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Abstract: This study considers an improved likelihood probability in multi-input multi-output
(MIMO) systems using one-bit analog-to-digital converters (ADCs). MIMO systems using one-bit
ADCs are known to exhibit from performance degradation because of inaccurate likelihood probabili-
ties. To overcome this degradation, the proposed method leverages the detected symbols to estimate
the true likelihood probability by combining the initial likelihood probability. An optimization prob-
lem is formulated to minimize the mean-squared error between the true and combined likelihood
probabilities, and a solution is derived using the least-squares method. Simulation results show that
the proposed method obtains a signal-to-noise gain of approximately 0.3 dB to achieve a frame error
rate of 10−1 compared to conventional methods. This improvement in performance is attributed to
the enhanced reliability of the likelihood probability.

Keywords: multi-input multi-output systems; one-bit analog-to-digital converters; maximum
likelihood probability; weighted combining

1. Introduction

Millimeter-wave (mmWave) systems are key technologies in current wireless applica-
tions [1–7]. A large bandwidth is easily available in mmWave bands, thus enabling data
rates in the order of gigabits-per second to be achieved. However, technical challenges
exist when exploiting this large bandwidth, such as increased power consumption. Power
consumption increases linearly with bandwidth and exponentially with the number of
quantization bits [8,9]. Thus, conventional systems that use approximately 12 quantiza-
tion bits at the receiver are unsuitable for mmWave systems. To overcome this limitation,
communication systems using low-resolution analog–digital converters (ADCs) have been
introduced [10–15]. These systems enable the use of mmWave bands by considerably
reducing the power consumption with only slight degradation in system performance.

In recent studies, one-bit ADCs have been introduced, which accelerate the realization
of mmWave systems by addressing the power-consumption problem [16–21]. However,
the MIMO systems using one-bit ADCs suffers from performance degradation. Maximum-
likelihood (ML) detection, which was originally introduced in [18], has been considered
to achieve optimal performance. However, owing to the non-linearity of one-bit ADCs, the
original ML detection exhibits unfavorable complexity at the receiver, thus necessitating
a convex optimization solution [19]. Hence, practical algorithms were introduced [20,21].
Sphere decoding is a conventional low-complexity algorithm for ML detection and its appli-
cation in one-bit ADCs was proposed [20]. Meanwhile, soft decisions for ML detection have
been investigated in [21]. However, these methods assume perfect channel information at
the receiver, which cannot be achieved in one-bit ADCs due to their non-linear properties.

Despite its difficulty in improving estimation performance, channel estimation in
one-bit ADCs has been widely investigated [22–28]. Most investigations assumed that
the quantization error model is Gaussian [24]. Similar to conventional linear approaches,
least-squares and minimum mean-squared error (MMSE) estimations can be easily derived
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based on the quantization error model in one-bit ADCs [25,26]. However, the linear
approach exhibits unsatisfactory performance because the quantization error model is
inaccurate. Iterative approaches can improve estimation performance. The expectation-
maximization [27] and approximate message passing [28] algorithms are representative
methods for one-bit ADCs. However, iterative approaches exhibit considerable inherent
complexities. Consequently, the accuracy of the likelihood probability is limited owing
to complexity.

Recent investigations have focused on improving the performance of one-bit ADCs by
directly obtaining the likelihood probability [29–35]. These studies do not rely on obtaining
channel estimates; instead, they learn the likelihood probability using machine-learning
algorithms, such as supervised learning and reinforcement learning (RL). In previous
studies [30,31], a supervised-learning algorithm was applied to pilot transmission; however,
its performance was dependent on the pilot length and it yields unsatisfactory performance
when extended to wireless standards. This problem can be mitigated by using detected
data symbols in data transmission [32]; however, only correct symbols can improve the
likelihood probability because the detected data symbol may contain errors. Hence, a
Markov decision process problem was defined [32], and a corresponding RL algorithm was
introduced to calculate the optimal policy. However, the computation of the optimal policy
involved significant computational complexity, and the number of candidate symbols
increased exponentially with the number of modulation orders and transmit antennas.
In [33], a low-complexity algorithm for RL was introduced that exploited a reliability-based
policy, which significantly reduced the complexity. Although the RL methods in [32,33]
significantly improve performance, the complexity associated with computing the optimal
policy is not conducive to the receivers. To address this complexity, this study investigates
a new method for enhancing likelihood probability without calculating the optimal policy.

