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Abstract: Productivity and production quality have become primary goals for the success of compa-
nies in all industrial and manufacturing sectors. Performance in terms of productivity is influenced by
several factors including machinery efficiency, work environment and safety conditions, production
processes organization, and aspects related to workers’ behavior (human factors). In particular,
work-related stress is among the human factors that are most impactful and difficult to capture.
Thus, optimizing productivity and quality in an effective way requires considering all these fac-
tors simultaneously. The proposed system aims to detect workers’ stress and fatigue in real time
using wearable sensors and machine learning techniques and also integrate all data regarding the
monitoring of production processes and the work environment into a single platform. This allows
comprehensive multidimensional data analysis and correlation research, enabling organizations to
improve productivity through appropriate work environments and sustainable processes for workers.
The on-field trial demonstrated the technical and operational feasibility of the system, its high degree
of usability, and the ability to detect stress from ECG signals exploiting a 1D Convolutional Neural
Network (accuracy 88.4%, F1-score 0.90).

Keywords: Industry 4.0; work stress; machine learning; CNN; ECG; sensor network; production
quality; worker well-being; productivity

1. Introduction

Productivity and production quality are among the key factors for the competitiveness
of companies in all industrial and manufacturing sectors. In particular, productivity refers
to the efficiency of goods production and is related to the quantity and quality of items
produced in a certain period with respect to the resources (i.e., materials, equipment, labor)
used during the process [1]. Therefore, productivity improvements do not mean increasing
production rates while sacrificing the quality and reliability of the final products.

Increasing productivity requires the optimization of both operational and managerial
processes within the production system [2], identifying bottlenecks, and minimizing the
use of resources to obtain the final products at the expected quality level. In addition, it
is important to decrease failures and defects due to human mistakes or equipment errors
during production [3]. Such optimizations produce benefits in terms of production time
and cost, enabling the company not only to have higher marginality on products sold but
also to improve its strategic positioning on the market.

Several factors are recognized in the literature as affecting the productivity and quality
of the final products in different production sectors [4–8], especially in the case of non-
repairable products [9]. They can be grouped into three main macro categories: technical
aspects, workplace and work environment, and organizational and human factors. Thus,
productivity is a multidimensional concept, characterized also by mutual influences among
the aforementioned factors, and in order to make improvements, it is important to take
them into account simultaneously.
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Technological factors include mainly the availability of efficient and precise plants,
machinery and equipment involved in the production cycle, but also the choice of mate-
rials to be used during production. Regular maintenance and upgrading operations are
fundamental to reduce defects in production. From a technical point of view, the advance-
ment of production processes benefits from technological innovation [10], digitalization
strategies [11,12], and more generally from the adoption of Industry 4.0 models [13]. The
implementation of such models is based on Industrial Internet-of-Things (IIoT): digital
technologies [14] that allow monitoring the performance and control of plants, machinery,
industrial automation, and production flows in real time [15]. The resulting data enable
to analyze and optimize processes, to prevent malfunctions, to improve the quality of the
final products and also to increase the safety of workers.

Productivity is also affected by environmental conditions such as illuminance, tem-
perature, relative humidity, air quality and noise [16]. In particular, an uncomfortable
working environment can have a negative impact on workers’ performance and health [17]
and therefore reduce job satisfaction [18]. Safety conditions within the workplace and
ergonomics are equally important. The monitoring of the working environment conditions
with specific sensing technologies allows for an additional important source of data to be
considered for improving productivity, safety, and worker satisfaction.

Human factors are related to the nature and conduct of persons, and they are mainly
concerned with the ability and willingness to perform the assigned tasks (e.g., personal skill,
motivation and commitment, relationships with colleagues, well-being, etc.). They have an
important impact on productivity and quality outcomes [19], and require an appropriate
management strategy [20]. Among these factors, work stress has a great negative impact
on personal and overall performance [21], leading to increases in the human error rate [19].
It also exposes the worker to potential risks of incidents and health problems [22–24]. Such
stress is defined as an adaptive response to a situation that is perceived as challenging
or threatening to personal well-being. The causes can be work overload, time pressure,
demands beyond the worker’s ability, unclear responsibility and task assignments, lack
of breaks or poor environmental conditions [25]. Three kinds of stress exist: acute when
caused by short-term factors, episodic when it occurs periodically, and chronic when caused
by long-term factors. The latter is the most harmful, as it can lead to serious health problems.
In fact, stress produces an alteration of physiological parameters such as body temperature,
heart rate, blood pressure, sugar level and their variability [26]. Moreover, it influences
the behavior favoring anxiety, absenteeism, disputes, isolation, unsatisfaction, etc. To
date, the monitoring of measurable human factors such as stress is not automated as for
those related to the machinery, workplace and processes previously described. Conversely,
the assessment is based on traditional methodologies, including periodic interviews with
specialized physicians, dedicated questionnaires [27], and the detection of sentinel events
(e.g., occupational accidents, disputes, absenteeism, etc.). This reactive method allows
triggering corrective actions, but it is characterized by a poor propensity for prevention
and early identification of stressful situations.

In order to monitor all factors affecting productivity and safety, it is is necessary to
consider a large amount of data coming from different sources in an integrated way. For
this purpose, this paper presents the Real-Time Production Factory System (RT-PROFASY)
developed and tested under a research project co-funded by the Italian Ministry of Eco-
nomic Development. The implemented system achieves two important goals within a
single platform: first, the active monitoring of the worker’s stress level, fatigue, and health
status during working activities; and secondly, the integration of stress-related data with
data flows coming from production processes, factory environment, and indoor localization.
This enables the elaboration and analysis of all relevant data, which are otherwise difficult
to gather from separated systems and traditional stress detection methods. The final aim of
this work is to provide a complete tool, with hardware and software components, to help
companies to pursue productivity and product quality through sustainable processes for
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workers and appropriate workplace conditions, moving from a reactive to a proactive and
fast monitoring method of worker status.

The RT-PROFASY system was proposed in [28]. This work provides additional details
about the implemented system modules, the data elaboration algorithms, and the selection
of Commercial Off-the-Shelf (COTS) hardware components. Moreover, it includes an in-
depth presentation and discussion of the results achieved in the on-field trial. Hereafter,
Section 2 analyzes the state of the art related to monitoring and analysis of factors affecting
productivity and safety in the workplace and work stress detection. Section 3 presents the
RT-PROFASY system in detail. The results of the on-field trial are discussed in Section 4,
and finally, conclusions are drawn in Section 5.

2. State of the Art

The monitoring of machinery, equipment and plants involved in production processes
is now widespread, especially in organizations with a high degree of automation. The
main indicators of machinery operations in terms of performance, conditions and safety
can be measured in real time using relatively inexpensive sensor networks, distributed
data loggers (often embedded directly into the machines) and other IIoT-based systems
easily deployable in existing plants [29–31]. In that respect, well-established monitor-
ing architectures and strategies are presented in the literature [15,32]. The collected data
provide a thorough understanding of the behavior of manufacturing processes and the
possibility of implementing large-scale to fine-grained optimizations of the production
cycles. They also enable the prevention of failures according to the recently developed
predictive maintenance strategies [33]. In addition, IIoT solutions and modern technologies
allow machine-to-machine communications and the active monitoring of human–machine
interactions for safety purposes.

