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Abstract: We established an experimental apparatus by combining polarized light scattering and
angle-resolved light scattering measurement technology to rapidly identify the shape of an individual
aerosol particle. The experimental data of scattered light of Oleic acid, rod-shaped Silicon dioxide,
and other particles with typical shape characteristics were analyzed statistically. To better study
the relationship between the shape of particles and the properties of scattered light, the partial
least squares discriminant analysis (PLS-DA) method was used to analyze the scattered light of
aerosol samples based on the size screening of particles, and the shape recognition and classification
method of the individual aerosol particle was established based on the analysis of the spectral data
after nonlinear processing and grouping by particle size with the area under the receiver operating
characteristic curve (AUC) as reference. The experimental results show that the proposed classification
method has a good discrimination ability for spherical, rod-shaped, and other non-spherical particles,
which can provide more information for atmospheric aerosol measurement, and has application
value for traceability and exposure hazard assessment of aerosol particles.

Keywords: individual aerosol particle; shape of particulate matter; polarized light scattering;
angle-resolved light scattering; aerodynamic particle size

1. Introduction

In aerosol particle diagnostic techniques, traditional methods of aerosol particle assess-
ment often include microscopic inspection or molecular analysis of filters, suffering from
low time resolution due to relatively long analytical procedures, and may cause damage
to particles. Optical methods are widely used in monitoring ambient air pollution, cloud
microphysics, aerosol particle detection in the workplace, and detection of bioaerosol re-
lease since they have the advantages of non-destructive and fast response when compared
to traditional detection methods [1–4]. The optical properties of atmospheric aerosol are
related to their size, shape, concentration, and chemical composition [5,6]. The size and
shape of airborne particles determine their behavior in the air, including generation, trans-
mission, and sedimentation. In many circumstances, the shape of particles can give some
indication of the source of those particles and hence facilitate more effective monitoring or
contamination control [7]. Among all optical measurement methods, elastic light scattering
provides the strongest signal, far more than inelastic light scattering, which facilitates
detection. Therefore, aerosol particle elastic scattering technology has been widely used in
recent years, especially for single particles [8,9].

Many researchers have studied the scattering properties of particles through compu-
tational simulations [10–13]. In the experimental study of the scattered light of aerosol
particles, the research on the angle-resolved light scattering of particles was started ear-
lier [14–16]. Then, various detection techniques for scattered light distribution have been
further developed. Kaye et al. have collected scattered light with an ellipsoid mirror and
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detected high-resolution scattering patterns with a wide range of solid angles using an
intensified charge-coupled-device camera and compared them with theoretical scatter-
ing patterns [17]. After that, they developed a real-time rapid monitoring system in the
early stage for detecting the shape and size characteristics of airborne particles [7]. Hirst
et al. designed an aircraft-mounted probe to provide in situ data on cloud particle shape,
size, and concentration to help distinguish super-cooled water droplets and ice crystals in
1–25 µm mixed-phase clouds [18], some other researchers have also designed related de-
vices and conducted experiments [4,5,19]. With the further development of light scattering
technology in the detection of aerosol particles, the polarization characteristics of aerosol
particles have been applied in climate research, atmospheric and oceanic environmental
monitoring, astrophysics, bioaerosol science, and other fields [20–23]. A method based
on polarized light scattering was proposed by Wang et al. to identify different kinds of
suspended particles rapidly and massively [24]. Li et al. present an in situ online method to
characterize aerosols by synchronous parallel polarization scattering analysis with a multi-
angle polarization scattering instrument [25]. As the scattered light contains abundant
information about particle shape, size, and other properties, which will bring difficulties
to the analysis. Therefore, there are still some challenges in rapidly classifying or even
identifying the types of particles through the information contained in the scattered light of
aerosol particles.

To rapidly discriminate the shape of the individual aerosol particles, we proposed an
experimental setup capable of simultaneously measuring the intensity of angle-resolved
light scattering, polarization characteristics, and aerodynamic diameter of particles in this
paper. Based on the size screening of aerosol particles with different shapes, the scattered
light of particles getting under two wavelengths was analyzed by Partial Least Squares
Discriminant Analysis (PLS-DA) method, and a prediction model between the scattered
light and shape of individual particles under experimental conditions was established.
The preliminary results illustrate the capability of this method to distinguish the spherical,
rod-shaped, and other non-spherical particles.