This study proposes an improved likelihood probability method for multi-input multi-
output (MIMO) systems that use one-bit ADCs. To achieve this, the proposed method
utilizes the detected data symbols to calculate the data-based likelihood probability, which
is combined with the pilot-based likelihood probability obtained during pilot transmission.
An optimization problem is presented herein for the combined process and a computation-
ally efficient algorithm for solving it is described. The key contributions of this study are
summarized as follows:

• An optimization problem is formulated to improve the pilot-based likelihood prob-
ability. In particular, a data-based likelihood probability is defined using detected
data symbols, and a weighted combination method is proposed between the pilot-
and data-based likelihood probabilities. The optimization problem minimizes the
expected mean squared error (MSE) between the true and weighted combined likeli-
hood probabilities. Unlike the likelihood probability in [32], the data-based likelihood
probability considers all detected data symbols in its calculation, and the weights are
unconstrained rather than summed up to one.

• A computationally efficient method for solving the optimization problem is proposed.
The optimization problem is challenging to solve because the non-linear function in
the likelihood probability and the expression of the data-based likelihood probability
are mathematically intractable. Hence, the method exploits realized samples to obtain
weights for the optimization problem. The expectation of optimization problem is
replaced with the average of the realized samples. The solution to the optimization
problem is derived using the least-squares method. Because the derived solution is
obtained offline, its weights are saved in memory.

• The effectiveness of the proposed method is demonstrated through simulations.
The combined weights for the proposed method are updated from the memory at
each end of the data block because updating the weights of every data symbol is bur-
densome to the memory. Based on simulation results, the proposed method indicates
improved performance compared with conventional methods without sacrificing com-
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plexity. This is because the proposed method improves the reliability of the likelihood
probability by exploiting the detected symbols.

Related works: This paper focuses on improving the likelihood probability in MIMO
systems using one-bit ADCs. The investigation of likelihood probability in one-bit ADCs
was initially conducted in [18,20]. Although the likelihood probability offers optimal
performance in one-bit ADCs, its performance remains unsatisfactory. To address this
performance limitation, the authors [32,33] introduced the concept of data-based likelihood
probability. These methods exploit RL algorithms to obtain the optimal policy. However,
due to considerable complexity involved in calculating the optimal policy, the methods
in [32,33] are still impractical for wireless applications. This study considers a new method
to leverage the data-based likelihood probability without the need for complex calculation.
To achieve this, an optimization problem is defined that minimizes the expected MSE
between the weighted combination of pilot-based and data-based likelihood probabilities
and the true likelihood probability. One key advantage of the proposed method is that
it does not require weight calculation during the transmission. Thus, the complexity is
significantly reduced compared to [32,33]. To improve the comprehensiveness of this study,
the related works are summarized in Table 1. The focus of this study is on data detection
in one-bit ADCs. Previous studies have addressed the challenges posed by one-bit ADCs
by employing complex machine learning-based algorithms, such as supervised learning
and reinforcement learning. However, to reduce the inherent complexity associated with
machine learning algorithms, this study focuses on improving likelihood probability for
low-complexity data detection.

Table 1. Related works.

References Topics Key Features

[1–6] Millimeter-wave system Mmwave Channel model and implementation
[16–21] Low-resolution ADCs Optimal transceiver design
[22–28] Channel estimation in one-bit ADCs Optimal MMSE estimator design
[29–35] Data detection in one-bit ADCs Maximum likelihood probability calculation
[30–33] Machine learning-based data detection Machine learning-based algorithm

The remainder of this study is organized as follows. Section 1 describes the frame
structure and the MIMO receiver using one-bit ADCs. Section 2 presents the estimated
likelihood probability using the detected data symbols and an optimization problem that
minimizes the MSE between the true- and estimated-likelihood probabilities. Section 3
explains the proposed method for solving the optimization problems. Section 4 presents
the simulation results obtained using the proposed method. Finally, the conclusions are
presented in Section 5.