Sensor networks are also commonly used to monitor indoor environmental conditions
in company facilities. The sensing devices acquire data from the surrounding environment
and allow measuring parameters such as temperature, humidity, brightness, noise level,
CO2 level, air quality [34–36], and other factors that impact worker productivity or occupant
safety [37]. The collected data can then be used to create a more sustainable, efficient, and
safe workplace.

The indoor localization and tracking of assets are other important aspects to consider
for improving the organization and speed of workflows as well as the safety of operators.
In particular, as far as safety is concerned, the possibility of localizing Personal Protection
Equipment (PPE) within the working space or specific subregions enables the detection
of PPE compliance vs. the activity performed by the worker [38]. Among the wide range
of technologies and techniques suitable for localization purposes [39], Bluetooth Low
Energy (BLE) beaconing [40,41], radio frequency identification based on passive tags
(RFID) [42], and Ultra-Wide Band (UWB) [43] are the most promising. Despite this, their
wide deployment is still rather limited and mainly concentrated in large companies and in
sectors such as warehousing and logistics.

The detection of work-related stress conditions is normally carried out with offline
methodologies (i.e., questionnaires, interviews, periodic medical examinations, etc.). While
this method shows poor propensity for prevention and limitations in identifying acute
stress situations, there is no evidence of widespread systems for the real-time monitoring
of the stress level of the worker. There are instead in the literature interesting results of
research projects focused on the detection and classification of stress and more in general
emotions felt by a person subjected to stressful stimuli such as working under time-pressure
conditions, continuous interruptions during activities, or viewing emotionally engaging
images/videos during the experiment. These studies are mostly related to office-type
environments or based on ad hoc laboratory setups that include video cameras, elec-
tromyographic helmets, multi-leads electrocardiogram devices and other devices for vital
signs acquisition, which are difficult to apply during heavily dynamic activities typical
of manufacturing companies [44–48]. Such types of working activities also impact the
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quality of signals measured by wearable devices, and the high level of noise with respect to
(semi)stationary acquisitions needs to be considered in the detection of stress.

Moreover, different Machine Learning (ML) approaches (i.e., Support Vector Machines,
Random Forests, Bayesian Networks, K-Nearest Neighbors and Deep Neural Network)
are used in the recognition of stress [46], comfort [49], fatigue or to evaluate the general
physical condition [50]. The ML models published in the literature are mainly based
on the elaboration signals such as Electroencephalography (EEG) or Electrocardiogram
(ECG) [51] signals, galvanic skin response [52] or derived features such as heart rate
variability (HRV) [53]. In particular, the ECG signal is widely adopted for estimating levels
of stress using a Convolutional Neural Network (CNN), reporting a classification accuracy
over 90% when considering signals from relatively stationary subjects [54].

3. Monitoring System

The RT-PROFASY system manages and integrates different types of data coming from
various sources in order to enable the comprehensive monitoring of all parameters that
impact productivity and workplace safety (i.e., human factors, environmental conditions,
production processes). Data collection occurs during the execution of the production
workflows and is mainly automated. Manual data entry is limited to tracking the start
and end of processing steps, the outcome of final checks on products, and the reporting of
anomalies that cannot be automatically detected by the system. Input data are associated
with the timestamp, the identity and the location of the generating entity to enable spatial
and temporal correlation analysis. Raw input data are further elaborated both to obtain
complex aggregate data (e.g., overall resource consumption of a process) and to flag
potentially dangerous situations through timely notifications.

All collected data can be grouped into categories according to the monitoring purpose
to which they relate: work-related stress and physical conditions (data type “S”), production
processes, environment and assets localization (data type “P”), and product quality (data
type “Q”). A detailed description of such parameters and data sources is reported in
Table 1.

The heterogenous dataset provided by the RT-PROFASY system allows analyzing and
identifying the causes and taking corrective actions in case of inefficient production pro-
cesses, logistics or unsatisfactory quality levels. The system also contributes to improving
safety by actively monitoring the physical conditions of workers and PPE compliance at
each workstation.

The architecture of the monitoring system is shown in Figure 1. The overall system
is composed of several subsystems, further detailed in the following subsections, inter-
connected through an advanced middleware layer that features also data elaboration and
storage capabilities. Each subsystem is dedicated to the monitoring of specific parameters
and participates with the collected data in the construction of the multidimensional dataset
hosted in the central repository.

In particular, the middleware provides a Representational State Transfer (REST) Ap-
plication Programming Interface (API) based on the micro-services paradigm to enable the
subsystems to upload captured data and query the repository. It also manages both intra-
and inter-subsystems data exchanges. HTTPS protocol and token-based authentication are
enforced for security reasons. All incoming and outcoming data are in JSON format.

In addition to receiving, storing, and retrieving data, the middleware generates de-
rived data and sends unicast, multicast, or broadcast notifications and actuation commands,
which may arise from incoming data elaboration. This processing is based on ad hoc devel-
oped routines and algorithms, including complex ones such as Machine Learning models,
which are associated with the various input data streams. For example, an end-of-process
incoming message triggers the calculation of the duration and resource consumption of the
entire process, whereas specific notifications addressed to the target workers are produced
in case of the arrival of an alarm message from the machinery they are working on or in
case acute stress conditions are detected after biomedical data elaboration.
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Table 1. Summary of collected parameters per category.

Category Monitoring Target Description Source Subsystem

S Work-related stress and
fatigue condition

Biometrics data: ECG, breath,
pulse oximetry, blood

pressure, temperature etc.
Biomedical

P
Production processes,

environment conditions and
indoor localization

Process timelines (start, stop,
duration etc.); raw materials

and semi-products usage;
process intermediate and final

outcomes and wastes;
environmental conditions
(temperature, humidity,

brightness etc.); assets/PPE
localization tracking

Building Automation,
Workplace User Interface and

Real-Time Location
Subsystem

Q Quality of final product

Quality and acceptance
checks; inspection,

measurements and evaluation
of final product vs.

requirements and expected
result; evaluation of overall

production cost and time

Workplace User Interface

Figure 1. Architecture of the RT-PROFASY monitoring system.

Finally, the middleware provides authenticated users with a flexible web-based front-
end interface. It allows the interaction with the RT-PROFASY system by means of cus-
tomizable dashboards for data browsing, reports generation, and the listing of the required
resources to carry out manufacturing processes, production batches, and working activities.
Specifically, it is possible to build custom views with tabular or graphical representations of
the data in the repository, even combining data from different subsystems and aggregating
them on a spatial, temporal or process basis. This represents a useful tool to investigate
correlations among S, P and Q parameters and to identify corrective actions needed to
improve business productivity.

3.1. Biomedical Subsystem

The biomedical subsystem manages the acquisition of body signals and other vital
parameters belonging to the S category for fatigue/stress and well-being detection. Vital
parameters are collected using a shared Point-of-Care (PoC) installed in the factory, whereas
the acquisition of body signals is completed in real time using a wearable device and a
smartphone, which runs an ad hoc developed software application (App). All data collected
are automatically sent to the middleware exploiting the dedicated API endpoints.
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Concerning the real-time monitoring of body signals, the choice of the wearable
device is significantly influenced by the considered types of work, especially in the case of
manufacturing activities that require specific PPE usage or more in general are characterized
by a high operator motion. This leads to discarding solutions such as wristbands and
smartwatches due to the high noise affecting the signals, which is caused by the movement
of the limbs during work activity; in addition, they could represent a hindrance for PPE
such as gloves, thus introducing risks from their use. Instead, the selected sensorized
T-shirt, being perfectly adherent to the body of the user, provides good-quality signals even
in the presence of movements. In addition, it can be easily worn under the work uniform
without impacting worker’s mobility and safety.