2. Experimental Methods
2.1. Experimental Setup

Figure 1 is a schematic diagram of the polarization and angular resolution light
scattering measuring device for individual aerosol particles. Firstly, various polydisperse
aerosol particles with different shape characteristics were pumped into the aerosol injection
detection unit. During the sample injection, the aerosol particles in the sample airflow
were collimated and accelerated, and then the target particles enter the scattering light
detection area. In the optical measurement area, aerosol particles were illuminated by two
partially overlapping laser beams first, which focused under the particle stream and close
to the inlet nozzle. The linearly polarized light with a wavelength of 650 nm was emitted
by a diode laser, and the vertical and horizontal components of the beam were split into
two separate orthogonally polarized beams with an interval of about 100 µm by using
a birefringent plate (YVO4 orthotropic yttrium vanadate crystal). The light scattered by
the particle was collected by a reflector which was placed at 45◦ forward to the laser axis
and focused onto an avalanche photodiode (APD) detector. The detector then converts
the light pulses into electrical pulses generating a double-crested signal of scattered light
corresponding to horizontal and vertical polarized light, respectively. The time between
the crests is called the time-of-flight (TOF1), it could provide aerodynamic particle-size
information [26]. Then the particles pass through a light beam with a wavelength of 405 nm,
which is located below the 650 nm laser beam at a distance of less than 1 mm, and the
corresponding forward elastic scattering light generated by the particle was collimated
and aggregated by Lens6 and Lens7, respectively. Among them, Lens6 has an extinction
device in the center to block the incident laser light (so the receiving range of the polar
angle of the scattered light is 6◦~18◦), and Lens 7 focuses the scattered light through the
aperture to reduce the effect of stray light. Lens 7 focuses the scattered light through the
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aperture to reduce the effect of stray light. Finally, the scattered light is concentrated again
by three lenses (which were symmetrically distributed on the forward space with azimuth
interval 120◦) and received by the photomultiplier tubes (PMTs) located at the focus of the
lenses, respectively.
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Figure 1. Schematic diagram of the experimental setup.

A digital oscilloscope (WaveRunner104Xi-A, LeCroy (Chestnut Ridge, NY, USA))
was used to display and store the amplified signal from the APD and PMTs for later
data processing. The sampling interval of the oscilloscope was set to 1 ns. The typical
signals of a single oleic acid particle displayed on the oscilloscope are shown in Figure 2.
As previously mentioned, TOF1 is the time-of-flight of the particle passing through two
separate orthogonally polarized beams (usually a few hundred nanoseconds to a few
microseconds), and proportional to the aerodynamic diameter. H1 and H2 correspond
to the peak values of the bimodal signal produced by APD when particles pass through
horizontally polarized incident light and vertically polarized incident light, respectively. E1,
E2, and E3 correspond to the peak values of the single-peak signals produced by the three
PMT when the particles pass through the laser with a wavelength of 405 nm, respectively.

2.2. Calculation Method of Scattered Light

In the laboratory coordinate system L(x, y, z), the directions of the incident light and
scattering light involved in the light scattering process of the particle are shown in Figure 3.
The incident light is generally set to propagate along the positive direction of the z-axis
of the laboratory coordinate system, which means the scattering angle θinc and azimuthal
angle φinc of the incident light are both equal to 0, and the incident light of arbitrary
polarization can be decomposed into two orthogonal electric vectors êx and êy. The plane
formed by the directions of the scattered beam n̂sca and the incident beam n̂inc is called the
scattering plane. The scattering light can be decomposed into an electric vector ê‖ parallel
to the plane and an electric vector ê⊥ perpendicular to the plane.
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Combined with the T-matrix theory and Muller matrix, the calculation method of
the differential scattering cross-section of particles under incident light with different
polarization characteristics can be derived, and the specific derivation process has been
explained in another article [27]. When the incident light is linearly polarized along the
x-axis, linearly polarized along the y-axis, or non-polarized, then the calculation method of
corresponding differential scattering cross-section dCsca

dΩ can be calculated by Equation (1),
Equation (2), or Equation (3), respectively.

dCsca
x

dΩ
= Z11 + Z12, (1)

dCsca
y

dΩ
= Z11 − Z12, (2)

dCsca
n

dΩ
= Z11, (3)
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where Z11 and Z12 are the elements of the Mueller matrix for scattering by individual
particle. In addition, since the detector has a certain angle of view, the scattering light in
the detection area needs to be calculated integrally.