2. System Model

This section describes the system model used in this study. The transmitter has Nt
antennas and the receiver has Nr antennas. Each transmission frame comprises a pilot block
and D data blocks. The number of symbols in the pilot block is denoted by Np, whereas
the number of symbols in the d-th data block is denoted by Nd, where d is an element of set
{1, 2, . . . , D} (Figure 1).

The information bits are encoded by a channel encoder with code rate Rc, and mapped
to M-ary quadrature amplitude modulation (QAM) symbols s̄[n] ∈ CNt×1 where C is
a complex space. K denotes the index set of the candidate QAM symbols and is de-
fined as {1, 2, . . . , K}. X̄ denotes the set of candidate QAM symbols and is defined as
X̄ = {s̄1, . . . , s̄K}. Its size is |K| = MNt , where the modulation order is M and | · | is the
cardinality of the set. The wireless channel H̄ ∈ CNr×Nt is assumed to exhibit Rayleigh
fading, and the channel is invariant during each frame transmission. When the QAM
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symbol s̄[n] ∈ X̄ is transmitted to the wireless channel, the received symbol r̄[n] ∈ CNr×1

is expressed as

r̄[n] = H̄s̄[n] + n̄[n], (1)

where the additive white Gaussian noise is denoted by n̄[n], whose distribution follows
CN (0, σ2

n).

Figure 1. Frame structure and MIMO receiver using one-bit ADCs considered in this study.

For simplicity, the complex value expression in (1) is converted into a real-value
expression. Subsequently, the real vectors and matrices r[n] ∈ R2Nr×1, H ∈ R2Nr×2Nt ,
s[n] ∈ R2Nt×1, and n[n] ∈ R2Nr×1, where R is the real space, are defined as

r[n] =
[

Re{r̄[n]}
Im{r̄[n]}

]
, H =

[
Re{H̄} −Im{H̄}
Im{H̄} Re{H̄}

]
,

s[n] =
[

Re{s̄[n]}
Im{s̄[n]}

]
, n[n] =

[
Re{n̄[n]}
Im{n̄[n]}

]
. (2)

where Re(·) and Im(·) are the real and imaginary components of the complex number,
respectively. A one-bit operation is performed on the real and imaginary components of
the received symbol r[n], which is expressed in [20,32] as

q[n] = sign(r[n]) = sign(Hs[n] + n[n]), (3)

where Sign(x) is a function whose output is 1 for x ≥ 0 and −1 otherwise.
ML detection provides the optimal performance when the candidate QAM symbols

are transmitted equally, which is expressed as

k̂[n] = argmax
k∈K

P(q[n]|s[n] = sk), (4)

where P(·) is the probability operation; sk = [Re(s̄k)
T , Im(s̄k)

T ]T is the candidate QAM
symbol; and (·)T is the transpose. Subsequently, sk belongs to the real-valued constellation
set X = {s1, . . . , sK}. Based on [20], the ML in a one-bit ADC is computed as

P(q[n]|s[n] = sk) = ∏
r∈R

P(qr[n]|s[n] = sk), (5)

where the probability P(qr[n]|s[n] = sk) is expressed as

P(qr[n]|s[n] = sk) =

{
pr,k, qr[n] = +1
1− pr,k, qr[n] = −1

. (6)
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Here, qr[n] is the r-th row of q[n] and r ∈ R = {1, 2, . . . , 2Nr}. The probability pr,k
in [20] is computed as

pr,k = Φ

(√
2
σ2

n
hH

r sk

)
. (7)

where hH
r is the r-th row of H, (·)H is the conjugate transpose, and Φ(·) is the cumulative

distribution of the standard normal random variable.
In this study, pr,k denotes the true likelihood probability computed based on the true

channel information H. However, the true channel information is unavailable at the receiver.
Hence, channel estimation is performed during pilot transmission. By denoting the channel
estimate at the receiver Ĥ, the pilot-based likelihood probability ppi

r,k is expressed as

ppi
r,k = Φ

(√
2
σ2

n
ĥH

r sk

)
. (8)

