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Abstract: A dynamically reconfigurable underwater robot, which can vary its configuration during a
mission, would be useful for confined environment exploration and docking because of its versatility.
A mission can be performed by choosing among different configurations, and the energy cost may
increase, owing to the reconfigurability of the robot. Energy saving is the critical issue in long-range
missions with underwater robots. Moreover, control allocation must be considered for a redundant
system and input constraints. We propose an approach for an energy-efficient configuration and
control allocation for a dynamically reconfigurable underwater robot that is built for karst exploration.
The proposed method is based on sequential quadratic programming, which minimizes an energy-
like criterion with respect to robotic constraints, i.e., mechanical limitations, actuator saturations, and
a dead zone. The optimization problem is solved in each sampling instant. Two popular tasks for
underwater robots, i.e., path-following and station-keeping (observation) problems, are simulated,
and the simulation results show the efficiency of the method. Moreover, an experiment is carried out
to highlight the results.

Keywords: autonomous underwater robot; dynamically reconfigurable underwater robot; control
allocation; optimization

1. Introduction
1.1. A Dynamically Reconfigurable Underwater Robot and Perspectives

In robotic fields, reconfigurable robots are an attractive area because of their versatility.
They can change their shape or configuration corresponding to specific mission require-
ments. Therefore, the building cost can be reduced by one robot performing several tasks.
Moreover, reconfigurable robots can be applied for complex tasks requiring adaptive config-
urations, such as karst exploration or space applications. Robustness is also an advantage
of reconfigurable robots in terms of the flexibility. Overviews of these aspects and other
issues of modular self-reconfigurable robot systems are available in the literature [1,2].

A dynamically reconfigurable underwater robot was built in our laboratory at Mont-
pellier University. Readers can refer to [3] for more details. The robot consists of seven
thrusters (three forward and four backward thrusters), and its configuration can be dy-
namically varied. Figure 1 shows some configurations of the robot, i.e., the robot has an
open state for the forward branch and a close state for the backward branch, called an
open–close state. The similarities are shown in Figure 1b,c, corresponding to close–close
and open–open states, respectively. The change in the robot configuration can be viewed
at https://youtu.be/yBBCu1z3q-0 (accessed on 7 February 2023). In the close–close state,
it operates as a torpedo-shaped robot; in the open–open state, it operates as an isotropic
system. Our robot can operate as an over-actuated system.
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(a) (b)

(c)

Figure 1. A 3D model of dynamically reconfigurable robot with three different configurations [3].
(a) Robot in open–close state. (b) Robot in close–close state. (c) The robot in open–open state.

One of the challenges of an over-actuated system is control allocation, in which the
distribution of the applied forces on actuators, the so-called applied force vector, is found
when a desired control vector (output from a controller) is given. In the following, we
describe control allocation methods for an over-actuated system.

1.2. Control Allocation

The basic property of an over-actuated system is that the number of actuators is larger
than the controllable degrees of freedom (DOFs). The problem is how to map the desired
actuation on the DOFs to forces on the actuators through a configuration matrix. In the
literature, two approaches are developed to solve this problem. The first method is to
divide the control design into two levels. In the first level, the control laws for each DOF
are designed. The outputs of this level, called the desired control vector, are the inputs
of the second level. In the second level, a control allocation algorithm is designed to
assign the control inputs for actuators to optimize one or some cost functions with respect
to redundancy and actuator limitations. The problem at the second level is called the
control allocation (CA) problem. With the second method, the control inputs (normally
with constraints) are directly considered in the control design process. This issue arises
in the model predictive control (MPC) method because control allocation is considered a
constraint in the MPC formulation. However, this increases the computational cost, so it is
the most challenging issue in the MPC problem.

The control allocation problem is one of the main tasks in the control design of over-
actuated or redundant systems. Normally, the actuators of a system are constrained with
mechanical and electrical limitations, such as saturation or a dead zone. The role of the
control allocation block in a control loop is displayed in Figure 2, in which the input is the
desired control vector (Fd

B), and the output is the applied force vector (Fm).
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Figure 2. Control allocation block in general control loop.

The many available control allocation methods are divided into two groups: pseudo-
inverse- and optimization-based methods, and with or without constraints. Without con-
straints, the problem is easier. However, the unconstrained control allocation problem
provides the basic ideas for many constrained control allocation problems. Most of the con-
trol allocation methods are based on optimization techniques, either explicitly or implicitly.
Depending on the application, the appropriate control allocation method is chosen.

Some surveys have been conducted on the control allocation problem in recent years.
In [4], the authors compared many control allocation algorithms with closed- and open-loop
measures. In [5], the authors evaluated the performance and computational cost of the
optimization methods of the control allocation problem. In [6,7], control allocation methods
for ships and underwater vehicles were investigated. A survey was published in 2013 [8],
in which many control allocation methods and applications were presented and discussed.
With the advances in neural networks (NNs), NN-based control allocation approaches have
been developed [9,10].