Isca = Iinc
∫ ϕ0+∆φ

ϕ0−∆φ

∫ θ0+∆θ

θ0−∆θ

dCsca

dΩ
(θ, φ) sin θdθdφ. (4)

The θ0 and φ0 in the above equation are the scattering angle and azimuth of the
detector’s center position, ∆θ is half of the angle of view of the detection receiving surface
(as shown in Figure 3), and ∆φ is the integral range of the azimuthal angle. If the receiving
surface of the scattered light is circular, and the normal direction of the center passes
through the interaction point (origin) of the laser and the particle, then ∆φ can be expressed
as [28]:

∆φ = cos−1
(

cos ∆θ − cos θ0 cos θ

sin θ0 sin θ

)
. (5)

2.3. Sample Generation

The polydisperse aerosol particles used in the experiment can be generated by the
self-made polydisperse aerosol generator NAG2210, which works in a similar way to the
atomizer. Firstly, the sample should be prepared into solution by selecting a suitable solvent,
then a certain volume of the prepared solution should be measured and put in a container.
After that, the high-speed airflow formed by compressed air passing through the small
nozzle was used to drive the solution in the container to form a liquid jet. The generated
liquid jet will hit the inner wall of the container at a high speed, split into liquid droplets
and splash to the surrounding area, forming mist-like particles, then enter the buffer
chamber with the airflow. In the buffer chamber, when the volatile solvent in the droplet
evaporated, the formed target aerosol particles will be output from the buffer chamber
with the airflow and enter the measuring device. For liquid solutions (such as Oleic acid
solution), aerosol droplets with different size characteristics can be formed according to
different concentrations of solutions. For the solution containing insoluble solid particles,
the size distribution of aerosol particles depends on the solid particles themselves. The
monodisperse aerosols were generated by a flow-focusing monodisperse aerosol generator
(FMAG1520, TSI).

Two aerosol samples with different shapes were studied experimentally, including
Oleic acid particles and rod-shaped Silicon dioxide particles. Since it is difficult to obtain
rod-like aerosol samples, so we synthesized rod-shaped Silicon dioxide particles by our-
selves using the reversed-phase microemulsion method [29], and the scanning electron
microscope (SEM) image of the sample is shown in Figure 4a. It can be seen that almost
all the synthesized Silicon dioxide particles are rod-shaped. Oleic acid particles cannot be
photographed by electron microscope because of their properties, but according to relevant
literature, the shape of Oleic acid particles is considered spherical [7,30]. Both Oleic acid
and Silicon dioxide have a refractive index of 1.46 [29,31]. The size distribution of the four
aerosol particles was measured by Aerodynamic Particle Sizer Spectrometer (APS3321),
respectively. To better compare the size distribution of different aerosol particles, the fre-
quency distribution diagram of the particle size distribution of each sample was drawn,
and the results are shown in Figure 4b. As can be seen from Figure 4b, the aerodynamic
particle diameter Da of two aerosol particles both within 4 µm, and the size distribution of
Oleic acid particles is slightly wider than that of rod-shaped Silicon dioxide particles.
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Figure 4. (a) Electron microscope image of rod-shaped Silicon dioxide particles synthesized by
reversed-phase microemulsion method. (b) Size distribution of aerosol samples.

3. Results and Discussion
3.1. Extraction and Correction of the Spectral Signal
3.1.1. Signal Extraction

Due to the influence of light and electrical noise during the experiment, the shape of
the real spectral signal will be distorted, and the signal-to-noise ratio will be decreased.
Therefore, in the processing of spectral signals, noise reduction is often needed. Wavelet
soft threshold denoising method was applied to preprocess the scattered light signals
detected by APD and PMTs, respectively. Taking Oleic acid particles as an example,
Figure 5 shows the comparison results between the original spectral signals of Oleic acid
particles output by APD and PMTs and their corresponding signals after noise reduction.
Figure 5a is the spectral signal corresponding to the APD, and Figure 5b is the spectral
signal corresponding to the PMT. The blue solid line in the figure represents the original
spectral signal before denoising, while the red solid line represents the spectral signal after
denoising. It can be seen that, compared with the original spectral signal, the noise level of
the spectral signals after denoising is obviously reduced, and the smoothness of the signals
is significantly improved.
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Wavelet denoising was carried out on the original spectral data of all samples collected
by the oscilloscope, and the information of peak position and peak value are extracted,
respectively based on the denoised scattering light signals. For each aerosol particle, six
optical parameters (TOF1, E1, E2, E3, H1, and H2) to be analyzed can be obtained after
proper processing of spectral information obtained by peak seeking. The meaning of each
optical parameter has been explained in Section 2.1.
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The intensity distribution of scattered light of each sample measured by APD and PMTs
in the experiment is shown in Figure 6. The abscissa in the figure represents scattered light
signals received by each detector during the light-scattering process of individual particles,
and the ordinate represents the output voltage of the oscilloscope corresponding to each
signal. Figure 6a,b represents Oleic acid aerosol particles, and rod-shaped Silicon dioxide
aerosol particles, respectively. As can be seen from Figure 6, the intensity distribution
range of scattered light received by the PMTs corresponding to thousands of (N = 4794)
Oleic acid particles is basically the same, and the intensity distribution of the two peaks of
the double-crested signal received by the APD is similar as well, but the intensity of H2
is slightly less than H1 on the whole. However, for thousands of (N = 5604) rod-shaped
Silicon dioxide particles, the intensity distribution of the scattered light received by each
detector is obviously different from that of the Oleic acid particles, in which the intensity
of H2 is significantly higher than that of H1, and the intensity of E1 is significantly higher
than that of E2 and E3, indicating that the intensity of scattered light from aerosol particles
with different shapes received by each photoelectric detector has different distribution
characteristics.
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3.1.2. Correction of Light Intensity