Using the results of (5)—(7), the ML detection is expressed as

k̂[n] = argmax
k∈K

∏
r:qr [n]=1

ppi
r,k ∏

r:qr [n]=−1
(1− ppi

r,k). (9)

Here, ŝ[n] is defined as the ML estimate, which is re-expressed as sk̂[n] using k̂[n].
Representative symbols in this study are summarized in Table 2.

Table 2. Representative symbols in this study.

Symbols Descriptions

H∈ R2Nr×2Nt wireless channel matrix
s[n]∈ R2Nt transmitted symbol at time n
sk∈ R2Nt candidate transmitted symbol where k ∈ K
k̂[n]∈ K detected symbol index at time n

n[n]∈ R2Nr additive white Gaussian noise at time n
r[n]∈ R2Nr received symbol at time n
q[n]∈ R2Nr quantized signal at time n

P{q[n]|s[n] = sk} likelihood probability when symbol sk is transmitted
pr,k true likelihood probability Φ

(√
2
σ2

n
hH

r sk

)
ppi

r,k
pilot-based likelihood probability Φ

(√
2
σ2

n
ĥH

r sk

)
pda

r,k data-based likelihood probability ∑m≤n q̃r [m]1{k̂[m]=k}
∑m≤n 1{k̂[m]=k}

p̂r,k estimated likelihood probability αppi
r,k + βpda

r,k

3. Optimization Problem

In this section, an optimization problem is defined to minimize the MSE between the
true and estimated likelihood probabilities. To obtain the estimated likelihood probability,
a data-based likelihood probability was first defined and then calculated based on the
detected data symbols. Subsequently, the estimated likelihood probability was obtained by
linearly combining the pilot- and data-based likelihood probabilities. The goal of the opti-
mization problem is to determine the optimal combination ratio for this linear combination.
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3.1. Data-Based Likelihood Probability

This subsection presents the derivation of the data-based likelihood probability based
on the detected data symbols. The probability pr,k in (6) is expressed using the following
conditional probability formula,

pr,k = P(qr[n] = 1|s[n] = sk)

=
P(qr[n] = 1, s[n] = sk)

P(s[n] = sk)
(10)

where the probabilities in (10) are, respectively, defined as

P(qr[n] = 1, s[n] = sk) =

∑
m≤n

q̃r[m]1{k[m] = k}

n
,

P(s[n] = sk) =

∑
m≤n

1{k[m] = k}

n
. (11)

Here, q̃r[n] is a function whose value is 1 if qr[n] = 1 and 0 otherwise. 1{E} is one
if event E is true; otherwise, it is 0. The probabilities in (11) can not be computed at the
receiver because the transmitted symbol index k[m] is not available. Therefore, they are
approximated using the detected symbol index k̂[m], which is expressed as

P(qr[n] = 1, s[n] = sk) ≈
∑

m≤n
q̃r[m]1{k̂[m] = k}

n
,

P(s[n] = sk) ≈
∑

m≤n
1{k̂[m] = k}

n
. (12)

These approximations are similar to the true probabilities for a sufficiently large n [32].
Subsequently, the data-based likelihood probability is obtained as follows:

pda
r,k ≈

∑
m≤n

q̃r[m]1{k̂[m] = k}

∑
m≤n

1{k̂[m] = k}
. (13)