The sensorized T-shirt is a COTS device produced by Smartex srl [55]. It is provided
with a Software Development Kit (SDK) to facilitate the integration in custom development.
The device measures the ECG signal related to the first lead (right arm—left arm) by
means of two dry electrodes, the extension of the ribcage during breathing by means of a
piezoelectric band, and finally the movement by means of a 9-axis Inertial Measurement
Unit (IMU) platform (accelerometers, gyroscopes and magnetometers). In addition to the
embedded acquisition electronics, the device is equipped with Bluetooth connectivity for
data exchange and a rechargeable battery capable of powering the circuit for the entire
work shift. The on-board processing, based on an Atmel microcontroller, also provides
derivative signals such as heart and respiratory rate, which can be optionally requested by
the user. The complete list of data acquirable from the device is shown in Table 2. Among
the supported signals, only the ECG is currently used for stress detection, while the rest of
the data are collected to enable further offline analysis and future extensions such as fall or
activity detection.

Table 2. List of raw signals and derivative data supported by the sensorized T-shirt.

Signal Type Description
(Representation, Sampling Frequency) Raw/Derivative

ECG Electrocardiogram (12 bit signed, 250 Hz) Raw
RespPiezo Breathing from the piezo sensor (12 bit signed, 25 Hz) Raw

AccX, AccY, AccZ Acceleration along X, Y and Z axes (12 bit signed, 25 Hz) Raw
GyroX, GyroY, GyroZ Gyroscope along X, Y and Z axes (12 bit signed, 25 Hz) Raw
MagX, MagY, MagZ Magnitude along X, Y and Z axes (12 bit signed, 25 Hz) Raw

ECGHR Heart rate (0.2 Hz) Derivative
ECGRR RR peaks distance (4 Hz) Derivative

ECGHRV Heart Rate Variability in the time domain (0.01 Hz) Derivative
ECGRMSSD RMSSD computed from RR interval (0.01 Hz) Derivative

BR Breathing rate (0.06 Hz) Derivative
BA Breathing amplitude (0.06 Hz) Derivative

ActivityPace Number of steps per minute (0.2 Hz) Derivative

The sensorized T-shirt needs to be paired to the smartphone used for data acquisition
and notification management. The chosen smartphone is a commercial rugged device
powered by an Android 9 operating system. It features wireless connectivity (i.e., Bluetooth,
Wi-Fi and mobile broadband) and storage capability required for the monitoring activity
handled by the App.

The App has a threefold objective:

• To handle data acquisition from the T-shirt;
• To act as connecting node toward the middleware, to send acquired data and receive

messages, alerts, or commands;
• To present the user with the abovementioned notifications and/or requests coming

from local data processing.

The App requires a one-time initial configuration to obtain the identification code
(ID) that will uniquely identify the App instance (and therefore the smartphone and the
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worker to whom the device is assigned) within the RT-PROFASY system. This identifier
will be later associated with all the generated data streams and also exploited to address
the notification messages to the specific smartphone. As far as the T-shirt pairing procedure
is concerned, the App automatically recognizes it among the Bluetooth devices associated
with the smartphone and sets it as the active data source. If none or more devices are found,
special messages inform the user about the steps to follow for completing the installation.
At the end of the configuration and every time the App is launched, the main screen is
shown, from which the user can access all the functionalities and start the monitoring.

The monitoring can be carried out in two ways: either in a continuous and automatic
manner or when manually requested by the user. In the continuous monitoring mode,
acquisitions are started by a timer at fixed intervals, which are defined by customizable
settings (by default 60-second-long acquisition every 30 min). Then, there is a button in
the App to immediately start data acquisition if an automated one is not in progress. In
either case, the App is able to keep the monitoring running even when the App is in the
background. This allows the users to lock the smartphone and keep it aside while working.
To stop the monitoring, regardless of the chosen mode, a dedicated button is present on the
App’s main screen.

In order to minimize the actions requested to the user, the App automatically performs
data forwarding to the middleware and manages temporarily Bluetooth disconnections
from the T-Shirt, occurring for example in case the worker moves too far away from the
smartphone. The only interaction that could be optionally requested to the user, yet not
mandatory or blocking, is to provide feedback about the perceived stress level and ongoing
working activity at the end of acquisitions. Moreover, to improve robustness and avoid data
loss in case of network failures, all incoming data are temporarily stored in the permanent
memory of the smartphone and deleted only after a positive transmission acknowledgment
is received from the middleware.

The App is also able to receive two types of messages from the middleware (i.e., push
notifications), respectively, to convey information resulting from the data processing (e.g.,
detection of too high stress levels, presence in an interdicted zone, evacuation order, etc.)
and to provide additional features such as requesting log or unsent data or changing App
settings remotely. The former is presented to the user in the notification bar and as a Toast
within the App, showing the text in the message. They are also stored and presented in a
history list for later reference. The latter is completely transparent to the user (i.e., no visible
notification is produced). Moreover, visible notifications are also directly produced by the
App as a result of local data processing and to require user attention in case of feedback
requests or unrecoverable errors.

Finally, a set of user-modifiable settings is made available on a dedicated App screen.
These settings include the duration of the acquisitions and the interval between them in
continuous monitoring mode, the activation of the perceived stress request to the user,
and the selection of the types of data to acquire among those provided by the T-shirt.
Furthermore, information related to the specific installation (i.e., device ID, sensor name,
and software version) is displayed. Figure 2 shows the App’s screens: customizable settings
(A), main view (B) and feedback request (C).

The aforementioned functionalities are implemented using the Android SDK API
level 28, which is compatible with devices running operating systems version 9 or higher.
Figure 3 shows the architecture of the implemented App.

The schema presents, with reference to the typical Android SDK terminology, the
main functional blocks of the application; data interchange modes among them are also
highlighted. To lighten the notation, processing flows for notifications internally generated
or received from the RT-PROFASY system are not shown. In particular, gray blocks rep-
resent the device resources used by the App for interacting with the user (touch screen),
scheduling automatic acquisitions (alarm manager), saving data, and communicating with
external systems (file system and wireless resources, respectively). The main front-end
is implemented by a single multi-fragment Activity, which includes graphical elements
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for presenting status information and messages, and the buttons to perform actions (e.g.,
start/end automatic or voluntary acquisition, provide stress feedback, access settings,
consult notification history, etc.). Its content changes according to the App current status.
Data acquisition, local storage, and transmission are carried out by a Foreground Service and
two threads, which are dedicated to communication with the T-shirt and the middleware,
respectively. Such a service remains active even when the App loses focus or the smart-
phone is locked. It displays a permanent notification and is destroyed only when the App
is intentionally closed. Device permanent storage is used to write incoming data during
acquisitions and to read data to be sent during transmissions for preventing data loss in
case of errors or connectivity faults. A SharedPreferences component stores configuration
parameters that are only writable from the configuration screen but are available for reading
to all other components.

Figure 2. App’s main screens: customizable settings (A), main view (B) and feedback request (C).

