCADA Cyber Security Research 2014, St. Poelten, Austria, 11–12
September 2014; BCS Learning & Development: Swindon, UK, 2014. ISBN 978-1-78017-286-6.

40. Fluchs, S. Fluchs, S. For Security, Think Functions-Not Systems, 2020. Fluchsfriction. Available online: https://fluchsfriction.
medium.com/for-security-think-functions-not-systems-b0e08a9d89b6 (accessed on 1 April 2023).

41. Ruiz, J.F.; Rudolph, C.; Mana, A.; Arjona, M. A security engineering process for systems of systems using security patterns. In
Proceedings of the 2014 IEEE International Systems Conference Proceedings, Ottawa, ON, Canada, 31 March–3 April 2014; IEEE:
Ottawa, ON, Canada, 2014; pp. 8–11, ISBN 978-1-4799-2086-0.

42. Schumacher, M. Security Engineering with Patterns: Origins, Theoretical Models, and New Applications; Springer: Berlin/Heidelberg,
Germany; New York, NY, USA, 2003; ISBN 978-3-540-40731-7.

43. Schumacher, M.; Fernandez-Buglioni, E.; Hybertson, D.; Buschmann, F.; Sommerlad, P. Security Patterns: Integrating Security and
Systems Engineering; John Wiley & Sons: Chichester, UK; Hoboken, NJ, USA, 2006; ISBN 978-0-470-85884-4.

44. Common Criteria. Common Criteria for Information Technology Security Evaluation. Version 3.1, Revision 5. Available online:
https://www.commoncriteriaportal.org/cc/ (accessed on 1 April 2023).

45. Glawe, M.; Tebbe, C.; Fay, A.; Niemann, K.-H. Knowledge-based Engineering of Automation Systems using Ontologies and
Engineering Data. In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering
and Knowledge Management, Lisbon, Portugal, 12–14 November 2015; SCITEPRESS-Science and and Technology Publications:
Lisbon, Portugal, 2015; pp. 291–300, ISBN 978-989-758-158-8.

46. Tebbe, C. Durchgängiges Wissensmanagement von OT-Security-Wissen im Lebensweg von Produktionsanlagen; Helmut Schmidt
Universität/Universität der Bundeswehr Hamburg: Hamburg, Germany, 2021.

47. Eckhart, M.; Ekelhart, A.; Weippl, E.R. Automated Security Risk Identification Using AutomationML-based Engineering Data.
IEEE Trans. Dependable Secur. Comput. 2020, 19, 1655–1672. [CrossRef]

48. MITRE. ATT&CK for ICS. Available online: https://attack.mitre.org/matrices/ics/ (accessed on 29 May 2022).
49. Object Management Group. Unified Modeling Language (UML) Specification v2.5.1. Available online: https://www.omg.org/

spec/UML/2.5.1/About-UML/ (accessed on 1 April 2023).
50. Bagade, P.; Banerjee, A.; Gupta, S. Validation, Verification, and Formal Methods for Cyber-Physical Systems. In Cyber-Physical

Systems; Elsevier: Amsterdam, The Netherlands, 2017; pp. 175–191. ISBN 9780128038017.
51. Krichen, M.; Lahami, M.; Cheikhrouhou, O.; Alroobaea, R.; Maâlej, A.J. Security Testing of Internet of Things for Smart City

Applications: A Formal Approach. In Smart Infrastructure and Applications; Mehmood, R., See, S., Katib, I., Chlamtac, I., Eds.;
Springer International Publishing: Cham, Switzerland, 2020; pp. 629–653. ISBN 978-3-030-13704-5.

52. Uzunov, A.V.; Fernandez, E.B.; Falkner, K. Engineering Security into Distributed Systems: A Survey of Methodologies. J. Univers.
Comput. Sci. 2012, 18, 2920–3006.

53. Crawley, E.; Cameron, B.; Selva, D. System Architecture: Strategy and Product Development for Complex Systems; Global Edition;
Pearson: Edinburgh, UK, 2016; ISBN 978-1-292-11084-4.

54. Walden, D.D.; Roedler, G.J.; Forsberg, K.; Hamelin, R.D.; Shortell, T.M. INCOSE Systems Engineering Handbook: A Guide for System
Life Cycle Processes and Activities, 4th ed.; Wiley: Hoboken, NJ, USA, 2015; ISBN 978-1-118-99941-7/978-1-119-01512-3.

55. Bochman, A.A.; Freeman, S.G. Countering Cyber Sabotage. In Introducing Consequence-Driven, Cyber-Informed Engineering (CCE),
1st ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2021; ISBN 978-1-00-313082-6.