3.2. Problem Definition

In this subsection, the optimization problem is defined to minimize the expectation
of MSE between the true and estimated likelihood probabilities. The estimated likelihood
probability p̂r,k is defined as a weighted linear combination of the pilot- and data-based
likelihood probabilities in (8) and (12), respectively. This combination is employed because
the data-based likelihood probability pda

r,k is considered unreliable for a small n, whereas
the pilot-based likelihood probability is more reliable in this case. In addition, linear
combinations have a simple structure and are mathematically tractable. The estimated
likelihood probability is expressed as follows,

p̂r,k(α, β) = αppi
r,k + βpda

r,k, (14)

where α, β ∈ [0, 1]. Using the estimated likelihood probability, and the optimization
problem is defined as

(α, β) = argmin
α,β∈[0,1]

E{‖pr,k − p̂r,k(α, β)‖2}, (15)

where E(·) denotes the expectation operation.
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Solving the optimization problem in (15) directly is difficult due to the non-linear
function Φ(·). Moreover, the data-based likelihood probability cannot be readily expressed
mathematically in a tractable form. Hence, a least-squares method is instead used to obtain
the weights of (α, β).

4. Proposed Method

In this section, an improved likelihood probability method is proposed to solve the
optimization problem shown in (15). Owing to its mathematical intractability, the op-
timization problem is difficult to solve. Hence, the realized samples of the likelihood
probabilities were leveraged. Using these samples, the combined weights in the optimiza-
tion problem were trained using the least-squares solution, which resulted in an improved
likelihood probability.

4.1. Proposed Method

Because the optimized weights cannot be derived easily from the expectation form
in (15), the expectation form is replaced using the realized samples. When n realized sam-
ples of likelihood probability are available, the optimization problem can be expressed as:

(α, β) = argmin
α,β∈[0,1]

E{‖pr,k − p̂r,k(α, β)‖2},

= argmin
α,β∈[0,1]

∑
m≤n
‖pr,k[m]− αppi

r,k[m]− βpda
r,k[m]‖2, (16)

where p·r,k[m] is the m-th realized sample of the likelihood probability obtained at the
receiver. The optimization problem in (16) is suboptimal because the weights are obtained
from a limited number of realized samples whose values are incorrect. However, as n
increases, the optimization problem is approximated as that in (15) because the values of
the realized samples converge.

For mathematical tractability, matrix An ∈ Rn×2 and vector Bn ∈ Rn×1 are defined
from the realized samples as follows:

An =
[
[ppi

r,k[1], . . . , ppi
r,k[n]]

T , [pda
r,k[1], . . . , pda

r,k[n]]
T
]
,

bn = [pr,k[1], . . . , pr,k[n]]T , (17)

where R is a real number.
Using (17), the optimization problem can be expressed in the matrix form as follows:

(α, β) = argmin
α,β∈[0,1]

∥∥∥∥bn −An

[
α
β

]∥∥∥∥2

. (18)

This optimization problem is well-known least-squares optimization [36]. From the least-
squares solution, the optimal value (α?, β?) of (18) can be derived as:

(α?, β?) = (AT
n An)

−1AT
n bn. (19)

The optimal weights of (α?, β?) converge to the optimal weights in (15) as n increases.

4.2. Proposed Receiver

The proposed receiver shown in Figure 2 is described in this subsection. Because the
optimization problem in (15) improves the expected likelihood probability, the likelihood
probability is updated for every data block d. Initially, the proposed receiver obtains the
channel estimates during the pilot transmission. The pilot-based likelihood probability
ppi

r,k is computed using (8). During data transmission, the receiver detects the data symbol
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based on the ML criterion expressed in (20). Using the estimated likelihood probability, the
detection method can be expressed as follows:

k̂[n] = argmax
k∈K

P̂(q[n]|s[n] = sk)

= argmax
k∈K

∏
r:qr [n]=1

p̂r,k ∏
r:qr [n]=−1

(1− p̂r,k). (20)

Figure 2. Proposed receiver with the linear combination of pilot- and data-based likelihood probabilities.