Push notifications are implemented by exploiting Firebase Cloud Messaging (FCM)
provided by Google. It acts as a message proxy between the App and the RT-PROFASY
middleware and requires the integration of a dedicated software module both in the
sending and receiving component. FCM supports unicast, multicast, and broadcast message
delivery. In addition, to prevent unauthorized operations, the parts involved must share
a credential file released by Firebase itself. Firebase exploits a generated token to address
notification messages, which is an alphanumeric string identifying a specific device. Once
the token is received by the App (at start-up), it is sent to the middleware together with the
device ID (the identifier inserted at installation time). In this way, whenever the middleware
has to send a message to a specific App instance, it addresses the notification to the token
looked up by device ID.
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Figure 3. Architecture of the RT-PROFASY Android application.

Finally, in addition to the real-time monitoring with the wearable device described
above, the biomedical subsystem includes a Point-of-Care (PoC) module for the acquisition
of other vital parameters on a voluntary basis. The PoC consists of an Android 9 tablet
and a set of commercial Bluetooth biomedical devices. Through a dedicated App, the
PoC allows the workers to take measurements of vital parameters such as blood pressure,
temperature, oximetry, and weight. These optional data can contribute to the assessment of
the health and well-being of workers but are not used for stress detection. The software
application requires the worker to log in with a personal username and password. Once
signed in, the user can select the desired measurements and follow the guided procedure to
perform the acquisitions. Data acquisition and forwarding to the middleware are handled
transparently to the user, which is finally informed of the outcome of the operation.

3.2. Machine Learning

The detection of acute stress conditions is carried out by a binary classification algo-
rithm based on Machine Learning (ML), which uses as input the ECG signals acquired
during working activities. Conversely, periodic and chronic stress conditions are high-
lighted in case acute stress episodes are continuously observed over time.

The ECG signal represents the electrical activity of the heart, and its main components
are shown in Figure 4. In particular, the QRS complex reflects the electrical activity within
the heart during the ventricular contraction; hence, it serves as the basis for classification
schemes of the cardiac cycle [56]. Typically, the QRS complex band ranges from 3 to
40 Hz [57], the P-wave ranges from 0.5 to 10 Hz, and the T-wave band ranges from 1 to
20 Hz.

The developed algorithm has to deal with the noise affecting the ECG signals, which
is mainly introduced by worker movements and muscle activity. The movement produces
artifacts in the measured signal mainly in the 0–5 Hz spectral range [58] due to the sliding
of the electrodes over the subject’s body. Whereas, muscle noise is predominant in the band
above 35 Hz [59].
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Figure 4. ECG signal main components: QRS complex, P wave and T wave.

Thus, to make usable the acquired ECG signals, a high-pass filter with a cut-out
frequency of 5 Hz and a low-pass filter with a cut-out frequency of 35 Hz are used. This
results in a strong attenuation of the noise components while keeping the contribution of
the QRS complexes almost unchanged. Given the non-diagnostic nature of the system, the
limited information loss due to the filtering (i.e., T and P waves) can be endured to acquire
a cleaner signal. A comparison of the raw ECG signal acquired under motion conditions
and its final filtered version is shown in Figure 5.

Figure 5. Comparison of raw (top) and filtered (bottom) signal under moderate motion conditions.

In addition, since noise does not affect the signal with the same intensity throughout
its duration, a windowing strategy is applied to further reduce the impact of noise on
the final classification. The filtered signal is divided into 12-second-long non-overlapping
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slices, and classification is computed for each of them using a 1D Convolutional Neural
Network (CNN). The final classification outcome is elaborated by a majority voting logic
in the last stage of the algorithm. In this way, the decision taken on a very noisy segment
can be counterbalanced by decisions taken on clearer signal slices, improving the overall
performance. Figure 6 shows the block diagram of the stress detection algorithm, where
filtering and classification steps are highlighted.

Figure 6. Block diagram of the stress detection algorithm.

The structure of the CNN is shown in Figure 7. In order to maintain the figure clearly,
and since the central layers repeat themselves, the blocks inside the box appear in the actual
network six times. The CNN presents 25 one-dimensional convolutional layers with a filter
size of 9, which are followed by a dense layer with 1024 nodes. Batch normalizations and
Rectified Linear Unit (ReLu) activation functions are used after each convolutional layer.
Every two convolutional layers, apart from the first one, a skip connection connects the
n-th layer with the n+2-th layer. In order to progressively reduce the input size, every
four convolutional layers, a 1D MaxPooling with stride = 2 is applied, and after each skip
connection, the next layer also has a value of strides = 2 to compensate for the increase of
input size caused by the connection itself. The final dense layer is preceded by a Global
Maxpooling and uses a Softmax activation function and dropout normalization.

Figure 7. Structure of the CNN for stress classification.

The supervised training of the CNN was completed in two distinct phases, which are
called pretext and downstream task, respectively. The pretext task allowed the network to
learn robust generalized features from ECG signals (i.e., high-level abstract representations
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and recognition of signal transformations) [60]. In the second task, the network was trained
to perform the required stress classification.

During the pretext task, the network learnt ECG spatiotemporal representations by
recognizing four different types of ECG signal transformations: unchanged, inverted in
time, inverted in space, and inverted in both time and space. The dataset used for this scope
is Physionet [61], which provides long-duration ECG traces sampled at 250 Hz concerning
11,000 patients. The original signals were divided into 2-min portions; then, time and
space transformations were applied. Out of the whole resulting dataset, 75% was used for
training, 15% was used for validation, and 10% was used for testing. The model reaches an
accuracy of 98.4% for the pretext classification task evaluated on the testing dataset.

The downstream task trained the network to perform stress classification. It used as its
starting point the trained network resulting from the pretext task. According to the transfer
learning approach [62], the obtained weights of the convolutional layers were transferred
to a second identical network, and the final dense layer was replaced by another one of
the same type. This dense layer is the only one trained in this task. To this aim, the dataset
was built using ECG signals coming from databases publicly available [63,64], a database
available for research purposes through access request [65], and signals taken on the field
during a preliminary acquisition campaign performed with the RT-PROFASY system itself.
In all cases, each trace is labeled with the corresponding perceived stress level.

As reported in Table 3, the final downstream dataset is composed of 93% ECG signals
coming from the literature, and 34% of the total is labeled as signals of stressed people. In
the case of the signals collected on the field, it was the workers themselves who labeled
the traces through the App, according to the perceived stress. As before, the dataset was
divided into three parts: training (75%), validation(15%), and testing (10%).

The final network gained an accuracy of 88.4%, with a F1-score of 0.90 in the binary
classification of stress. The model is implemented using the TensorFlow library and has a
footprint of 25 MB. Since TensorFlow comes also in a Lite version, it will be possible in the
future to integrate the model directly into edge devices (i.e., smartphones), so that stress
levels’ classification could be completed without sending significant amounts of data to the
middleware.

Table 3. Dataset composition: number of 12-second-long segments per stress label and source
(literature or on the field).

Label Number of
Literature Signals

Number of on-Field
Signals Total

Not stressed 16,090 1740 17,830 (66%)
Stressed 9000 250 9250 (34%)

Total 25,090 (93%) 1990 (7%) 27,080

3.3. Building Automation Subsystem

The P data type collection is handled by the Building Automation subsystem, which
measures environmental parameters and acquires operational data from the production
site’s industrial machines and plants with the aim of environment, process, and safety
conditions monitoring.