To avoid the influence of the difference in the photoelectric conversion efficiency of
the three PMTs on the measured results of the intensity of scattered light, spherical Oleic
acid particles were used to modify the response intensity of each PMT. Figure 7 shows the
relative magnitude of scattered light intensity E1, E2, and E3 of each aerosol particle in
different spatial orientations after third-order polynomial correction. It can be seen that the
Oleic acid aerosol particles in Figure 7a are concentrated in the central region of the ternary
phase diagram, which indicates that the intensity of scattered light from an individual
Oleic acid particle in three spatial directions is relatively close. The rod-shaped Silicon
dioxide aerosol particles in Figure 7b tend to be distributed in the lower right corner of the
ternary phase diagram, indicating that the intensity of scattered light of most rod-shaped
Silicon dioxide particles at PMT1 position (corresponding horizontal direction in spatial
orientation) is greater than that at PMT2 and PMT3 positions. The results also prove that
the orientation of the rod-shaped particles tends to be parallel to the airflow in the injection
flow, which is consistent with the conclusion of Hirst et al. [32].



Sensors 2023, 23, 5464 8 of 18Sensors 2023, 23, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 7. Relative sizes of corrected scattered light intensity E1, E2, and E3 of two aerosol particles. 
(a) Oleic acid aerosol particles. (b) Rod-shaped Silicon dioxide aerosol particles. 

3.2. Screen the Time-of-Flight 
Since the distribution range of time-of-flight (corresponds to the size of the particle) 

of Oleic acid aerosol particles in the experiment is not completely consistent with that of 
rod-shaped Silicon dioxide aerosol particles (as shown in Figure 8), it is necessary to con-
firm whether the size of particles will affect the analysis and identification of the two kinds 
of aerosol particles. To evaluate the performance of the discrimination between Oleic acid 
aerosol particles and rod-shaped Silicon dioxide aerosol particles based on their time-of-
flight, the receiver operating characteristic (ROC) curves were applied here to analyze the 
two kinds of particles, and the results are shown in Figure 9. ROC curve can be used to 
evaluate the performance of the classifier. Generally speaking, the closer the value of the 
area under the ROC curve (AUC) is to one, the better the classification effect of the method. 
It can be seen that the AUC corresponding to the red line in Figure 9 is 0.84, which indi-
cates that the time-of-flight of the two kinds of aerosol particles has a certain ability to 
distinguish their categories. Therefore, to eliminate the influence of particle size on the 
classification of Oleic acid and rod-shaped Silicon dioxide particles and the intensity of 
their scattered light, we screened the spectral data to be analyzed according to their time-
of-flight. The spectral data of the two kinds of aerosol particles which have the same TOF1 
are selected and stored as matrix X0 and X1, respectively (both X0 and X1 are matrices of 
order 2335 × 6, and 2335 is the number of target particles screened out from the two sam-
ples, respectively). The ROC curve of Oleic acid particles and rod-shaped Silicon dioxide 
particles was drawn by taking the time-of-flight contained in the matrix X0 and X1 as the 
criterion, and the results are shown in the blue line in Figure 9. The value of AUC corre-
sponding to the blue line in Figure 9 is 0.50, indicating that the aerosol particles of Oleic 
acid and rod-shaped Silicon dioxide could not be distinguished by TOF1 alone. 

 
Figure 8. The distribution of time-of-flight of Oleic acid particles and rod-shaped Silicon dioxide 
particles. 

Figure 7. Relative sizes of corrected scattered light intensity E1, E2, and E3 of two aerosol particles.
(a) Oleic acid aerosol particles. (b) Rod-shaped Silicon dioxide aerosol particles.

