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Abstract: The convergence of artificial intelligence and the Internet of Things (IoT) has made remark-
able strides in the realm of industry. In the context of AIoT edge computing, where IoT devices collect
data from diverse sources and send them for real-time processing at edge servers, existing message
queue systems face challenges in adapting to changing system conditions, such as fluctuations in the
number of devices, message size, and frequency. This necessitates the development of an approach
that can effectively decouple message processing and handle workload variations in the AIoT comput-
ing environment. This study presents a distributed message system for AIoT edge computing, specif-
ically designed to address the challenges associated with message ordering in such environments.
The system incorporates a novel partition selection algorithm (PSA) to ensure message order, bal-
ance the load among broker clusters, and enhance the availability of subscribable messages from
AIoT edge devices. Furthermore, this study proposes the distributed message system configuration
optimization algorithm (DMSCO), based on DDPG, to optimize the performance of the distributed
message system. Experimental evaluations demonstrate that, compared to the genetic algorithm
and random searching, the DMSCO algorithm can provide a significant improvement in system
throughput to meet the specific demands of high-concurrency AIoT edge computing applications.

Keywords: artificial intelligence of things; distributed message queue; reinforcement learning
approach; AIoT edge computing; system throughput performance

1. Introduction

The advancements in artificial intelligence (AI) have led to the widespread deployment
of AI applications, ranging from Industry 4.0 [1] to smart cities [2]. With the growing
adoption of the Internet of Things (IoT) and edge computing, IoT devices used in these
applications generate vast amounts of data that require real-time processing by servers.
The combination of AI and IoT has given rise to Artificial Intelligence of Things (AIoT)
systems [3–6], which can enhance IoT operations, improve human–machine interaction, and
optimize data management. However, conventional message queues utilized in IoT systems
are optimized for lightweight publish/subscribe messaging, rendering them inadequately
equipped to manage the extensive AIoT message transmission effectively. AIoT systems
may also face message floods due to network jitter or failures, necessitating an ideal
message queue that can handle volatile environmental factors smoothly. Several message
queue systems [7–12] have been developed for IoT data processing. However, applying
these message queues in the dynamic AIoT computing environment poses challenges.
The varying network conditions, device numbers, message sizes, and frequencies require
methods to optimize the performance of distributed message queues for AIoT systems.
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It is crucial to overcome limitations imposed by hardware resources and meet the low
latency and timing requirements of real-time AIoT systems [11].

Distributed message queues are essential in various data processing application sce-
narios, providing users with configurable parameters to customize their performance.
For instance, both RabbitMQ and Kafka offer over one hundred adjustable
parameters [13,14], which often require manual adaptation [15] to suit different message
transmission scenarios. However, the sheer number of parameter combinations makes it
practically impossible to search for an optimized solution within a limited time for the
system’s varying scenarios. As a result, users often resort to applying a default configura-
tion when setting up the parameters [15]. Therefore, an algorithm is desired to effectively
optimize the performance of distributed message queues in AIoT edge computing scenarios.
This algorithm would be capable of adaptively selecting and fine-tuning critical parameters
that may have a significant impact on throughput.

This study proposes a distributed message system for large-scale AIoT based on Kafka
to address message ordering challenges in AIoT edge computing. A novel partition selec-
tion algorithm (PSA) is introduced to maintain the AIoT message order, balance the load
among broker clusters, and augment availability during the publication of subscribable
messages by AIoT edge devices. Then, a DDPG-based distributed message system configu-
ration optimization algorithm (DMSCO) is proposed for the proposed AIoT message queue
systems. The overall diagram of the proposed DMSCO algorithm is illustrated in Figure 1.
In the targeted edge AIoT scenario of the distributed message system, four distinct pro-
cesses operate on each of the three types of devices. Firstly, producer processes execute on
end devices, such as sensors and cameras, with the primary function of converting raw data
into messages for transmission. Secondly, the broker process, responsible for processing
and storing incoming messages, runs on the edge server. Thirdly, the consumer process
operates on the edge host, enabling the consumption of readily available messages. Lastly,
the optimization process, also running on the edge server, collects operational metrics of
the system and performs the necessary optimizations.
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Figure 1. System diagram of the proposed DMSCO algorithm system. (a) Producers convert data
or streams into messages and send them to brokers. (b) Brokers store and manage the messages.
(c) Consumers receive and process the messages. (d) The gathered run-time metric is utilized by
DDPG to train the agent’s policy network.

The DMSCO algorithm is a four-phase process that optimizes our AIoT distributed
message system. The first phase involves obtaining a parameter list that includes all
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adjustable variables. In the second phase, principal component analysis (PCA) [16] is
utilized to reduce the dimensionality of the parameter list. The third phase involves
filtering the preprocessed parameter list using Lasso regression [17] to identify significant
variables and build a performance model mapping input configurations to performance
metrics. In the fourth phase, the optimization process is initiated by passing the runtime
metrics dataset to the reinforcement learning model and dynamically optimizing using the
deep deterministic policy gradient (DDPG) algorithm. In summary, our contributions are
as follows

• We propose a distributed message system for large-scale AIoT based on Kafka to
address message ordering challenges in AIoT edge computing. The impact of different
factors on system performance in distributed AIoT messaging scenarios is investi-
gated. A partition selection algorithm (PSA) is specifically designed for the proposed
distributed message queues, aiming to maintain the order of AIoT messages, balance
the load among broker clusters, and enhance availability during the publication of
subscribable messages by AIoT edge devices.

• We propose a reinforcement-learning-based method called DMSCO (DDPG-based
distributed message queue systems configuration optimization) that utilizes a prepro-
cessed parameter list as an action space to train our decision model. By incorporating
rewards based on the distributed message queue system’s throughput and message
transmission success rate, DMSCO efficiently optimizes messaging performance in
AIoT scenarios by adaptively fine-tuning parameter configurations.

• We conducted a comprehensive evaluation of the proposed DMSCO algorithm, as-
sessing its performance efficacy for the distributed message queue system in AIoT
edge computing scenarios across varying message sizes and transmission frequencies.
Through comparative analysis against methods employing genetic algorithms and
random searching, we observed that the DMSCO algorithm provides an improved
solution to meet the specific demands of larger-scale, high-concurrency AIoT edge
computing applications.

The remainder of this paper is structured as follows: Section 2 provides an overview
of related work on distributed message queues and their optimization. Section 3 details
the proposed partition selection algorithm for the distributed message queue. In Section 4,
we describe the reinforcement learning algorithm used to optimize the performance of
the message queue. Section 5 discusses the conducted experiments and analyzes the
proposed algorithms in terms of message transmission success rate and system throughput.
Finally, Section 6 presents the conclusions drawn from this study.