The system is implemented with Programmable Logic Controllers (PLCs) produced
by IEI Integration Corp. and sets of commercial I/O boards and sensors distributed within
the factory. The backbone interconnection uses an industrial RS485 bus. In order to increase
fault tolerance and implement recovery procedures, the subsystem architecture exploits
redundancy and distributed components. It is composed of the Centralized Master PLC
(CM-PLC), the Centralized Backup PLC (CB-PLC), and several Local Backup PLC (LB-PLC),
which are placed in proximity of the machinery to be controlled. CM-PLC and CB-PLC are
embedded Debian systems featuring specialized hardware and running custom software
applications implemented for specific control and communication tasks within the RT-
PROFASY system. They both have two RJ45 connectors: one is toward the local network
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(LAN) where the middleware is hosted to enable bidirectional communication and PLC
remote configuration; the other is connected directly to the Ethernet RS485 bus bridge
communication board (BCB) to exchange data with the distributed nodes connected to the
backbone bus. This bridge automatically switches to the CB-PLC in case the connection
with the CM-PLC fails, loading the latest setup and parameters. Finally, several LB-PLCs
(Raspberry Pi3 boards with a light version of the embedded Debian system and ad hoc
developed software) are located close to each machinery to manage the acquisition and
sending of data gathered by the local I/O board. Each I/O board has wired connections to
the BCB through a double-wired bus RS485 with proprietary FB NET protocol and with the
sensors and actuators installed on the machinery.

To the aim of environmental monitoring, the integrated sensors’ and actuators’ sets
provide worker presence detection (using InfraRed technology) and measurements of
temperature, brightness, and humidity. All installed sensors are identified with a unique
ID, which allows the environmental data to be further correlated with stress, well-being, and
process performance analysis. Moreover, automatic procedures or manual interventions
(using the Workplace UI) allow the adjustment of environmental variables to improve the
worker’s comfort.

As far as process control and safety are concerned, the subsystem directly interfaces
production machinery and plants. In this way, it is able to acquire instant and overall
power consumption estimation of the production processes as well as detect and broadcast
warning events triggered, for example, in case of raw materials shortage or operative
anomalies (i.e., level below the specific threshold). Nevertheless, corrective actions are not
automated and must be performed directly on the involved machine by human operators.
In addition, each workstation is provided with dedicated buttons to signal dangerous
situations which, when pressed, produce notifications sent to PLCs and then to other
workstations and users via middleware.

More in general, data exchange within the building automation subsystem and toward
the RT-PROFASY middleware happens either at fixed sampling rates (for analog quantities
whose dynamics change slowly, i.e., temperature, humidity and brightness sensors, power
consumption) or as soon as the information/event is detected (for digital quantities, e.g.,
presence sensors, triggers, warning events, changes of state, etc.).

Finally, some post-processing optimization criteria are implemented in the software
routines to balance the quantity of data logged and transmitted with respect to the use-
fulness of the data collected as well as save storage space and speed up research and
analysis.

3.4. RTLS Subsystem

The tracking of objects, assets, and the PPE’s position within the production site
is managed by the Real-Time Location System (RTLS) subsystem. The availability of
positioning data with sub-meter precision and, at the same time, the virtual segmentation
of factory spaces into areas, allowed the implementation of software routines to:

• Verify PPE compliance with respect to area-specific rules;
• Verify accesses made to workstations and restricted areas;
• Search for work tools, product batches, semi-finished products, and raw materials;
• Stand by machinery in case of an unattended workstation.

This subsystem is composed of COTS hardware resources produced by Ubisense: a
centralized RTLS server, several receiver antennas placed inside the factory at specific coor-
dinates (called references), and active tags placed onto the items to be localized. The smart
antennas compute the position of each tag by measuring Time Distance of Arrival (TDoA),
Angle of Arrival (AoA), and the strength of the signal (see Figure 8). The localization
process happens in real time, and all the positioning data are processed by the RTLS server
and immediately made available to the RT-PROFASY middleware.



Sensors 2023, 23, 5502 14 of 21

Figure 8. RTLS subsystem: localization computation.

The RTLS subsystem uses Ultra-Wideband (UWB) technology with a signal strength
of 2.4 GHz, which allows for sub-meter accuracy in real time (less than 1 s) and potential
scalability over 1000 tags. In addition, the use of UWB technology enables the possibility
of deriving the pin-point 3D location, which helps in the detection of dynamic equipment
movements, and the identification of people/assets in critical processes. An alternative
technology that could be adopted is based on Bluetooth, whose hardware is less expensive
but provides worse performance, especially in 3D positioning.

Given the industrial environment, in which signals can be reflected and/or obstructed,
antennas may measure incorrect positioning and/or physically impossible movements. In
order to detect and remove these outliers, the RTLS subsystem applies advanced Kalman-
based filtering algorithms, which distinguish the direct signal path from its reflections.

Overall, the availability of precise positioning data enables the middleware to raise
alarms and send notifications to the workers whenever they enter a restricted area or are not
wearing the proper PPE, contributing to the prevention of dangerous situations. In addition,
it enables the analysis of the correlation between stressful situations and the specific site
location, while production times could benefit from the search for assets capability offered
by the subsystem.

3.5. Workplace UI Subsystem

The Workplace User Interface (UI) allows the interaction between the worker and
the RT-PROFASY system. It is an ad hoc implemented web-based UI (Figure 9) made
available in the production site through different types of hardware resources, the choice
of which needs to keep both workers and machinery safe. For example, some machines
have an industrial Linux-embedded 10” touchscreen panel placed nearby, but when this is
not possible, workers can interact with the UI through the same smartphone used for the
Biomedical subsystem and/or a shared 10” industrial rugged Android OS tablet. In either
case, the connection to the middleware exploits the Wi-Fi network available in the factory.

Figure 9. Workplace UI: web-based interface.
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This UI also provides useful information to better carry out the job, for instance
showing the list of activities, the bill of materials required, tracking the status of single
activities, and entire processes by recording their start/end time, etc. It also allows reporting
problems that occur during production activities, including interruptions or discarded
products. Overall, the information contributes to the “P” data type by monitoring the
evolution and outcomes of processes and coordinating subsequent production phases.

In addition, this subsystem optionally allows the visualization of the environmental
parameters measured in the proximity of the workstation and, where available, to modify
them by acting on the actuators of the Building Automation subsystem.

For the purposes of safety, through the Workplace UI, the workers could receive immedi-
ate notification about dangers/fail machinery events raised by the local machine or elsewhere
on the production site. Similarly, they can signal emergencies to all their colleagues.

Finally, this subsystem provides functionalities related to RTLS components such as:

• Search for the location of PPE required to operate the associated machine or enter a
specific area;

• Search for the location of assets and materials needed to accomplish the assigned activity;
• Receive timely notification if PPE is missing.

4. On-Field Trial

An on-field test of the RT-PROFASY system was conducted in order to assess the
technological and operational feasibility, the achieved performance, and the impact on
productivity, production quality, and workers’ perceived working conditions in a real
application scenario.