The detected data symbol is used to update the data-based likelihood probability
pda

r,k based on (13). In addition, the estimated likelihood probability p̂r,k is used in the
log-likelihood ratio (LLR) calculation, which is expressed as

LLR(bi,j[n]) = log
P(q[n]|bi,j[n] = 1)
P(q[n]|bi,j[n] = 0)

= log

∑
sk∈X 1

i,j

P(q[n]|s[n] = sk)

∑
sk∈X 0

i,j

P(q[n]|s[n] = sk)

(a)
= log

∑
sk∈X 1

i,j

P̂(q[n]|s[n] = sk)

∑
sk∈X 0

i,j

P̂(q[n]|s[n] = sk)
= log

∑
sk∈X 1

i,j

(
∏

r:qr [n]=1
p̂r,k ∏

r:qr [n]=−1
(1− p̂r,k)

)

∑
sk∈X 0

i,j

(
∏

r:qr [n]=1
p̂r,k ∏

r:qr [n]=−1
(1− p̂r,k)

) , (21)

where estimated likelihood probability in (20) is applied to true likelihood probability (a)
because the true likelihood probability is unknown at the receiver. bi,j[n] ∈ {0, 1} is the j-th
bit of the i-th stream and X b

i,j is the set of symbols sk for which bi,j = b ∈ {0, 1}. This LLR

value is used to obtain the decoded data b̂i,j from the channel decoder.
After the data block ends, the proposed receiver updates the estimated likelihood

probability p̂r,k using the pilot- and data-based likelihood probabilities. The trained weights
(α?, β?) in memory are used based on the data block number d. The estimated likelihood
probability was used for the subsequent data block. The sequential algorithm for the
proposed receiver is presented in Algorithm 1.
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Algorithm 1 Proposed Method

1 Pilot transmission

2 Compute initial channel estimate Ĥ =
[
ĥ1, · · · , ĥNr

]
.

3 Obtain pilot-based likelihood probability ppi
r,k, r ∈ R, k ∈ K using (8).

4 Set initial estimated likelihood probability p̂r,k = ppi
r,k, r ∈ R, k ∈ K.

5 Data transmission
6 for d = 1 to D do
7 for n = 1 to Nd do
8 Detect data symbol based on ML criterion (20).
9 Calculate data-based likelihood probability pda

r,k using (13).
10 Compute LLR based on (21).
11 Obtain decoded data b̂i,j from channel decoder.
12 end
13 Obtain trained weights (α, β) from memory obtained using (19).

14 Update estimated likelihood probability p̂r,k = αppi
r,k + βpda

r,k from (14).
15 end

Remark (dependent parameters): The combined weights of the proposed method
are trained from the realized samples offline. Thus, the statistical property of the realized
samples is important to determine the combining weights (α, β). This statistical property
differs from parameters, such as the signal-to-noise ratio (SNR), channel, number of data
blocks, number of transmit and receive antennas, modulation order, and coding schemes
(see Figure 2). In addition to the parameters above, the parameters that affects the system
performance can be input to train the estimated likelihood probability. Thus, the optimal
weights (α, β) should be trained by changing the values of the parameters.

Remark (memory): Owing to the dependent parameters, many inputs are required for
the proposed method. Specifically, the data symbol index n significantly increases the mem-
ory size. Saving all the parameters every data symbol requires a large memory size, and
updating the weights every data symbol increases communication latency. This is because
frequent weight updates inevitably lead to increased memory access time. To address this
issue, the weights (α, β) are updated only after the end of data block d. This update method
significantly reduces the memory size and the number of weight update. For example,
when Nd = 128 and D = 40, a total of 10,280 weights should be saved in the memory,
with 10, 280 weight updates. However, the proposed method saves only 80 weights in
memory, resulting in a corresponding reduction to 80 weight updates. The updated method
is described in Algorithm 1.