56. Fluchs, S.; Drath, R.; Fay, A. Evaluation of Visual Notations as a Basis for ICS Security Design Decisions. IEEE Access 2023, 11,
9967–9994. [CrossRef]

57. Larkin, J.H.; Simon, H.A. Why a Diagram is (Sometimes) Worth Ten Thousand Words. Cogn. Sci. 1987, 11, 65–100. [CrossRef]
58. Goolkasian, P. Pictures, words, and sounds: From which format are we best able to reason? J. Gen. Psychol. 2000, 127, 439–459.

[CrossRef] [PubMed]
59. Moody, D. The “Physics” of Notations: Toward a Scientific Basis for Constructing Visual Notations in Software Engineering. IEEE

Trans. Softw. Eng. 2009, 35, 756–779. [CrossRef]
60. Kosslyn, S.M. Graphics and Human Information Processing: A Review of Five Books. J. Am. Stat. Assoc. 1985, 80, 499–512.

[CrossRef]
61. Tastan, E.; Fluchs, S.; Drath, R. AutomationML-basierte Modellierungsansätze für ein Security-Engineering-Informationsmodell.

In Tagungsband zur AUTOMATION 2022 (23. Leitkongress der Mess- und Automatisierungstechnik); VDI Verlag GmbH: Düsseldorf,
Germany, 2022; ISBN 978-3-18-102399-0. (In German)

62. Wieringa, R.J. Design Science Methodology for Information Systems and Software Engineering; Springer: Berlin/Heidelberg, Germany,
2014; ISBN 978-3-662-43838-1/978-3-662-43839-8.

63. IEC 62443-3-2; Security for Industrial Automation and Control Systems, Part 3-2: Security Risk Assessment for System Design.
IEC: Geneva, Switzerland, 2020.

https://fluchsfriction.medium.com/for-security-think-functions-not-systems-b0e08a9d89b6
https://fluchsfriction.medium.com/for-security-think-functions-not-systems-b0e08a9d89b6
https://www.commoncriteriaportal.org/cc/
https://doi.org/10.1109/TDSC.2020.3033150
https://attack.mitre.org/matrices/ics/
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://www.omg.org/spec/UML/2.5.1/About-UML/
https://doi.org/10.1109/ACCESS.2023.3238326
https://doi.org/10.1111/j.1551-6708.1987.tb00863.x
https://doi.org/10.1080/00221300009598596
https://www.ncbi.nlm.nih.gov/pubmed/11110005
https://doi.org/10.1109/TSE.2009.67
https://doi.org/10.1080/01621459.1985.10478147

Sensors 2023, 23, 5547 30 of 30

64. Fluchs, S.; Tastan, E.; Mertens, M.; Ritter, J.; Horch, A.; Drath, R.; Fay, A. Security by Design Decisions for Automation Systems.
Part 2: Concept for Integrating Security Decisions into the Engineering Workflow. Atp Mag. 2022. (In German) [CrossRef]

65. Fluchs, S.; Tastan, E.; Mertens, M.; Ritter, J.; Horch, A.; Drath, R.; Fay, A. Security by Design for Automation Systems. Part 1:
Explanation of Terms and Analysis of Existing Approaches. Atp Mag. 2022. (In German) [CrossRef]

66. Fluchs, S.; Tasten, E.; Mertens, M.; Horch, A.; Drath, R.; Fay, A. Security by Design Integration Mechanisms for Industrial Control
Systems. In Proceedings of the IECON 2022–48th Annual Conference of the IEEE Industrial Electronics Society, Brussels, Belgium,
17–20 October 2022; IEEE: Piscataway, NJ, USA, 2022. ISBN 978-1-6654-8025-3.

67. German Federal Ministry of Education and Research. IDEAS-Integrierte Datenmodelle for the Engineering of Automation
Security. Project Overview (In German). Available online: https://www.forschung-it-sicherheit-kommunikationssysteme.de/
projekte/ideas (accessed on 1 April 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.17560/atp.v63i11-12.2643
https://doi.org/10.17560/atp.v63i9.2620
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/ideas
https://www.forschung-it-sicherheit-kommunikationssysteme.de/projekte/ideas

	Introduction
	State of the Art
	Decision Identification
	Decision Making
	Summary: Problems of Existing Methods

	Security-by-Design Decisions Method: Workflow for Making Traceable Security Decisions
	Workflow Overview
	Function-Based Security Parameter Libraries
	Function-Based Security Diagrams
	Workflow Support by Security Data Model and Tool
	Limitations and Open Issues
	Library Maintenance
	Additional Security Decisions (Lifecycle Decisions)

	Validation
	Validation Setup
	Validation Method, Questions, and Metrics
	Validation Setup Limitations
	Validation Results

	Discussion
	Conclusions and Outlook
	References