The selected testing site is a private company operating in the mechanical manufac-
turing and metalworking sectors. It is mainly focused on metal heat treatment and metal
carpentry. The production is largely characterized by custom products, non-repeatable
items, and small production batches. The company also offers complementary services
such as technological tests and precision measurements. Two main different categories of
work activities carried out in the production site results from the preliminary analysis:

• Activities with high risk and fairly slow dynamics (few pieces produced during the
day) typical of heat treatment of metals;

• Activities with faster dynamics but characterized by repetitive actions, such as the produc-
tion of several identical pieces, apparently having a lower risk level (i.e., metal carpentry).

In all cases, the work activities are predominantly physical and characterized by a
high level of movement of the operator. It is worth noting that activities with similar
characteristics can also be found in other manufacturing sectors, allowing the developed
system to be applied in other industrial contexts.

The setup of the prototype system included the installation of the Building Automa-
tion and RTLS subsystems components and their interconnection to the middleware. The
latter was deployed on a dedicated server machine in the cloud. A total of seven pieces
of production machinery were connected to the infrastructure for reading operating pa-
rameters. In addition, each workplace was equipped with sensors to monitor presence
and environmental conditions and the UI to allow the worker to interact with the system.
Eight UWB-based antennas were deployed in the area, and location tags were applied to
the main PPE and equipment used during production. Moreover, the factory space was
virtually divided into 10 sectors, defining the PPE compliance rules for each one. WiFi
connectivity was extended to cover the entire area of the production site.

A total of 10 workers were involved in the test over a period of 4 months. Informed
consent was obtained from all subjects involved in the study. All of them attended an initial
training session (2 h) and received personal monitoring devices already configured (i.e.,
T-shirt and smartphone). They were also informed of the availability of additional training
as needed. No user interrupted the test before the end.
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No accidents occurred during the trial, nor were there any observed events or be-
haviors ascribable to periodic or chronic stress conditions. The absence of such forms of
stress was confirmed by the analysis of stress levels calculated by the system and also using
traditional evaluations carried out at the end of the trial by the company doctor. Data
analysis also showed high PPE compliance in the factory.

A few episodes of acute stress and fatigue were detected, especially while performing
particularly physically demanding activities for medium/long periods and on certain
days when the ambient temperature detected at the workplace was very low (minimum
measured 11 ◦C). Such episodes were sporadic and had a limited duration. They were
always reported to the worker via a dedicated notification on the smartphone and did not
cause safety issues nor affect the quality of production in terms of human errors. Specifically,
the ML model developed for detecting acute stress from ECG signals acquired in motion
features an accuracy of 88.4% and an F1-score of 0.90. This performance is comparable with
models in the literature that use signals acquired under stationary conditions of the subject.

The impact on the production quality was evaluated by comparing the number of
defective products, waste, and manufacturing errors occurred during the trial period vs.
the ones that occurred in the same production processes in previous periods. To this aim,
past data provided by the company were used. From this point of view, there was no
deviation in performance. In addition, the duration of individual activities and entire
processes proved to be in line with the past. It should be noted that the company has long
applied policies to minimize errors and organized processes to maximize performance and
product quality.

The standardized System Usability Scale (SUS) was used to measure the usability
perception of the RT-PROFASY system. The SUS consists of ten questions, which are
positively and negatively oriented. The response scale for each question is a 5-point
agreement scale from strongly disagree (1) to strongly agree (5). Workers were asked to
answer the survey in anonymous mode. The scores of each question were normalized in
the 0 to 4 interval by subtracting 1 from the original score of positive-oriented questions and
by subtracting the original score from 5 for negative-oriented questions. For each survey,
the SUS 0–100 score was obtained by summing the normalized scores of all questions
and multiplying that sum by 2.5. The good usability level of the system is confirmed
by the average final SUS score of 73 (grade B), which converts to a percentile rank near
70%. The ease of use of the system is also confirmed by the fact that no worker required
additional training beyond the initial session and was able to operate the system without
any particular problems.

The impact on safety, organization of work, and in general on the quality-of-life
during activities perceived by workers was evaluated through a dedicated survey filled in
anonymously. The five positive-oriented questions included a 5-point agreement response
scale as for the SUS, and the same normalization approach was used. Table 4 shows the
average score obtained for each question. All questions received an average rating from
sufficient to positive, among which the perception of health protection stands out. In
addition, all workers confirmed that the T-shirt did not interfere with work activities and
was a good solution in terms of usability and ergonomics. The main disadvantage pointed
out was the need for frequent washing of the fabric. However, no particular comfort or
hygiene issues due to prolonged use of the T-shirt were reported.

Table 4. Questions proposed in addition to the SUS survey.

Question Score [0–4]

The use of the system made my work organization easier 2.4
The use of the system made my work safer 2.2
The use of the system improved the environmental working conditions 2.4
I think that using the system, my health status is more protected 2.8
The use of the system improved the quality of my workday 2.2



Sensors 2023, 23, 5502 17 of 21

The robustness and reliability of the RT-PROFASY system from a technical point of
view were indirectly assessed through the monitoring of malfunctions and requests for
maintenance intervention during the trial. No major malfunctions negatively interfered
with production, while temporary malfunctions (i.e., lack of connectivity or power supply,
etc.) at some nodes were automatically recovered without causing any data loss. All
interventions carried out concerned the improvement and optimization of hardware and
software resources to refine data acquisition and processing capabilities.

Ultimately, the RT-PROFASY system demonstrated its technical and operational fea-
sibility and achieved the expected performance. The real-time monitoring of all factors
affecting productivity, feasible through the availability of a solid and constantly updated
heterogeneous dataset enables the identification of potential problems and improves the
working and environmental conditions, the safety of workers, and definitely the quality of
the production.

5. Conclusions

This paper describes a complete system aimed at monitoring in an integrated and reli-
able way all factors that affect both the well-being and safety of workers and business pro-
ductivity. The system is composed of COTS hardware components and custom-developed
software applications and routines to enable real-time data acquisition and processing
throughout the execution of the production workflows. The system supports different
kinds of data related to production processes and machinery, environmental conditions,
and human factors (i.e., stress and fatigue), which altogether contribute to productivity and
the quality of production.

The availability of such a multidimensional and comprehensive dataset allows detailed
analysis of the performance of production processes taking into account multiple aspects,
also enabling the identification of the causes of possible worsening and the measurement
of impact of corrective actions. Beyond the optimization of the working activities, it also
aims at improving safety conditions and ultimately pursuing production quality through
sustainable processes for workers and appropriate working conditions.

Future work concerns the investigation of the impact of collected biosignals other than
ECG for the stress detection task and the exploitation of inertial data for the implemen-
tation of new features such as fall detection and activity recognition. Furthermore, the
implementation of the current stress detection algorithm on edge devices and the study
of an extended ML-based classification model providing a stress level score instead of a
binary output are foreseen.
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Abbreviations
The following abbreviations are used in this manuscript:

API Application Programming Interface
App ad hoc developed monitoring Android application
AoA Angle of Arrival
BCB Bridge Communication Board
BLE Bluetooth Low Energy
CB-PLC Centralized Backup Programmable Logic Controller
CM-PLC Centralized Master Programmable Logic Controller
CNN Convolutional Neural Network
COTS Commercial Off-the-Shelf
EEG Electroencephalography
ECG Electrocardiogram
FCM Google Firebase Cloud Messaging
HRV heart rate variability
IIoT Industrial Internet-of-Things
IMU Inertial Measurement Unit
LAN Local Area Network
LB-PLC Local Backup Programmable Logic Controller
ML Machine Learning
PLC Programmable Logic Controller
PoC Point-of-Care
PPE Personal Protection Equipment
ReLu Rectified Linear unit
REST Representational State Transfer
RFID radio frequency identification based on passive tags
RTLS Real-Time Location System
RT-PROFASY Real-Time Production Factory System
SDK Software Development Kit
SUS System Usability Scale
TDoA Time Distance of Arrival
UI User Interface
UWB Ultra-Wideband

References
1. Durdyev, S.; Ismail, S. Pareto analysis of on-site productivity constraints and improvement techniques in construction industry.