2. Related Work

The field of distributed message queues has garnered significant attention from both
industry and academia. There are quite a few messaging protocols [18,19] available to
choose from for various types of requirements of IoT systems. For example, message queu-
ing telemetry transport (MQTT) [8] is a lightweight messaging protocol for IoT systems,
known for low bandwidth and power consumption, reliable message delivery, and a flexible
publish/subscribe model. It is suitable for resource-constrained devices but has limitations
in handling large amounts of data and lacks built-in security. In addition, its centralized
broker architecture can be a single point of failure in large deployments. Constrained appli-
cation protocol (CoAP) [20] is a lightweight communication protocol for IoT devices and
networks with limited resources. It enables efficient data exchange and resource manage-
ment and uses UDP to transport compact message formats and multicast communication.
Advanced message queuing protocol (AMQP) [19] is another standard open protocol that
enables both publish/subscribe and point-to-point messaging patterns between appli-
cations or systems. Both MQTT and AMQP are robust and widely adopted in various
messaging implementations [19].

Additionally, while HTTP protocol can be used in certain IoT scenarios [21] due to its
widespread usage and support for request–response interactions, it may be inefficient for
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resource-constrained devices with limited bandwidth and power. Its client–server model
and lack of native support for lightweight publish/subscribe messaging and asynchronous
communication make it less optimal for IoT environments that require peer-to-peer or
decentralized communication. In such cases, specialized protocols such as MQTT, CoAP, or
AMQP are often preferred. Table 1 presents a comparison of popular distributed messaging
protocols for IoT networks, including MQTT, CoAP, AMQP, and HTTP.

Table 1. Comparison of popular distributed messaging protocols for IoT networks.

Protocol MQTT CoAP AMQP HTTP

Communication Model Publish/Subscribe Request/Response Publish/Subscribe Request/Response

Lightweight Yes Yes No No

Bandwidth Efficiency High High Medium Low

Power Consumption Low Low Medium Medium

Real-Time Support Limited Limited Yes Limited

Security Supplementary
measures Built-in options Advanced options Built-in options

Scalability High Medium High High

The development of message queues has led to the creation of various implemen-
tations that support different protocols. RabbitMQ [13] is an enterprise-level message
queue designed to handle high-concurrency scenarios and offers good performance with
low latency, enabling efficient message processing. RabbitMQ supports MQTT, CoAP,
AMQP, and HTTP protocols, making it compatible with a wide range of IoT systems.
RocketMQ [11], on the other hand, supports publish/subscribe and point-to-point mes-
saging patterns and can be integrated with MQTT, CoAP, and HTTP protocols. However,
RocketMQ’s deviation from the Java Message Service specification has led to limited adop-
tion in the industry due to challenges associated with system migration. ActiveMQ [7]
supports MQTT, AMQP, and HTTP protocols but has a centralized architecture and limited
single-machine throughput performance, which has contributed to its recent decrease
in popularity.

Apache Kafka [12] stands out as a distinct messaging system that emphasizes scal-
ability, durability, and efficient data processing. Kafka’s architecture is built around a
distributed commit log that enables multiple consumers to read and process data simul-
taneously, making it suitable for real-time analytics, event streaming, and data integra-
tion use cases [11]. In the context of AIoT systems, Kafka’s scalability and fault-tolerant
nature make it well-suited for handling the massive data streams generated by AIoT
devices, including sensor data, telemetry information, and events from distributed IoT
networks. Its support for protocols, including MQTT and HTTP, allows seamless in-
tegration with IoT devices, enabling real-time data ingestion, processing, and analysis.
However, challenges [22] exist in adapting Kafka to evolving AIoT message transmission
scenarios, ensuring message ordering between partitions, and addressing issues related
to repeated message consumption. Researchers [9,14,15,23] have been actively working
on improving Kafka’s cluster development, operation, reliability, and maintenance costs.
Despite its strengths, Kafka relies on ZooKeeper for coordination management, and practi-
cal message partition selection algorithms and adaptive performance optimization remain
open challenges.

Several optimizations methods [24–28] are discussed to improve the performance of
distributed systems. Donta et al. [24] summarize various message queues and message
brokers used in IoT systems, and they find out that multiple message queues handle mes-
sages as per predefined constraints, making them static in nature. The authors further
argue that existing auto-configuration methods, which rely on abstract models derived
from software architecture, can be prone to inaccuracies and may not effectively adapt to
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changing conditions. Dou et al. [25] introduce HDConfigor, an automatic configuration
tuning tool designed for log search engines such as Elasticsearch. These search engines
typically expose many configuration parameters related to performance, and HDConfigor
aims to streamline the process of configuration tuning, reducing both time and labor re-
quirements. HDConfigor utilizes the modified random embedding Bayesian optimization
algorithm (mREMBO) to create a low-dimensional embedded space through a random
embedding matrix. It then performs Bayesian optimization within this space, resulting
in an additional 10.31% improvement in throughput. Ma et al. [26] propose a new mes-
sage queue architecture, NetMQ, that utilizes programmable switches to handle message
production and consumption requests for high-demand queues efficiently. A heuristic
algorithm is utilized to update the cached topic partition regularly, which helps to improve
the throughput performance for dynamic workloads. However, NetMQ is designed for
rack-scale message queue systems and may not be suitable for all types of message queue
applications. Additionally, implementing NetMQ may require specialized hardware and
expertise in programmable switches. Dou et al. [27] propose DeepCAT for online configu-
ration auto-tuning for big data frameworks. DeepCAT leverages the TD3 (twin delayed
deep deterministic policy gradient) algorithm and incorporates a novel reward-driven
prioritized experience replay mechanism. It also utilizes a Twin-Q optimizer to estimate
execution time. Experimental results conducted on a local Spark cluster with HiBench
benchmark applications showcase the effectiveness of DeepCAT in achieving improved
performance with reduced tuning costs. Recently, Dou et al. [28] propose a cost-efficient
approach called TurBO that enhances Bayesian optimization (BO) to handle sub-optimal
configurations for big data-processing frameworks. Their experimental evaluations on
a local Spark cluster demonstrate that TurBO outperforms three representative baseline
approaches, achieving significant speedup in the tuning process.