3.2. Screen the Time-of-Flight

Since the distribution range of time-of-flight (corresponds to the size of the particle)
of Oleic acid aerosol particles in the experiment is not completely consistent with that
of rod-shaped Silicon dioxide aerosol particles (as shown in Figure 8), it is necessary to
confirm whether the size of particles will affect the analysis and identification of the two
kinds of aerosol particles. To evaluate the performance of the discrimination between Oleic
acid aerosol particles and rod-shaped Silicon dioxide aerosol particles based on their time-
of-flight, the receiver operating characteristic (ROC) curves were applied here to analyze
the two kinds of particles, and the results are shown in Figure 9. ROC curve can be used to
evaluate the performance of the classifier. Generally speaking, the closer the value of the
area under the ROC curve (AUC) is to one, the better the classification effect of the method.
It can be seen that the AUC corresponding to the red line in Figure 9 is 0.84, which indicates
that the time-of-flight of the two kinds of aerosol particles has a certain ability to distinguish
their categories. Therefore, to eliminate the influence of particle size on the classification
of Oleic acid and rod-shaped Silicon dioxide particles and the intensity of their scattered
light, we screened the spectral data to be analyzed according to their time-of-flight. The
spectral data of the two kinds of aerosol particles which have the same TOF1 are selected
and stored as matrix X0 and X1, respectively (both X0 and X1 are matrices of order 2335× 6,
and 2335 is the number of target particles screened out from the two samples, respectively).
The ROC curve of Oleic acid particles and rod-shaped Silicon dioxide particles was drawn
by taking the time-of-flight contained in the matrix X0 and X1 as the criterion, and the
results are shown in the blue line in Figure 9. The value of AUC corresponding to the blue
line in Figure 9 is 0.50, indicating that the aerosol particles of Oleic acid and rod-shaped
Silicon dioxide could not be distinguished by TOF1 alone.
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3.3. Modeling and Analysis

By standardizing the spectral data contained in the matrix X0 and X1, respectively, the
corresponding data matrix to be analyzed can be obtained, which contains six variables. To
clarify the relationship between the above six variables and particle shape, the standardized
spectral data of scattered light of aerosol particles were discriminated and analyzed with
six variables as independent variables and aerosol particle shape as response variables.
Among the multivariate discriminant analysis methods, principal component analysis
(PCA), and partial least squares discriminant analysis (PLS-DA) are commonly used. The
above two methods are based on principal component regression and partial least squares
regression, respectively to reduce the dimension of data, establish models, and conduct
discriminant analysis on the prediction results. Both two methods can effectively analyze
and process high-dimensional data, but the PLS-DA is a supervised discriminant analysis,
which can effectively reduce the influence of multiple correlations between variables.
Therefore, the PLS-DA method was used in this paper to analyze the spectral data of
scattered light from various aerosol particles.

Since in partial least squares analysis, the number of extracted principal components
will affect the prediction results of the model, it is necessary to set the appropriate number
of principal components according to the specific situation. Generally speaking, if the
number of independent variables is n, the maximum number of principal components
extracted for dimensionality reduction can be set to n − 1. Therefore, the number of
extracted principal components was set as one to five, respectively, and the ROC curves of
Oleic acid particles and rod-shaped Silicon Dioxide were drawn based on the predicted
values of the corresponding models when different numbers of principal components
were extracted. The dependent variables of the model corresponding to Oleic acid and
rod-shaped Silicon Dioxide were set as 0 and 100, respectively, and the results were shown
in Figure 10. The top row of pictures in Figure 10 shows the corresponding results of the
ROC curves, while the bottom row of pictures shows the Beta coefficients of the respective
variables corresponding to the extraction of different numbers of principal components. It
can be seen that when the number of principal components extracted is different, the AUC
has different results, and the values of Beta coefficients corresponding to each independent
variable are also quite different. When the number of extracted principal components was
three, the maximum value of AUC can be obtained, which is 0.976. Meanwhile, it can be
seen from Figure 10f that the independent variables H1, H2, and E1 have a relatively great
influence on the model under this condition.
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Table 1 shows the distribution of the explainable percentage of variance (PCTVAR)
for the variables when different numbers of principal components were extracted. It
can be seen that when the number of principal components was three, the explanatory
ability of the established model for independent variables and dependent variables was
0.7575 and 0.6759, respectively. Since only linear combination processing was carried out
on the independent variables in the PLS-DA at this time, nonlinear preprocessing of six
independent variables was considered in order to further improve the explanatory ability
of the model.

Table 1. The PCTVAR of variables when different numbers of principal components were extracted.