Sci. Res. Essays 2012, 7, 824–833. [CrossRef]
2. Colledani, M.; Tolio, T.; Fischer, A.; Iung, B.; Lanza, G.; Schmitt, R.; Váncza, J. Design and management of manufacturing systems

for production quality. CIRP Ann. 2014, 63, 773–796. [CrossRef]
3. Verna, E.; Genta, G.; Galetto, M.; Franceschini, F. Towards Zero Defect Manufacturing: Probabilistic model for quality control

effectiveness. In Proceedings of the 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT),
Rome, Italy, 7–9 June 2021; pp. 522–526. [CrossRef]

4. Durdyev, S.; Ihtiyar, A.; Ismail, S.; Ahmad, F.S.; Bakar, N.A. Productivity and Service Quality: Factors Affecting in Service
Industry. Procedia Soc. Behav. Sci. 2014, 109, 487–491. 2nd World Conference on Business, Economics and Management.

5. Gorantiwar, V.; Shrivastava, R. Identification of critical success factors for quality-productivity management approach in different
industries. Int. J. Product. Qual. Manag. 2014, 14, 66–106. [CrossRef]

6. Kumar, S.; Duhan, M.; Haleem, A. Evaluation of factors important to enhance productivity. Cogent Eng. 2016, 3, 1145043 .
[CrossRef]

7. Chandra, S.S.; Sepasgozar, S.M.E.; Kumar, V.R.P.; Singh, A.K.; Krishnaraj, L.; Awuzie, B.O. Assessing Factors Affecting
Construction Equipment Productivity Using Structural Equation Modeling. Buildings 2023, 13, 502. [CrossRef]

8. Chanmeka, A.; Thomas, S.; Caldas, C.; Mulva, S. Assessing key factors impacting the performance and productivity of oil and
gas projects in Alberta. Can. J. Civ. Eng. 2012, 39, 259–270. [CrossRef]

9. Lombard, R.; van Waveren, C.C.; Chan, K.Y. Factors affecting quality in a manufacturing environment for a non-repairable
product. In Proceedings of the 2014 IEEE International Conference on Industrial Engineering and Engineering Management,
Selangor, Malaysia, 9–12 December 2014; pp. 137–142. [CrossRef]

http://doi.org/10.5897/SRE12.005
http://dx.doi.org/10.1016/j.cirp.2014.05.002
http://dx.doi.org/10.1109/MetroInd4.0IoT51437.2021.9488487
http://dx.doi.org/10.1504/IJPQM.2014.063160
http://dx.doi.org/10.1080/23311916.2016.1145043
http://dx.doi.org/10.3390/buildings13020502
http://dx.doi.org/10.1139/l11-128
http://dx.doi.org/10.1109/IEEM.2014.7058616


Sensors 2023, 23, 5502 19 of 21

10. Li, J.; Li, Z.; Lin, R.; Chen, Z. The Technological Innovation, the Industrial Structure Upgrading and the Total Factor Productivity.
In Proceedings of the 2021 2nd International Conference on Big Data Economy and Information Management (BDEIM), Sanya,
China, 3–5 December 2021; pp. 106–109. [CrossRef]

11. Branca, T.A.; Fornai, B.; Colla, V.; Murri, M.M.; Streppa, E.; Schröder, A.J. The Challenge of Digitalization in the Steel Sector.
Metals 2020, 10, 288. [CrossRef]

12. Zhang, H.; Zhang, Q. How Does Digital Transformation Facilitate Enterprise Total Factor Productivity? The Multiple Mediators
of Supplier Concentration and Customer Concentration. Sustainability 2023, 15, 1896. [CrossRef]

13. Alsaadi, N. Modeling and Analysis of Industry 4.0 Adoption Challenges in the Manufacturing Industry. Processes 2022, 10, 2150.
[CrossRef]

14. Dudina, D.A.; Vasiliev, V.A.; Mandrakov, E.S. Digital Technologies for Monitoring Product Quality and Safety. In Proceedings
of the 2020 International Conference Quality Management, Transport and Information Security, Information Technologies
(IT&QM&IS), Yaroslavl, Russia, 7–11 September 2020; pp. 44–46. [CrossRef]

15. Stavropoulos, P.; Chantzis, D.; Doukas, C.; Papacharalampopoulos, A.; Chryssolouris, G. Monitoring and Control of Manu-
facturing Processes: A Review. Procedia CIRP 2013, 8, 421–425. 14th CIRP Conference on Modeling of Machining Operations
(CIRP CMMO). [CrossRef]

16. Kralikova, R.; Wessely, E. Impact of the Environmental Factors and its Effects on Productivity and Health. In Impact of the
Environmental Factors and Its Effects on Productivity and Health, Proceedings of the 29th DAAAM International Symposium, Zadar,
Croatia, 24–27 October 2018; Katalinic., B., Ed.; DAAAM International: Vienna, Austria, 2018; pp. 0119–0124. [CrossRef]

17. Anuradha Meegahapola, P.; Prabodanie, R. Impact of environmental conditions on workers’ productivity and health. Int. J.
Workplace Health Manag. 2018, 11, 74–84. [CrossRef]

18. Erro-Garcés, A.; Ferreira, S. Do better workplace environmental conditions improve job satisfaction? J. Clean. Prod. 2019,
219, 936–948. [CrossRef]

19. Neumann, W.P.; Kolus, A.; Wells, R.W. Human Factors in Production System Design and Quality Performance—A Systematic
Review. IFAC-PapersOnLine 2016, 49, 1721–1724. 8th IFAC Conference on Manufacturing Modelling, Management and Control
MIM 2016. [CrossRef]

20. Carpitella, S.; Carpitella, F.; Certa, A.; Benítez, J.; Izquierdo, J. Managing Human Factors to Reduce Organisational Risk in
Industry. Math. Comput. Appl. 2018, 23, 67. [CrossRef]

21. Pandey, D.L. Work stress and employee performance: An assessment of impact of work stress. Int. Res. J. Hum. Resour. Soc. Sci.
2020, 7, 124–135.