However, most existing methods for optimizing distributed systems in AIoT applica-
tion scenarios have limitations. These methods often rely on collecting configuration status
to identify performance bottlenecks, which can be time-consuming, especially in scenarios
with a large state space. Additionally, the existing distributed message queues lack the
ability to adapt to dynamic network conditions, such as fluctuations in the number of
devices, variations in message size, and changes in sending frequency. On the other hand,
learning-based methods typically require a sparse prediction model obtained through
sampling the high-dimensional configuration space for optimization. It remains unclear
whether these methods are suitable for effectively optimizing the real-time processing of
distributed message queues in AIoT edge computing, where message scales frequently
change. Therefore, it is imperative to research optimization methods that can address
these challenges and improve the performance of distributed message queues in AIoT
edge computing.

3. Distributed Message Queue System for AIoT Edge Computing

The primary focus of performance optimization for conventional distributed message
queues lies in the transmission of messages from end devices to centralized servers in
cloud computing settings [29]. However, in AIoT edge computing environments, there is
a lack of adequate evaluation and optimization for message transmission and processing
within edge devices and edge-to-edge communications. These environments involve
varying numbers of end devices and message scales. For instance, sensors used for simple
monitoring generate small data packages, while scenarios such as robot collaboration,
smart cities, drones, and autonomous driving require high message transmission volumes
across numerous end devices. Moreover, distributed federated learning with AIoT poses a
significant challenge due to generating a considerable volume of messages between end
devices, including model updates and parameters. Therefore, the distributed message
queues must handle varying computational capabilities and network connectivity among
end devices, which may lead to delays or timeouts during message transmission. Thus, the
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distributed message queue system must be designed with high throughput, scalability, and
availability for efficient operation to manage these scenarios.

3.1. Distributed Message System for Large-Scale AIoT Edge Computing

Traditional point-to-point message transmission often faces challenges [30] such as
network congestion and a high message loss rate in large-scale scenarios. To address
these challenges, several message queue solutions have been developed. These distributed
solutions are usually designed with architectures tailored to specific scenarios. For instance,
Kafka, a widely used distributed message queue system, consists of several key compo-
nents [15], including producers, consumers, brokers, topics, partitions, and zookeeper.
Producers are the data source, publishing it into topics, which are streams of related mes-
sages. Consumers then receive this data, subscribing to relevant topics. Topics are further
divided into partitions for better organization and performance, with each partition stored
on one or more brokers—servers responsible for maintaining and coordinating Kafka’s
data. Finally, Zookeeper acts as the management backbone of Kafka, handling service
discovery for the brokers and coordinating leader elections for partitions.

In AIoT edge computing, ensuring message ordering is of utmost importance when
transmitting messages between various AIoT edges and data centers. If the order of
messages gets disrupted, it could lead to incorrect data analysis, ineffective decision-
making, and potential system disruptions. For this purpose, we propose implementing
a distributed message system for large-scale AIoT based on Kafka, where data reading
and writing occur at the partition level. While maintaining message order within a single
partition is a strength of Kafka, it should be noted that relying solely on a single partition
can limit throughput and reduce load-balancing capabilities. It is generally advisable to
leverage Kafka’s multi-partitioning capabilities for improved performance and scalability
in large-scale AIoT deployments. However, it is important to note that, when multiple
partitions are utilized, Kafka only guarantees the ordered consumption of messages at the
partition level, leaving the ordering between partitions uncertain. Hence, it is necessary
to address the challenge of message disorder among partitions when employing a multi-
partition strategy.

In our proposed partition selection algorithm (PSA) for distributed message queues,
our objective is to enhance functionality in scientific applications by addressing the limi-
tations of two default partition strategies. The primary strategy assigns a unique key to
each message, ensuring that messages with the same key are stored in the same partition
for systematic organization. The secondary strategy employs a round-robin approach,
allocating partitions sequentially and caching messages incrementally from the initial to
the final partition. Nonetheless, traditional Kafka systems’ default partition strategies
pose a trade-off. The first strategy guarantees message order but may result in congestion
within specific partitions. Conversely, the second strategy strives to distribute the load
evenly across partitions without ensuring a strict message order. Our tailored PSA aims
to surmount these challenges and achieve equilibrium in distributed message queues for
scientific applications.

Algorithm 1 presents the proposed PSA scheme designed to address the unique
characteristics of messages in the AIoT edge computing environment and prevent message
disorder resulting from polling strategies. Our PSA follows a specific approach for directing
messages based on their key. If a corresponding partition exists for the key, the message is
directed to that specific partition. However, if no association exists and there are available
partitions (where the number of available partitions is denoted as m > 0), a hash function is
applied to the message key to determine an accessible partition. The remainder determines
the target partition when dividing by m + 1. In cases where m equals zero, the remainder
is computed by dividing by n + 1, where n represents the total number of partitions.
By implementing this customized partition selection approach, our proposed message
system for large-scale AIoT can overcome the limitations of default strategies, ensuring
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efficient message distribution, load balancing, and maintaining the desired message order
whenever feasible.

Algorithm 1: Partition selection algorithm (PSA).
Input: Number of partitions n, number of available free partitions m, and matrix

data package key x
Output: The partition which should be sent currently

1 Get matrix data packet;
2 Search if there is a partition tag currently containing x;
3 if (No partition tag contains x)&& (m > 0) then
4 Send the matrix data packet to the partition value obtained by taking the hash

value of the key modulo m and adding 1;
5 Add the x tag to the partition;
6 m← m− 1;

7 else if The partition tag currently contains x then
8 Send the matrix data packet to the partition;

9 else if (No partition tag contains x)&& (m = 0) then
10 Send the matrix data packet to the partition obtained by taking the hash value

of the key and computing the remainder when divided by n, then adding 1;

11 else
12 foreach partition in partitions do
13 if Current partition is empty then
14 Clear all key value tags;
15 m← m + 1;

16 Return partition number

The proposed PSA algorithm plays a crucial role in our messaging system. It effectively
distributes a large volume of messages, sent simultaneously to different terminals, among
the available partitions. This strategy ensures a balanced workload across the system,
achieving optimal load balancing. Additionally, PSA maintains the order of messages
destined for the same AIoT destination, mitigating the detrimental effects of message
disorder within the distributed message system. This approach guarantees reliable and
efficient message processing.

3.2. Performance Modeling in AIoT Edge Computing Scenarios

We assess the performance of distributed messaging systems in large-scale settings by
simulating a distributed environment comprising multiple edge devices. Each device in the
system serves a dual role, functioning as both a producer and a consumer. The procedure
within each edge device encompasses four distinct processes. In the first process, matrices
of varying sizes are generated according to a normal distribution, provided that the local
queue is not at capacity, effectively simulating real-time message generation. In the second
process, messages from other devices are consumed, resulting in the creation of verification
data packets. The third process assesses the successful delivery of validation messages by
examining the hash table and the received verification data packet. Finally, a dedicated
process analyzes network packets to ascertain their association with matrices or verification
data packets. This comprehensive approach ensures a smooth and logical evaluation of
distributed messaging systems in large-scale environments, providing valuable insights for
further research and development.