Evaluation Index ncomp = 1 ncomp = 2 ncomp = 3 ncomp = 4 ncomp = 5

PCTVAR of X 0.3954 0.6165 0.7575 0.8659 0.9131
PCTVAR of Y 0.4506 0.6390 0.6759 0.6864 0.6889

To perform nonlinear preprocessing for the above independent variables, based on
previous research experience and the characteristics of light scattered by aerosol particles
in experiments, we introduce the following two parameters in the nonlinear processing of
the independent variable: APf and AFf. The two parameters are similar to the asymmetry
factor (Af) proposed by Kaye et al. [7], and can be expressed as follows:

APf =

∣∣∣∣H1− H2
H1 + H2

∣∣∣∣× 100, (6)

AFf =

∣∣∣∣ E1−Mean(E2, E3)
Max(E1, E2, E3) + Min(E1, E2, E3)

∣∣∣∣× 100. (7)

By using Equations (6) and (7), two matrices of 2335 × 3 order can be obtained, and
the three columns of data correspond to TOF1, APf, and AFf, respectively. The PLS-DA
was carried out on the transformed spectral data, and the number of extracted principal
components was set as one and two, respectively. The results are shown in Table 2. As can
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be seen from Table 2, after the nonlinear processing of the six independent variables, the
ability of the prediction model to distinguish the shape of particulate matter and explain
variables has been significantly improved. When the number of principal components
was set to two, the corresponding result is better than that when the number of extracted
principal components was set to one.

Table 2. The results of model evaluation indexes after nonlinear processing.

Evaluation Index ncomp = 1 ncomp = 2

AUC 0.9825 0.9828
PCTVAR of X 0.7511 0.999
PCTVAR of Y 0.7226 0.724

When the number of extracted principal components was set to two, the value of
AUC is 0.9828, and the expression of the corresponding prediction model is shown in
Equation (8), where Fs represents the predicted value of the model. Because the values
of TOF1 of the aerosol samples detected in the experiment are all within 10 after central
standardization, and the values of APf and AFf range from 0 to 100 according to their
definitions by combining the coefficients of each variable in Equation (8), it can be seen that
the value of the first term is about two to three orders of magnitude smaller than the value
of the second and third terms in this prediction model, indicating that the influence of TOF1
is very small and almost negligible compared to APf and AFf. Therefore, to ensure that the
predicted values of the models corresponding to different aerosol particles have the same
range, the TOF1 variable is omitted for re-modeling, and the result is shown in Equation
(9). By comparing Equation (8) with Equation (9), it can be seen that the difference between
the coefficients of APf and AFf in the two equations is extremely small. According to
Equation (9), the value of Fs ranges from −9.9722 to 203.8778. To conveniently identify and
classify the shape of aerosol particles according to the value of Fs, a simple mathematical
transformation was carried out on Equation (9), and its value range was adjusted to 0~100.
The transformed prediction model is shown in Equation (10).

Fs = 0.0192× TOF1 + 0.8141× APf + 1.3260× AFf − 10.0097, (8)

Fs = 0.8111× APf + 1.3274× AFf − 9.9722, (9)

Fs = 0.379× APf + 0.621× AFf . (10)

By applying Equation (10) to all aerosol particles of polydispersed Oleic acid and
rod-shaped Silicon dioxide, the distributions of predicted values corresponding to the two
aerosol particles can be obtained, as shown in Figure 11. The histogram in Figure 11a shows
the relative frequency distribution of predicted values Fs corresponding to various aerosol
samples (the interval between adjacent intervals is 4). It can be seen that the value of Fs of
spherical Oleic acid aerosol particles is generally small, and the value of Fs at the highest
point of its relative frequency histogram is 14. For rod-shaped Silicon dioxide aerosol
particles, the value of Fs is obviously higher than that of the Oleic acid aerosol particles, and
the overall distribution is closer to the right side of the axis. The highest point of relative
frequency histogram appears at Fs is 54. Figure 11b represents the distribution trend of
the cumulative frequency of the predicted value Fs corresponding to the above aerosol
samples. It can be seen that there is a significant difference between the distribution trend
of cumulative frequency of Oleic acid aerosol particles and rod-shaped Silicon dioxide
aerosol particles. Considering that some particles with unsatisfactory shapes may be
produced during the preparation and generation, which will affect the shape classification
of particulate matter, therefore, the values of Fs of Oleic acid particles corresponding to
the cumulative frequency of 80% and rod-shaped Silicon dioxide particles corresponding
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to the cumulative frequency of 20% can be considered as the distinguishing thresholds
of spherical aerosol and rod-shaped aerosol, respectively (corresponding to Fs = 18 and
Fs = 38, respectively). Because the abscissa in Figure 11 is the center value of each interval,
the criteria for judging spherical aerosol particles and rod aerosol particles should be Fs < 20
and Fs > 36, respectively. When the value of Fs of the particle is between 20 and 36, it can
be considered as other non-spherical particles.
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3.4. Group by Particle Size

Since the polarized light scattering method of a single particle will affect by particle
size [28], to explore the influence of light scattering parameters on the discrimination of
aerosol particle shape in different particle size ranges, the Oleic acid aerosol particles and
rod-shaped Silicon dioxide aerosol particles were grouped according to particle size based
on the screening of time-of-flight, and the spectrum data in each particle size range were
analyzed by PLS-DA, respectively.