22. Ramos-Galarza, C.; Acosta-Rodas, P. Stress and productivity in workers of textile companies. J. Fash. Mark. Manag. 2019,
23, 17–29. [CrossRef]

23. Leung, M.Y.; Liang, Q.; Olomolaiye, P. Impact of Job Stressors and Stress on the Safety Behavior and Accidents of Construction
Workers. J. Manag. Eng. 2016, 32, 04015019. [CrossRef]

24. Thirumala, V.; Verma, T.; Gupta, S. Injury analysis of mine workers: A case study. In Proceedings of the 2017 IEEE International
Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, 10–13 December 2017; pp. 269–273.
[CrossRef]

25. Bakker, J.; Pechenizkiy, M.; Sidorova, N. What’s Your Current Stress Level? Detection of Stress Patterns from GSR Sensor Data. In
Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December
2011; pp. 573–580. [CrossRef]

26. Ohsuga, M.; Shimono, F.; Genno, H. Assessment of phasic work stress using autonomic indices. Int. J. Psychophysiol. 2001,
40, 211–220. . [CrossRef]

27. Mucci, N.; Giorgi, G.; Cupelli, V.; Gioffrè, P.A.; Rosati, M.V.; Tomei, F.; Tomei, G.; Breso-Esteve, E.; Arcangeli, G. Work-related
stress assessment in a population of Italian workers. The Stress Questionnaire. Sci. Total Environ. 2015, 502, 673–679. [CrossRef]

28. Donati, M.; Olivelli, M.; Giovannini, R.; Fanucci, L. RT-PROFASY: Enhancing the Well-being, Safety and Productivity of Workers
by Exploiting Wearable Sensors and Artificial Intelligence. In Proceedings of the 2022 IEEE International Workshop on Metrology
for Industry 4.0 & IoT (MetroInd4.0&IoT), Trento, Italy, 7–9 June 2022; pp. 69–74. [CrossRef]

29. Fabrício, M.A.; Behrens, F.H.; Bianchini, D. Monitoring of Industrial Electrical Equipment using IoT. IEEE Lat. Am. Trans. 2020,
18, 1425–1432. [CrossRef]

30. Kadiyala, E.; Meda, S.; Basani, R.; Muthulakshmi, S. Global industrial process monitoring through IoT using Raspberry pi. In
Proceedings of the 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), Chennai,
India, 23–25 March 2017; pp. 260–262. [CrossRef]

31. Karemore, P.; Jagtap, P.P. A Review of IoT Based Smart Industrial System for Controlling and Monitoring. In Proceedings of the
2020 Fourth International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 11–13 March
2020; pp. 67–69. [CrossRef]

32. Dobrilovic, D.; Brtka, V.; Stojanov, Z.; Jotanovic, G.; Perakovic, D.; Jausevac, G. A Model for Working Environment Monitoring in
Smart Manufacturing. Appl. Sci. 2021, 11, 2850. [CrossRef]

33. Gu, C.; He, Y.; Han, X.; Chen, Z. Product quality oriented predictive maintenance strategy for manufacturing systems. In
Proceedings of the 2017 Prognostics and System Health Management Conference (PHM-Harbin), Harbin, China, 9–12 July 2017;
pp. 1–7. [CrossRef]

http://dx.doi.org/10.1109/BDEIM55082.2021.00030
http://dx.doi.org/10.3390/met10020288
http://dx.doi.org/10.3390/su15031896
http://dx.doi.org/10.3390/pr10102150
http://dx.doi.org/10.1109/ITQMIS51053.2020.9322857
http://dx.doi.org/10.1016/j.procir.2013.06.127
http://dx.doi.org/10.2507/29th.daaam.proceedings.016
http://dx.doi.org/10.1108/IJWHM-10-2017-0082
http://dx.doi.org/10.1016/j.jclepro.2019.02.138
http://dx.doi.org/10.1016/j.ifacol.2016.07.830
http://dx.doi.org/10.3390/mca23040067
http://dx.doi.org/10.1108/JFMM-02-2018-0030
http://dx.doi.org/10.1061/(ASCE)ME.1943-5479.0000373
http://dx.doi.org/10.1109/IEEM.2017.8289894
http://dx.doi.org/10.1109/ICDMW.2011.178
http://dx.doi.org/10.1016/S0167-8760(00)00189-6
http://dx.doi.org/10.1016/j.scitotenv.2014.09.069
http://dx.doi.org/10.1109/MetroInd4.0IoT54413.2022.9831499
http://dx.doi.org/10.1109/TLA.2020.9111678
http://dx.doi.org/10.1109/ICNETS2.2017.8067944
http://dx.doi.org/10.1109/ICCMC48092.2020.ICCMC-00012
http://dx.doi.org/10.3390/app11062850
http://dx.doi.org/10.1109/PHM.2017.8079213


Sensors 2023, 23, 5502 20 of 21

34. Včelák, J.; Vodička, A.; Maška, M.; Mrňa, J. Smart building monitoring from structure to indoor environment. In Proceedings of
the 2017 Smart City Symposium Prague (SCSP), Prague, Czech Republic, 25–26 May 2017; pp. 1–5. [CrossRef]

35. Wang, M.; Zhang, R.; Zhang, Y.; Dong, H.; Wang, Y. An Indoor Environmental Monitoring system Based on ESPDuino for Green
Buildings. In Proceedings of the 2018 IEEE International Conference on Information and Automation (ICIA), Wuyishan, China,
11–13 August 2018; pp. 1658–1663. [CrossRef]

36. Sulzer, M.; Christen, A.; Matzarakis, A. A Low-Cost Sensor Network for Real-Time Thermal Stress Monitoring and Communica-
tion in Occupational Contexts. Sensors 2022, 22, 1828. [CrossRef] [PubMed]

37. Thomas, G.W.; Sousan, S.; Tatum, M.; Liu, X.; Zuidema, C.; Fitzpatrick, M.; Koehler, K.A.; Peters, T.M. Low-Cost, Distributed
Environmental Monitors for Factory Worker Health. Sensors 2018, 18, 1411. [CrossRef]

38. Xiong, R.; Tang, P. Pose guided anchoring for detecting proper use of personal protective equipment. Autom. Constr. 2021,
130, 103828. [CrossRef]

39. Obeidat, H.; Shuaieb, W.; Obeidat, O.; Abd-Alhameed, R. A Review of Indoor Localization Techniques and Wireless Technologies.
Wirel. Pers. Commun. 2021, 119, 289–327. [CrossRef]

40. Ndzukula, S.G.; Ramotsoela, T.D.; Silva, B.J.; Hancke, G.P. A bluetooth low energy based system for personnel tracking. In
Proceedings of the IECON 2017—43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, China, 29 October–1
November 2017; pp. 8435–8440. [CrossRef]

41. Karaagac, A.; Haxhibeqiri, J.; Ridolfi, M.; Joseph, W.; Moerman, I.; Hoebeke, J. Evaluation of accurate indoor localization systems
in industrial environments. In Proceedings of the 2017 22nd IEEE International Conference on Emerging Technologies and
Factory Automation (ETFA), Limassol, Cyprus, 12–15 September 2017; pp. 1–8. [CrossRef]

42. Boontrai, D.; Jingwangsa, T.; Cherntanomwong, P. Indoor localization technique using passive RFID tags. In Proceedings of the
2009 9th International Symposium on Communications and Information Technology, Icheon, Republic of Korea, 28–30 September
2009; pp. 922–926. [CrossRef]

43. Cret,u-Sîrcu, A.L.; Schiøler, H.; Cederholm, J.P.; Sîrcu, I.; Schjørring, A.; Larrad, I.R.; Berardinelli, G.; Madsen, O. Evaluation and
Comparison of Ultrasonic and UWB Technology for Indoor Localization in an Industrial Environment. Sensors 2022, 22, 2927.
[CrossRef]

44. Lawanont, W.; Inoue, M. An unsupervised learning method for perceived stress level recognition based on office working
behavior. In Proceedings of the 2018 International Conference on Electronics, Information, and Communication (ICEIC),
Honolulu, HI, USA, 24–27 January 2018; pp. 1–4. [CrossRef]
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