To evaluate the performance of the distributed message systems, we conduct com-
parisons under various scenarios with differing numbers of devices and running times.
The experiment divides devices into two groups, each transmitting messages at differ-
ent rates and sizes. One group transmits ten messages per second, where each message



Sensors 2023, 23, 5447 8 of 21

size follows a normal distribution with a mean of µ = 128 KB and a standard deviation
of σ = 10. Conversely, the second group transmits a single message per second, with
each message size conforming to a normal distribution with a mean of µ = 1024 KB or
2048 KB, and a standard deviation of σ = 200. Message transmission effectiveness is evalu-
ated based on success rate and throughput over a duration of 60 min, with results depicted
in Figure 2. These distinct groups reflect two disparate messaging characteristics: high
frequency for small messages and low frequency for large messages. The former is suitable
for real-time applications such as chat applications, intelligent sensor data monitoring, and
gradient passing in distributed machine learning, where rapid, frequent updates are crucial.
The primary challenge here is maintaining low latency while handling high volumes of
small messages. In contrast, the low-frequency, large-size messages are appropriate for
applications requiring extensive data transfer such as file sharing, sensor video streaming,
and data backup. Here, the challenge is ensuring efficient and reliable data transfer amidst
network congestion and bandwidth constraints.

(a) Message transmission throughput (b) Message transmission success rate
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Figure 2. The performance of message transmission with different quantities and characteristics
varies as the number of AIoT edge devices increases. (a) The throughput variation and (b) the success
rate variation.

Experimental results indicate a significant decrease in the success rate of the distributed
message system as the number of devices increases, particularly when transmitting frequent
small messages. This decline can largely be attributed to insufficient sending and receiving
buffers, leading to substantial losses during message transmission between the message
queue and the consumer. However, the overall system throughput increases with a larger
number of devices, peaking at 68.5 MB/s. This throughput increase is primarily due to the
system’s ability to handle a larger volume of messages simultaneously with the integration
of more devices. Even though the success rate of individual devices may decline, the
system’s capacity to process more messages overall enhances the throughput. As is shown
in Figure 2, the proposed PSA enhances load-balancing by efficiently distributing a large
volume of messages sent to different edge devices among available partitions. It also
ensures the orderly delivery of messages to individual edge devices, effectively mitigating
the negative impacts of message disorganization on the distributed messaging system.

For less frequent messages with an average size of 1024 KB, the success rate of message
transmission is approximately 50%, despite some devices encountering message errors.
This can be explained by the default maximum value for single messages being set at 976 KB.
Given the normal distribution of message sizes (mean of 1024 KB and standard deviation
of 200), roughly half of the messages exceed the default maximum value. Moreover, when
the average size of individual messages is 2048 KB, both the success rate and throughput of
the system fall drastically, with all devices displaying message-sending error prompts due
to the messages surpassing the maximum value.
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These findings suggest that the proposed distributed message queue is suitable for IoT
message transmission scenarios among devices in edge environments. However, its perfor-
mance may not be optimal under default configurations, particularly for high-concurrency
message transmission scenarios in AIoT edge computing environments. Traditional dis-
tributed message queues may not be able to dynamically adjust and optimize message
transmission mechanisms based on the current state, such as the number of devices, mes-
sage size, and transmission frequency. To address this issue, we propose a distributed
message system configuration optimization (DMSCO) approach. This approach leverages
reinforcement learning to optimize the parameter configuration of distributed message
queues, aiming to improve the efficiency and effectiveness of message transmission in
dynamic and resource-constrained AIoT environments.

4. Reinforcement-Learning-Based Method for Optimized AIoT Message Queue System

The AIoT environment often requires real-time data processing capability with low
latency. However, conventional message queue systems can lead to message loss, network
congestion, and insufficient real-time processing capacity. Existing distributed message
systems, which rely on message queues for message delivery, lack the flexibility to optimize
message delivery mechanisms in accordance with variations in device numbers, message
sizes, and frequencies [15].

In order to develop an efficient optimization approach for AIoT systems, we start
by investigating the relationship between distributed message queues and their essential
parameter configurations. We identify a set of 22 critical parameters, along with their
respective data, which significantly influence the performance of producers and brokers
in our proposed Kafka-based messaging queue system. Then, we employ the PCA to
reduce dimensionality through data preprocessing. After that, we utilize Lasso regression
to construct an optimization model using the resulting parameters to be optimized. Lasso
regression [17] is employed due to its ability to perform feature selection and regularization.
It reduces the impact of less important parameters by shrinking their coefficients towards
zero, aiding in dimensionality reduction, overfitting prevention, and model interpretabil-
ity. It effectively performs feature selection, allowing us to identify the most significant
parameters that influence the performance of the distributed messaging system.

Subsequently, we use the deep deterministic policy gradient (DDPG) method [31]
to optimize the parameters of the proposed distributed message queues. This approach
allows us to maximize the system throughput under the current message scale, achieving
adaptive optimization of system performance. Figure 3 provides an illustration of the
optimization process.

Get parameter list

Pre-processing of parameter 

values
Downscale samples

Build performance models 

using Lasso regression

Build optimization model 

using DDPG

Train models and output 

parameters

Figure 3. Performance optimization process diagram.
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4.1. Parameter Screening

In this study, the parameter configuration for the distributed message queue can be ad-
justed using a configuration file. The parameters that potentially influence the throughput
performance of the distributed message queue are included within the broker and producer
configurations. Upon reviewing the technical manual and parameter descriptions, we have
identified 22 parameters among the numerous available options that are most likely to
impact the throughput performance significantly.

We classify the parameter types into discrete and continuous to generate samples for
the selected parameters that may impact the performance of distributed message queues.
Discrete parameters include categorical and discrete numerical variables. For instance,
“cType” is a categorical variable with values such as “uncompressed”, “producer”, and
“gzip”. Conversely, “bThreads” and “rTMs” are numerical variables, with “bThreads” being
a discrete numerical variable and “rTMs” being a continuous numerical variable. For each
variable, we select three possible values: K0 (below default), K1 (default), and K2 (above
default). These values aim to capture the characteristics of the parameter and ensure a
comprehensive evaluation of its performance under different settings.