Taking spherical Oleic acid particles and ellipsoidal Silicon dioxide particles with an
aspect ratio of 3:1 as examples, the difference in light scattering parameters of the two
particles under different aerodynamic particle sizes was calculated by simulation and
interpolation method (the orientation of the elongated particles was set parallel to the
airflow direction), and the results are shown in Figure 12. It can be seen that at the smaller
particle size range, the difference in APf between the two aerosol particles is large, while
the difference in AFf is small. With the increase of aerodynamic particle size, the difference
in AFf between the two aerosol particles increases gradually, while the difference in APf
decreases significantly.

Due to the time-of-flight of the aerosol particles measured in the experiment can only
be converted into the aerodynamic diameter Da through the corresponding conversion
equation, therefore, several monodisperse aerosol particles generated by the monodisperse
aerosol generator FMAG1520 were used to calibrate the experimental device, and the
results are shown in Figure 13a. The abscissa in Figure 13a represents the time-of-flight of
the particle, and the ordinate represents its aerodynamic diameter. By referring to the fitting
results of the calibration curve of the APS3321 device, the conversion equation between
time-of-flight and aerodynamic diameter of the experimental device can be expressed as
Equation (11):

Da =
584.80812− 109.6145x0.5 + 3.4974x

1+9.09183x0.5 − 0.06727x
. (11)
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Based on the calculation results in Figure 12, the polydisperse Oleic acid droplets and
rod-shaped Silicon dioxide particles were roughly divided into three subgroups according
to their aerodynamic diameter, including the D1 (<0.54 µm), D2 (0.54~0.82 µm), and
D3 (>0.82 µm). PLS-DA was performed on the spectral data of Oleic acid droplets and
rod-shaped Silicon dioxide particles in the three particle size ranges, respectively, and
the corresponding model evaluation indexes are shown in Table 3. It can be seen that
the AUC of each particle size segment are 0.9950, 0.9905, and 0.9787, respectively, which
indicates that the corresponding prediction model has a good discrimination effect on
Oleic acid droplets and rod-shaped Silicon dioxide particles. In addition, the models also
have a good ability to explain independent variables and dependent variables, in which
the PCTVAR of independent variables in each particle size segment are 0.9991, 0.9990,
and 0.9856, respectively, and the PCTVAR of dependent variables are 0.8515, 0.7938 and
0.7029, respectively.

Table 3. Model evaluation indexes obtained by PLS-DA for each particle size segment.

Evaluation Index D1 D2 D3

AUC 0.9950 0.9905 0.9787
PCTVAR of X 0.9991 0.9990 0.9856
PCTVAR of Y 0.8515 0.7938 0.7029
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Figure 13b shows the values of Beta coefficients corresponding to APf and AFf variables
in the model of each particle size segment. It can be seen that the relative values of Beta
coefficients of the two variables are different in three particle size segments, and APf has
a greater influence on the model in the smaller particle size segment (D1), which shows
that APf has a better shape discrimination ability than AFf for particles in D1 segment.
With the increase of particle size, the Beta coefficient of APf decreases gradually, while
the Beta coefficient of AFf shows an increasing trend. It shows that AFf is better than APf
in distinguishing the shape of aerosol particles in the larger particle size segment (D3)
while the influence of the two parameters on the model is roughly equal in the D2 segment.
In addition, it can be seen from Figure 13b that the results obtained by PLS-DA on the
spectral data of aerosol particles are in good agreement with the calculated results under
experimental conditions.

Similarly, to divide the aerosol particle shape within each particle size segment conve-
niently according to the Fs, the range of predicted values of each model was adjusted to
0~100 by Equations (12)–(14). Referring to the method of threshold selection in Section 3.3,
the values of Fs of Oleic acid droplets corresponding to the cumulative frequency of 80%
and rod-shaped Silicon dioxide particles corresponding to the cumulative frequency of 20%
were used as the thresholds for separating spherical aerosols from rod-shaped aerosols in
each particle size segment.