Remark (complexity): To provide a comparison of complexity, Table 3 summarizes
the number of real multiplications required to obtain the estimated likelihood probability.
For comparison, conventional RL method [32] is introduced. In the conventional RL method,
the main complexity arises from calculating the optimal policy, and the corresponding
number of real multiplications is listed. In contrast, the proposed method does not require
this calculation and only necessitates updating the likelihood probability at the end of each
data block. Table 3 presents an example of the complexity for each block when considering
Nt = 4, Nr = 8, M = 2, Nd = 256, and D = 40. In this example, the number of real
multiplications required to obtain the estimated likelihood probability is approximately
1.43× 10−4 times that of the conventional RL method.
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Table 3. Complexity comparison: the number of real multiplications.

Algorithm
Estimated Likelihood Probability Calculation

Total 1
Optimal Policy Calculation Likelihood Probability Update

RL method [32] Nr NdK + Nr N2
d K + 8Nr(K + 1)(2K + 1)Nd 4NrKD 2.30× 109

Proposed method - 4NrKD 3.27× 105

1 The number of real multiplications is counted when Nt = 4, Nr = 8, M = 2, Nd = 128, and D = 40.

5. Simulation Results

The performance of the proposed method was evaluated in terms of the frame error
rate (FER) and MSE. The antenna configuration is (Nt, Nr) = (4, 8) as a practical case
of 3GPP specifications. Considering that the maximum number of streams is 8 in 3GPP
specifications, Nt = 4 is a practical choice. For the given transmit antennas, Nr = 8 provides
a satisfactory FER performance within a practical SNR range in MIMO systems using one-
bit ADCs [29–35]. Each link between the transmit and receive antennas was assumed to be
quasi-static Rayleigh fading. The information bits were encoded using a turbo encoder at a
rate Rc =

1
2 . To improve the performance, a 16-bit cyclic redundancy check was applied, as

explained in [32]. A modulation order of four (4−QAM) was applied to the encoded bits,
which resulted in a constellation size of K = MNt = 256. The frame structure comprised
one pilot with Np = 32 and D = 40 data blocks with Nd = 128. A linear MMSE method
was applied to obtain the pilot-based likelihood probability during the pilot transmission.
The SNR is defined as 1

log2 |X |σ2
n

.

For performance benchmarking, the following methods were considered:

• PCSI: As an optimal case, the likelihood probability pr,k is obtained based on perfect
channel information.

• CE: This is a conventional method in which the likelihood probability ppi
r,k is computed

based on the channel estimates obtained during the pilot transmission. In this method,
the likelihood probability remains unchanged during data transmission.

• Optimal: This method obtains the optimal weights (α, β) in the optimization prob-
lem (15) via exhaustive search, where the resolution of the weights is set to 0.01.

• Conv RL: Weights are obtained using the RL method presented in [32]. In this RL
method, the sum of the weights is always 1, i.e., β = 1− α. This is expressed as

p̂r,k = αppi
r,k + (1− α)pda

r,k, (22)

where α = 1
|R||K| ∑r∈R ∑k∈K αr,k. Unlike the method presented in [32], the Conv RL

method obtains the weights via an offline manner. Subsequently, the obtained weights
are applied in the weighted combination method expressed in (14).

In Figure 3, the combined weights for the proposed method are shown based on d.
As the number of data blocks increases, the accuracy of the data-based likelihood probability
increases. Thus, the weight β for the data-based likelihood probability increases, whereas
the weight α for the pilot-based likelihood probability decreases. The sum of weights
remains as approximately 1 as the number of data blocks increases. In addition, when the
SNR increases, the convergence speed increases because the correctly detected data symbols
improve the accuracy of the data-based likelihood probability. Thus, the weight of the data-
based likelihood probability has a higher value than that at a lower SNR. The combined
weights for the proposed method were simulated based on the SNR, as shown in Figure 4.
As shown in this figure, the weight β for the data-based likelihood probability increases
with the SNR. Compared with Figure 3, the slope of the weights in Figure 4 increases
linearly with the SNR.

In Figure 5, the weights of the conventional RL method are compared with those of
the proposed method. Similar to the weights in Figure 3, the weights for the data-based
likelihood probability in the conventional RL method increases with d. However, the
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convergence speed of the conventional RL method is higher than that of the proposed
method. This is because the weights for the conventional RL method are obtained with
respect to the instantaneous MSE not the expected MSE. Thus, despite an SNR of −4 dB,
the weights (α, β) almost saturated. The FER and MSE were compared using the above-
mentioned weights, as shown in Figures 6 and 7.