Once the parameter values are selected, they undergo preprocessing. The parameters
of the distributed message queue are categorized into numerical and categorical variables.
Categorical variables must be preprocessed by converting them into numerical variables.
In this study, we use one-hot encoding [32] to represent categorical variables. This con-
version transforms both discrete and continuous parameter types into numerical types.
The one-hot encoding uses an N-bit state register to encode N categorical values, with
each value having a corresponding register bit. The default value can be used for discrete
or categorical parameters with only two possible values. The 22 parameter values in the
form of K0, K1, K2 are combined to generate a training sample dataset St, consisting
of 322 samples. However, it is desired to reduce the size of the training sample dataset.
A representative final training sample dataset Ft is selected for the subsequent analysis step.

This study employs the PCA [16] algorithm as the preferred method for dimensionality
reduction. This choice is based on its projection-based nature, its suitability for reducing
the dimensionality of the training sample dataset, and its faster computational performance
compared to alternative techniques. Accordingly, PCA is applied to reduce the dimen-
sionality of the initial training sample dataset St. The specific procedure is outlined in
Algorithm 2. The resulting dataset after dimensionality reduction is denoted as Y, which
consists of 100 samples from the final training sample set Ft.

Algorithm 2: Dimensionality reduction method based on PCA for the initial
training sample set.

Input: Original samples X = {X1, X2, X3, . . . , X22}, where each row represents
values of each parameter in the training samples and each column
represents the data of the i-th sample

Output: The final sample dataset Y
1 Get the training sample dataset matrix X;
2 Decenter X so that each parameter value is subtracted from the average of the

three sample values of that parameter;
3 Calculate the covariance: XXT/21;
4 Solving the eigenvectors and eigenvalues of covariance XXT/21 by eigenvalue

decomposition;
5 Select the 100 eigenvectors with the largest eigenvalues and form the eigenvector

matrix Q with the 100 eigenvectors corresponding to them as column vectors;
6 Calculate Y = XQ, then the reduced-dimensional sample dataset is Y, which

contains a total of 100 final training sample sets;
7 Return Y.
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4.2. Lasso-Regression-Based Performance Modeling

We select the parameter set according to the user manual for distributed message
queues. However, given the unique requirements of the AIoT edge computing environment,
certain parameters may have a more subtle impact on the performance of the distributed
message queue compared to others. Consequently, it could be advantageous to further
reduce the parameters based on the selected final training sample set Ft.

To construct a predictive model that accurately describes the throughput performance
of our distributed message system, we employ Lasso regression [17] to determine parameter
weights. This model is trained using the final sample training set, Ft, derived from the
PCA dimensionality reduction applied in the previous stage. This Ft comprises 100 final
sampled datasets, ensuring the reliability of the results.

The original performance model, defined by Equation (1), comprises 22 parameters
as features. Lasso regression is a linear regression method that incorporates an L1 penalty
term into the loss function, promoting sparsity in the model. This penalty term steers
the coefficients of less influential features towards zero, effectively excluding them from
the model. The performance model is constructed following the process outlined in
Algorithm 3.

fa(x) = α0 + α1x1 + α2x2 + · · ·+ α22x22 (1)

Algorithm 3: Performance modeling and key parameters screening by Lasso
regression.

Input: Preprocessed samples Y = {Y1, Y2, Y3, . . . , Y22}
Output: Key parameters and their weightings

1 Get the preprocessed sample dataset Y;
2 Configuring and running 100 sets of final parameter samples in a distributed

message system;
3 Test and obtain the throughput and status. Remove sample data that runs

abnormally;
4 Construction of a set of training data pairs consisting of parameter configurations

and throughputs;
5 Normalize the parameters to a normal distribution of N(0, 1);
6 Set the performance model fa(x) = α0 + α1x1 + α2x2 + · · ·+ α22x22 and the loss

function J(α) = 1
200 ∑100

i−1( fa(x(i))− y(i))2 + λ ·∑22
j−1 |αj|;

7 Update [α1, α2, . . . , α22] using gradient descent;
8 Remove the parameters with small or zero absolute weights;
9 Return parameters and their weights.

Table 2 presents the configuration parameters of our proposed distributed message
systems, accompanied by their corresponding weights that signify their influence on system
performance. These parameters offer valuable insights into the crucial factors that exert a
substantial impact on the performance of distributed message systems.

The Lasso regression analysis yielded a refined set of 14 parameters from the initial
22 adjustable parameters and their respective weights. With this reduced parameter set, we
can now construct a performance model that accurately simulates the performance metrics
of a distributed messaging system’s output in an edge environment, taking into account
these 14 crucial parameter inputs. In the final step of DMSCO, we can employ this model
to dynamically optimize the performance configuration, ensuring a seamless and efficient
system. Equation (2) presents the final performance model to be optimized.
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Table 2. Key parameters and their weights obtained by Lasso regression screening.

Parameter Name Weight

bThreads 15.03
cType 70.35

nNThreads 23.74
nIThreads 25.16
mMBytes 60.35

qM·Requests 124.32
nRFetchers −24.59
sRBBytes 70.42
sSBBytes 120.35
sRMBytes 54.36

acks 43.58
bMemory 73.66

bSize −170.95
lMs 34.32

f (x) =α0 + 15.03x1 + 70.35x2 + 23.74x3 + 25.16x4 + 60.35x5 + 124.32x6 − 24.59x7

+ 70.42x8 + 120.35x9 + 54.36x10 + 43.58x11 + 73.66x12 − 170.95x13 + 34.32x14
(2)

where x1 ∼ x14 are the key parameters and α0 is a constant with different sizes in different
distributed message systems.

4.3. Optimization Method Based on Deep Deterministic Policy Gradient Algorithm

DDPG is a robust deep reinforcement learning algorithm [31] specifically designed to
tackle continuous action spaces in complex, high-dimensional environments. It achieves
this by blending deep Q-learning and actor–critic methodologies. The algorithm employs
an actor network to generate actions and a critic network to estimate the Q-value function.
To update the policy, it calculates the gradient of the Q-value function with respect to
the policy parameters and utilizes it to update the actor network. DDPG incorporates
techniques such as experience replay and target networks to enhance training stability and
expedite learning.

Two neural networks, namely the actor network and the critic network, are employed
by the DDPG algorithm to handle continuous action spaces effectively [31]. To ensure
the stability of the update process and mitigate the impact of continuous changes in the
target, the DDPG algorithm utilizes separate current and target networks. This results in
the involvement of four distinct neural networks: the current critic network, the current
actor network, the critic target network, and the actor target network. The current actor
network takes the current state as input and generates the action to be executed in the
subsequent step. In contrast, the current critic network evaluates the present Q-value
by taking action and state produced by the actor network as input and generates the
corresponding Q-value as output. This separation of networks allows for effective learning
and optimization in continuous action spaces. Figure 4 presents a schematic diagram
illustrating the optimization using DDPG.