FD1
s = 0.7642× APf + 0.2358× AFf , (12)

FD2
s = 0.4898× APf + 0.5102× AFf , (13)

FD3
s = 0.2505× APf + 0.7495× AFf . (14)

3.5. Preliminary Laboratory Validation

To verify the effectiveness of the discrimination method proposed in Section 3.4, a
variety of aerosol samples with different shape characteristics were used for the classifi-
cation test, and the results are shown in Figure 14. The abscissa in Figure 14 represents
the corresponding numbers of various aerosol samples, while the ordinate represents the
proportion of spherical particles, rod-shaped particles, and other non-spherical particles
in various aerosol samples. Among them, samples 1# and 2# are monodisperse Oleic acid
droplets with a median aerodynamic diameter of 2.18 µm and 3.22 µm, respectively. Sample
3# is monodisperse Ethanol droplets with a median aerodynamic diameter of 1.39 µm.
Sample 4# is Silicon dioxide microspheres (Andi Metal Materials Co., Ltd., Hebei, China).
Sample 5# is irregular Silicon dioxide particles (Chuangjia Welding Materials Co., Ltd.,
Hebei, China). Sample 6# is the collected coal ash sample. Samples 7# and 8# are two kinds
of Silicon oxide powder materials (Ruilong Biotechnology Co., Ltd., Hebei, China). Sample
9# is Basic magnesium sulfate whiskers (Fengzhu Composite New Material Technology Co.,
Ltd., Shanghai, China). Sample 10# is self-synthesized rod-shaped Silicon dioxide particles.

As can be seen from Figure 14, for the two monodisperse Oleic acid droplets, 95.9%
and 99.6% of the particles were identified as spherical, respectively, and 94% of the particles
were identified as spherical for monodisperse Ethanol droplets. For coal ash samples, the
tested particles were mainly other non-spherical particles (accounting for 47.6%), which is
consistent with some research conclusions [33]. In addition, 73.4% of the 4# Silicon dioxide
microspheres were identified as spherical, 1.9% as rod-shaped, and 24.7% as other non-
spherical particles. More than 48% of the particles in 5# irregular Silicon dioxide particles
were identified as other non-spherical particles. For Silicon oxide powder materials, the
7# sample was mainly composed of other non-spherical particles, accounting for 49.9%, and
the 8# sample was mainly composed of rod-shaped particles, the corresponding proportion
was 53.4%. In the 9# Basic magnesium sulfate whisker sample, rod-shaped particles account
for the largest proportion, corresponding to 58.9%. Additionally, in the 10# Silicon dioxide
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sample, the proportion of rod-shaped particles was as high as 74.1%. Combined with the
SEM images of aerosol samples in Figure 15, it can be seen that the classification results of
the above aerosol samples are reliable.
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4. Conclusions

This paper proposed a new method for rapidly identifying and classifying the shape
of aerosol particles. Combining the polarized light-scattering and angle-resolved light-
scattering measurement technology of individual aerosol particles and based on the mul-
tivariate analysis method of particle size, polarized light scattering, and angle-resolved
light scattering, a good discrimination effect was obtained for spherical, rod-shaped, and
other irregular aerosol particles. Through select the spectral data of scattered light with
the same TOF1 (corresponding to aerodynamic diameter), the influence of particle size
on the shape classification and the difference of intensity of scattered light from particles
was eliminated effectively. The shape recognition and classification model of individual
aerosol particles was established by the PLS-DA method, and the ROC curve was applied
to analyze the ability to discriminate the shape of aerosol particles. Through nonlinear
preprocessing of the spectral information of aerosol particles, the classification effect of the
model on the shape of particles is effectively improved. The discriminant analysis of spher-
ical and rod-shaped particles in different aerodynamic particle size ranges shows polarized
light scattering and angle-resolved light scattering have their advantages of particle shape
recognition in different particle size ranges, and the feasibility of the proposed method for
aerosol particle shape discrimination was verified by laboratory experiments.

The rapid identification and classification method of aerosol particle shape proposed in
this paper has great significance to supplement other rapid detection methods and improve
aerosol particle identification ability. It can provide more information for atmospheric
aerosol measurement and has application value in the fields of aerosol particle tracing,
atmospheric radiation balance research, respiratory fiber concentration detection, and
exposure hazard assessment. To further improve the shape recognition ability of the
system, more standard spherical and rod samples (with different refractive indices) will
be used for experiments to optimize the particle shape classification model. In addition,
to expand the application ability of the proposed technology in various scenarios (such
as mobile real-time monitoring of aerosols in a large area based on vehicle or airborne),
we also plan to further optimize the mechanical structure, optical path layout, and circuit
integration of the apparatus to improve its portability and anti-interference capability.
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