The performance of the proposed method depends on the number of antennas used.
To verify the effect of the number of antennas, the proposed method was simulated based
on the number of transmit antennas Nr. As shown in Figure 8, the weight β for the
data-based likelihood probability was higher when N16 was used compared with when
N8 was used. This is because increasing the number of receive antennas improves the
reliability of the detected data symbols. Thus, the accuracy of the data-based likelihood
probability increases. Because the optimal weights for the proposed method differs from
the system parameters, various values of the weights are saved in memory based on the
system environment. Subsequently, based on the system input parameters, the weights are
used to the combine pilot- and data-based likelihood probabilities.
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Figure 3. Combined weights for the proposed method based on number of data blocks.
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Figure 4. Combined weights for the proposed method based on SNR.
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Figure 5. Combined weights for conventional RL based on number of data blocks.
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Figure 6. Combined weights for different number of antennas for Nr = 8 and 16.
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Figure 7. FER for the proposed method based on different detection methods.
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Figure 8. MSE for the proposed method based on different detection methods at SNR = 0 dB.

The FERs for different detection methods are illustrated in Figure 7 to demonstrate the
effectiveness of the proposed method. First, to achieve an FER of 10−1 at 4× 8 antennas, the
proposed method exhibited an SNR gain of approximately 0.2 and 0.3 dB compared to con-
ventional RL and CE methods, respectively. In addition, the FER of the proposed method
was similar to that of the optimal case. This is attributed to the fact that the proposed
method improves the likelihood probability toward the optimal likelihood probability.
Second, the FER decreases as the number of receive antennas increases. All the detection
methods show an improvement in FER due to the diversity gain associated with a large
number of receive antennas. In particular, at 4 antennas, the proposed method showed an
SNR gain of approximately 0.2 dB compared to CE method, while achieving a similar FER
to the conventional RL. Note that the proposed method can obtain the weights more easily
than the conventional RL.

Figure 8 shows the MSE between the true and estimated likelihood probabilities, i.e.,
E{pr,k − p̂r,k} for 4× 8 MIMO systems. First, the proposed method achieved a lower MSE
than the conventional RL. In particular, to achieve an MSE of −18 dB, the proposed method
requires approximately 15 number of data blocks, while the conventional RL requires
approximately 35 number of data blocks. This indicates that the proposed method achieves
more accurate likelihood probability with fewer data blocks. Moreover, the MSE of the
proposed method approached that of the optimal case. This is because the proposed
method determines weights to minimize the expected MSE between the true and estimated
likelihood probabilities. Note that the slope of the optimal case was not smoothed because
of the resolution limitation of exhaustive search.

6. Conclusions

A novel approach for improving the likelihood probability in MIMO systems that
use one-bit ADCs was presented herein. The proposed method leverages detected data
symbols to obtain a data-based likelihood probability, which is then combined with the
pilot-based likelihood probability using a weighted approach. The optimization problem
for the weighted combination was formulated by minimizing the expected MSE, and
then a computationally efficient solution to the problem was derived. Simulation results
demonstrated that the proposed method achieved an approximate SNR gain of 0.3 dB
compared to conventional method by enhancing the accuracy of the likelihood probability.

An interesting direction for future research is to extend to the approach to MIMO
systems using low-resolution ADCs, specifically with 2–3 bits of resolution. To achieve
this extension, the pilot-based likelihood probability can be obtained using the results
from [11]. However, the data-based likelihood probability for the extended system is
currently unknown, necessitating further investigation. Another area for future research is
to obtain the weights in the optimization problem through an online manner. The proposed
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weight are currently obtained using off-line manner, which makes it challenging to capture
the variations in the channel. To address this limitation, investigating weight update based
on the current channel conditions is necessary.
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