A comprehensive description of the algorithm is presented in Algorithm 4. To facilitate
periodic updates of the two target networks, the DDPG algorithm employs a soft update
strategy for the actor and critic target networks. This strategy involves gradually updating
the target networks’ parameters using the parameters from their corresponding current
networks. During the execution of the DDPG algorithm, the actor target network selects
the optimal subsequent action, denoted as A′, based on the next state S′ sampled from the
experience replay pool. At the same time, the critic target network computes the target
Q-value.
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Figure 4. DDPG algorithm for distributed message system configuration optimization.

Algorithm 4: DDPG-based distributed message system configuration optimiza-
tion (DMSCO).

Input: Init all networks for actor and critic, init experience buffer and stochastic
noise N

Output: Actor optimal network parameters θ, critic optimal network parameters
w

1 State = env.reset();
2 for t from 1 to T do
3 Get the current action at based on the current state st through the actor

network;
4 Execute at to get the st+1 and reward rt;
5 Store experience {st, at, rt, st+1} to buffer D;
6 for i from 1 to m do
7 Sample a experience {si, ai, ri, si+1};
8 Calculate the target Q-value uj = Rj + γQ′

(
sj+1, µ′

(
sj+1 | θ′

)
| w′

)
;

9 Minimize the MSE loss L(w) = 1
m ∑m

j=1
(
uj −Q

(
si, aj | w

))2;

10 Calculate gradient for actor: ∇θ J = 1
m ∑m

i=1∇aQ(s, a | θ) · ∇wµ(s | w);
11 Update model with gradient ascent;
12 if Update cycle then
13 w′ ← τ · w + (1− τ)w′;
14 θ′ ← τ · θ + (1− τ)θ′;

15 Return θ, w.

To begin, we initialize four deep neural networks: the evaluation critic network,
evaluation actor network, target critic network, and target actor network. These networks
utilize learnable parameters, denoted as w, θ, w′, and θ′, respectively, to approximate the
Q-value function and policy function.

At each time step, the current state st and action at are inputted into the current critic
and actor networks, respectively, resulting in the estimation of the Q-value and the selected
action. We then specify several hyperparameters, including the soft update coefficient τ,
discount factor γ, experience replay bufferD, batch size m for batch gradient descent, target
Q-network update frequency C, and the maximum number of iterations T. Additionally,
a random noise function N is initialized to enhance learning coverage and introduce
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stochasticity during training. Finally, the first state in the state sequence, s0, is designated as
the initial state from which the learning algorithm proceeds. Following these initialization
steps, we can train the DDPG algorithm to obtain an optimized policy for the given task.

To effectively employ the DDPG optimization framework, it is imperative to map the
distributed message system optimization into a Markov decision process context.

• Environment: The environment refers to the distributed message system being op-
timized. We utilize the performance model built through the Lasso regression as
the simulated edge environment, wherein the resultant increase or decrease in the
system’s throughput serves as a performance-based reward.

• Agent: The configuration optimizer based on DDPG is regarded as the agent.
• Action: Action is depicted as a vector consisting of adjustable parameters.
• State: State can refer to the system running metrics.
• Reward: The reward is defined as the augmentation in throughput relative to both the

initial configuration and the preceding one.

Furthermore, the primary parameters of the distributed message system are initially
assigned default values, forming the initial state sequence S. A feature vector is computed
to capture the parameter configuration of the current state. This feature vector represents
the current state and is inputted into the actor network, which utilizes policy gradient
techniques to update the network parameters.

Equation (3) [31] shows the determination of the appropriate action based on the
network outputs. This equation is of significance as it reveals how our DMSCO algorithm
generates an optimal configuration based on the current state and the learned policy.
Implementing this configuration leads to a new system state that aids in updating the
policy, thereby enabling the acquisition of an optimal approach.

A = πθ(φ(S)) +N (3)

The policy function, denoted as πθ , is defined as a monadic function that indicates
the most appropriate action A to be executed to maximize the reward corresponding to
a specific input state φ(S). To update the parameter values of the distributed message
system, the action A is executed, resulting in a new state. Subsequently, the reward R is
computed based on the new state’s throughput compared to the previous state S. The new
state is observed and its feature vector is obtained. The quadruple S, A, R, S′ is then stored
in the experience replay pool D. If the reward R equals 1, the current state is updated to
S′; otherwise, the current state remains unchanged. By employing this methodology, the
distributed message system optimizes performance by assimilating prior experiences.

Our proposed DMSCO algorithm randomly samples 32 experience data from the buffer
D, denoted as {φ(Si), Ai, Ri, φ(S′i)}, i ∈ [1 ∼ 32]; the target Q-value can be calculated as in
Equation (4) [31].

uj = Rj + γ ·Q′(φ(S′i), π′θ(S
′
i) | w′) (4)

Then, the algorithm minimizes the MSE loss in Equation (5) to update the critic evaluation
network.

L(w) =
1

32

3

∑
i=1

2(uj −Q′(φ(Si), Ai | w))2 (5)

Finally, DMSCO calculates the loss function in Equation (6). Update the actor network
with gradient ascent [31] as in Equation (7):

J(θ) = − 1
32

32

∑
i=1

Q(φ(Si), Ai | θ) (6)

∇θ J =
1
32
∇AQ(S, A | θ)|S=Q(φ(Si),A=µ(Q(φ(Si))))

∇wµ(S | w)|s=Q(φ(Si))
(7)
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The iterative process continues until the maximum number of iterations, denoted
as T = 1000, is reached, resulting in the termination of the training process. The final
output includes the parameter configuration associated with the optimal action A∗, which
indicates the ideal configuration of the distributed messaging system specifically tailored
to the current message transmission scenario.

4.4. Complexity Analysis

Our proposed DMSCO, as a configuration optimization algorithm for the system,
consists of two stages: the parameter screening stage using the Lasso regression and the
parameter value optimization stage using DDPG.

In the parameter screening stage, the computational complexity can be measured by
the number of operations required to solve the optimization problem associated with Lasso
regression. It is generally higher than ordinary least-squares regression but lower than other
regularization methods such as Ridge regression. Factors influencing the computational
complexity include the number of parameters p and the number of samples n in the dataset.
We employ the least angle regression (LARS) algorithm to solve Lasso regression and it has
a computational complexity of O(np2).

In the parameter value optimization stage, we utilize DDPG (deep deterministic policy
gradient) to refine the configuration of the distributed system, considering the integration
of two distinct networks: the actor and critic networks. Each network includes a replica
of the same model, referred to as the target network, enabling synchronization between
the models. When considering the time complexity of the DDPG algorithm, it is crucial
to account for the key components that contribute to its runtime. These components
involve neural network calculations encompassing forward and backward passes, gradient
descent optimization, and target network updates. The polynomial time required for
forward propagation in the actor and critic networks is denoted as A and C, respectively,
while the time for backward propagation is represented by Agrad and Cgrad, respectively.
Furthermore, the polynomial time for model updates conducted by network optimizers,
such as RMS and Adam, is denoted as Opt. The process of updating between evaluation and
target strategies involves matrix replication, and the time for this operation is represented
by Upd. The computational complexity of these steps can be expressed as follows:

• Forward propagation through the actor and critic networks occurs at each time step
t within the range 1, 2, . . . , T. During these passes, we perform computations on the
actor and critic networks. Assuming the complexity of the forward pass for the actor
network is O(A), and for the critic network is O(C), the overall complexity for T time
steps is O(T · (A + C)). It is important to note that the complexity of O(A) or O(C)
depends on the specific size of the model, as these steps involve matrix multiplications.

• During each time step, a backward propagation is performed to calculate gradients
for both the actor and critic networks. This step involves computing the gradients
for the actor network with a complexity of O(Agrad) and for the critic network with
a complexity of O(Cgrad). Considering T time steps, the total complexity becomes
O(T · (Agrad + Cgrad)).

• Gradient descent optimization involves performing the optimization process for each
batch of size B. Considering the complexity of the optimization step as O(Opt),
the overall complexity for T time steps can be estimated as O(T · Opt/B), as an
optimization step is executed for every B time steps.

• The target networks are updated periodically every sync time steps, which is a hyper-
parameter to control the frequency of synchronization. Assume the complexity of
updating the target networks is O(Upd). This depends on the complexity of replication
between two identical network matrices. The overall complexity for T time steps can
be approximated as O(T ·Upd/sync), as a target network update is performed for
every sync time steps.



Sensors 2023, 23, 5447 16 of 21

Taking all these components into account, the overall time complexity of the DDPG
algorithm can be expressed as:

O(T · (A + C + Agrad + Cgrad)) + O(T ·Opt/B) + O(T ·Upd/sync) (8)

The aforementioned analysis reflects the worst-case scenario of serial computation un-
der typical circumstances. However, it is important to note that the actual complexity of the
algorithm can be reduced by leveraging parallel acceleration techniques and optimization
approaches. For instance, techniques such as pipeline computation for neural networks can
be employed to enhance the overall efficiency of the algorithm. By harnessing parallelism
and implementing optimization strategies, it is possible to improve computational perfor-
mance and reduce the overall complexity of the algorithm in practical implementations.

5. Experiments

To evaluate the effectiveness of the proposed DMSCO algorithm, we create a simu-
lated AIoT edge computing environment consisting of many edge devices. The specific
configuration of the experiment environment is outlined in detail in Table 3.

Table 3. Simulation environment setup for the DMSCO implementation.

Component Specification/Version

Operating system Ubuntu 20.04.1 LTS
CPU 48 CPUs—Intel Xeon Gold 6126 @ 2.60 GHz

Memory 187 GB
Hard drive 8.2 TB
LAN speed 10 GbE

Docker version 23.0.4
Framework Springboot 2.7
Kafka image wurstmeister/kafka:2.12-2.4.0

Kafka Java client Producer and consumer

Maven libraries spring-boot-starter-web: v2.1.4,
spring-kafka:v2.1.7, lombok: 0.32-2018.2

The simulation environment comprises a cluster constructed using Docker contain-
ers, designed to simulate the AIoT edge computing environment. Messages within this
environment are represented as matrix packets of varying sizes, with MD5 codes serving
as checksum information. To simulate real-time messages, the producer container con-
tinuously generates data with normally distributed sizes and unconsumed identifiers, as
long as the local buffer is not full. Subsequently, the MD5 checksum of each message is
calculated. Upon receiving a message, brokers employ the proposed PSA to pass it into
the corresponding partition. The message is then parsed based on the matrix address and
size. This process on brokers generates a matrix packet containing the identity, sender ID,
MD5 code, and matrix, which is subsequently sent to the consumer network port. If the
transmission wait time exceeds the valid wait time, the transmission is assumed to have
failed, and the failure is recorded. Finally, the consumer receives, parses, and checks the
message, returning the checksum result for verification. To closely resemble a real AIoT
network, the network setting also simulates the real AIoT communication environment.
We utilized Docker network plugins (tc-htb and netem) to emulate various network con-
ditions, such as latency, packet loss, and bandwidth limitations, in order to simulate
4G/WLAN devices in the edge environment. In particular, we set the latency at 100 ms and
configured the bandwidth to 30 Mbps for uplink and 100 Mbps for downlink connections.
We facilitated communication between containers by configuring each container with a
unique IP address and using Docker’s bridge network configuration.

The experiments comprise three distinct procedures. Firstly, we assess the actual
performance of the proposed method through multiple iterations of training optimization
under various high-concurrency scenarios. Secondly, we compare the performance of
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our proposed DMSCO method with that of both the genetic algorithm (GA) and random
searching using our distributed message queues. In these comparisons, we focus on AIoT
scenarios characterized by high message frequency and small message sizes. Lastly, we ex-
amine the optimization efficacy of various methods in practical applications involving low
message frequency and substantial message sizes. Through this comprehensive analysis,
we can effectively evaluate the efficiency of our method in diverse situations.

Analysis on Performance and Results

To evaluate the efficacy of our proposed DMSCO method, a series of experiments were
conducted using a simulated environment consisting of 128 AIoT devices. In the first set
of experiments, each device was programmed to transmit ten messages per second, with
the size of each message following a normal distribution characterized by a mean (µ) of
128 KB and a standard deviation (σ) of 10. For the second set of experiments, the devices
transmitted one message per second, with the size of each message conforming to a normal
distribution characterized by a mean (µ) of 1280 KB and a standard deviation (σ) of 100.
Through these carefully designed experiments, the efficiency of our method in optimizing
the performance of large-scale AIoT message queuing systems under diverse conditions is
thoroughly evaluated.

As depicted in Figure 5, the optimized distributed message system demonstrates
consistent improvement in the message transmission success rate across various high-
concurrency scenarios. In the initial configuration, the IoT terminals transmit 10 messages
per second, where the size of each message follows a normal distribution with a mean (µ) of
128 KB in the high-frequency small-message scenario. Comparatively, in the low-frequency
large-message scenario, each terminal sends one message per second, and the size of
each message adheres to a normal distribution with a mean (µ) of 1280 KB. The message
transmission success rate is slightly higher in the low-frequency large-message scenario
than in the high-frequency small-message scenario initially. However, as the iteration count
approaches approximately 400, the success rates intersect, indicating their near equivalence.
Beyond 400 iterations, a significant enhancement in the message transmission success rate
is observed for the low-frequency large-message scenario, surpassing the performance of
the high-frequency small-message scenario.

To validate the efficacy of the proposed DMSCO method, comparative experiments are
conducted with the genetic algorithm and random-search-based method. In the case of the
conventional genetic algorithm, the initial population is set to 100, the crossover probability
to 0.5, and the mutation probability to 0.01. For the random-search-based method, random
values are explored for each dimension of the key parameters.

Figure 6a presents a comparative analysis of message transmission throughput among
edge terminals utilizing a distributed message queue. The experiments involve the trans-
mission of 10 messages per second by each terminal, with message sizes following a normal
distribution characterized by a mean (µ) of 128 KB and a standard deviation (σ) of 10.
The objective is to evaluate the performance of different optimization methods in high
message frequency and small message sizes scenarios. The results highlight the significant
impact of the proposed DMSCO method, achieving an impressive optimized throughput
of 88.79 MB/s, representing a remarkable improvement of 46.61% over the distributed
message system without any configuration optimization. In comparison, random searching
demonstrates a 22.17% improvement. The GA optimization method reaches its peak perfor-
mance of approximately 80.52 MB/s after 600 iterations, exhibiting a notable improvement
of 32.95%.
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Figure 5. The performance of message transmission with different quantities and characteristics
after optimized with DDPG. (a) illustrates the throughput variation and (b) illustrates the success
rate variation.
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Figure 6. Optimization effects comparison of the proposed RL-based method, genetic algorithms,
and random searching on distributed message systems in different concurrent scenarios. (a) Small
message with high frequency. (b) Large message with low frequency.

Figure 6b illustrates the variation in the throughput of message transmission in our
proposed distributed message system. In this scenario, each terminal sends one message
per second, with the size of each message following a normal distribution characterized
by a mean (µ) of 1280 KB and a standard deviation (σ) of 100 KB. The results indicate
that all three optimization methods positively impact the throughput of the distributed
messaging queue in the scenario involving infrequent large messages. Over the course of
1000 iterations, both the DMSCO and the genetic-algorithm-based optimization method
exhibit a higher overall improvement in throughput compared to the random-search-based
method. Notably, after 900 iterations, the proposed optimization method surpasses the
genetic algorithm optimization method, achieving the best result of 108.5 MB/s. To provide
a comprehensive comparison, Table 4 presents the actual system metrics observed for
various methods in the same simulation setup following the completion of the optimization
process. The table demonstrates the optimization’s efficacy and efficiency by comparing
their performance against the standard configuration of a vanilla Kafka, which serves as a
baseline for comparison.
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Table 4. Final performance comparison between different optimization methods.

Methods Scenario Throughput Success Rate

DMSCO
Small-size msg and high frequency 88.79 MB/s 57.78%

Large-size msg and low frequency 108.50 MB/s 68.45%

Genetic algorithm
Small-size msg and high frequency 80.52 MB/s 49.80%

Large-size msg and low frequency 92.32 MB/s 61.15%

Random searching
Small-size msg and high frequency 73.99 MB/s 45.38%

Large-size msg and low frequency 79.03 MB/s 61.15%

No optimization
Small-size msg and high frequency 60.56 MB/s 39.54%

Large-size msg and low frequency 58.51 MB/s 33.67%

The experimental results highlight the superior performance of the proposed DMSCO
method across various message scenarios. In high-frequency, small-message situations, our
approach achieves a significant improvement of approximately 46.61% in both the message
transmission throughput and overall performance compared to the default configuration
after 1000 iterations. Conversely, in low-frequency, large-message situations, the method
archives an increase of approximately 85% in the message transmission throughput and
overall performance compared to the default configuration after 1000 iterations.

Furthermore, a comparative analysis of the experiments reveals that both the DM-
SCO method and the genetic algorithm exhibit substantial convergence and performance
optimization effects when compared to random searching. Notably, the DMSCO method
demonstrates improved throughput after approximately 700 iterations.

The genetic algorithm exhibits rapid convergence during the early stages of the op-
timization process. However, its rate of improvement gradually decreases thereafter.
This phenomenon can be attributed to the premature emergence of a “super individual”
during the mutation process, which causes the search process to become trapped in local
optima. Various strategies [33] have been proposed to address the issue of local optima in
genetic algorithms, including increasing the population density, utilizing multi-objective
optimization techniques, and dynamically adjusting mutation probabilities. However,
these approaches can be less efficient than DDPG, which is a sample-efficient method.
DDPG can enhance performance and overcome local optima more effectively, making it a
promising alternative in our proposed AIoT edge computing environment.

6. Conclusions

This study focuses on the challenges of performance and adaptability in distributed
message queue systems in AIoT edge computing environments. Our investigations re-
veal that the system’s throughput and success rate can experience significant declines
under high concurrency levels, underscoring the need for an effective optimization method.
In order to address this issue, we introduce a partition selection algorithm (PSA) that effec-
tively mitigates the adverse effects of message disorder in distributed messaging systems
while enhancing the load-balancing capabilities of our proposed distributed messaging
queue system. In addition, we propose DMSCO, a DDPG-based optimization method, to
perform auto-configuration for the proposed distributed messaging systems in AIoT edge
environments. DMSCO enables adaptive configuration adjustments to accommodate varia-
tions in message size, frequency, and device count. Experimental results demonstrate the
superiority of DMSCO over traditional optimization methods, including genetic algorithms
and random searching, across diverse messaging scenarios.

While DMSCO has demonstrated significant improvements in optimizing distributed
message queue systems within AIoT environments, it is crucial to acknowledge and address
any potential limitations to enhance its effectiveness further. One area of consideration is
the inclusion of additional performance metrics, such as transmission latency and power
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consumption, which are pertinent factors in AIoT edge environments. By incorporating
these metrics into the reward functions or performance models, more precise optimization
directions can be pursued, leading to refined and comprehensive system enhancements.
Furthermore, the methodology for constructing performance models in this paper does
not incorporate an adaptive approach for accurately selecting from among hundreds of
adjustable parameters, which currently necessitates manual selection. This aspect could be
considered for future research.
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