1.3. The Singularity of Control Allocation

As mentioned above, many approaches can be used to solve the CA problem. However,
in most cases, a configuration matrix is constant and remains unchanged during the robot
operation. When the configuration matrix is varied, it may yield a singular or a near-
singular configuration; therefore, some DOFs are not controllable. This was previously
discussed [11] by researchers who proposed an approach to penalize the singularity of
the configuration. However, some advantages of the singular configuration have been
addressed, such as when facing disturbances and to achieve optimal energy. Owing to [12],
we can investigate different control allocation methods for near-singular configurations.
In this situation, the minimum singular value of the configuration matrix is too small. This
yields a pseudo-inverse that is too large (which is easily observed with the singular value
decomposition of the configuration matrix) and causes a large error if pseudo-inverse-based
CA methods are used. Hence, optimization-based CA methods are suitable for dynamically
reconfigurable robots.

1.4. Control Allocation with Varying Configuration Matrix

Control allocation methods with a varying configuration matrix have been intro-
duced [13–15] for fault tolerance, in which the control performance is guaranteed when
the efficiency of the actuators is lost. In another direction, the configuration matrix con-
tains variables that must be found to minimize an objective function, which is normally
power consumption. In the literature, this concept was only implicitly introduced in one
study [11], in which azimuths were found to optimize energy consumption. In this study,
the problem was formulated and approximated as locally convex quadratic programming.
In particular, a sack variable was added to guarantee that the optimization problem always
had a feasible solution and, in each sample, the nontrivial part (updating part) of the
optimization problem was found by linearizing the objective function and constraints on
the optimal solution of the previous sample.
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For dynamically reconfigurable robots, the configuration matrix can be varied dur-
ing robot operations. One question is how to achieve an optimal energy criterion with
respect to the parameters of the configuration matrix and the control allocation problem.
Motivated by such robots, a real-time technique in nonlinear MPC, so-called one-iteration
optimization [16], and optimization-based control allocation methods, we developed an
approach to achieve energy-efficient configuration and control allocation, which is different
from the aforementioned method, for a dynamically reconfigurable robot that can vary
its configuration during missions. The main contributions of the paper are summarized
as follows:

1. Propose an energy-efficient configuration problem for a dynamically reconfigurable
robot with respect to its constraints.

2. Propose an integration of a one-iteration optimization technique and a control alloca-
tion method to solve the energy-efficient configuration problem.

The remainder of this paper is organized as follows: basic notations are summarized
in Appendix B. The energy-efficient configuration and control allocation problem are
presented in Section 2. A proposed solution is introduced in Section 3. The simulation
results are shown and discussed in Section 4. The experimental result is discussed in
Section 5; finally, concluding remarks are provided in Section 6.

2. Energy-Efficient Configuration and Control Allocation Problem

Without loss of generality and to ensure ease of understanding, our robot is used to
formulate the problem. Some additional notations are illustrated in Figure 3, i.e., body
frame, XB, YB, ZB; linear velocities and angular rates expressed in body frames u, v, w and
p, q, r, respectively; and two angles αF, αB, for changing the robot configuration, which can
be changed during robot operations.

Figure 3. Notations and definitions of two angles αF and αB.

The relationship between the resulting control vector, including force and torque
elements, in the body frame, denoted as FB, and the force vector applied on the thrusters,
denoted as Fm, is described as a mapping through the configuration matrix, denoted as A,
which describes the geometric organization of thrusters in the body frame:

FB = A(αF, αB)Fm =

(
f
τ

)
(1)

where FB ∈ R6, A ∈ R6×m, Fm = [Fm,1 Fm,2 ... Fm,m]T ∈ Rm, and m is the number of
thrusters, m = 7 > 6. Because the system has 6 DOFs with 7 actuators, the actuation system
is said to be redundant or over-actuated.
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From the scheme of the robot, the configuration matrix is as follows:

A =

(
uB

1 uB
2 · · · uB

m
rB

1 ⊗ uB
1 rB

2 ⊗ uB
2 · · · rB

m ⊗ uB
m

)
=

(
uB

1 uB
2 · · · uB

m
τB

1 τB
2 · · · τB

m

)
=

(
A1
A2

) (2)

where m = 7 and uB
1 , . . . , uB

7 and rB
1 , . . . , rB

7 are shown in Appendix A. The basic idea for
the computing matrix A is to use transformation matrices between the coordinate systems.
Because of space limitations, this computation is not shown in this paper. When two angles,
αF and αB (Figure 3), are varied, the robot’s configuration (A matrix) changes.

In this section, we consider an energy-efficient configuration and the control allocation
problem, in which the objective function is defined using the Euclidean norm of the
applied force vector, Fm with respect to mechanical constraints: the thruster limitations. In
particular, the problem is formulated as

min
αF ,αB ,Fm

J = ‖Fm‖2 (3a)

s.t 45◦ ≤ αF, αB ≤ 90◦ (3b)

Fm ∈ F (3c)

Fd
B −A(αF, αB)Fm = 0 (3d)

where Fd
B is the desired control vector (output from the controller), and F is a feasible set

of thruster forces. The constraint (3b) is the mechanical limitation on the robot, in which
two angles can vary from 45◦ to 90◦.

The objective function is chosen as the Euclidean norm of the applied force vector. This
is reasonable because of the nearly linear characteristics of the thrusters used in our robot
(see more details in the simulation section). The problem objective is to find two angles,
αF, αB and applied force vector Fm, to minimize function J and to satisfy the constraints.
This is a nonlinear optimization problem that is solved at each sampling time (called online
optimization) because the desired control vector Fd

B is changed in each time step in the
general case. Note that in our problem, the configuration matrix A is dynamic and has
two angles, αF and αB (see Figure 3).

Other perspectives we needed to consider are the reactivity of the robot (the time for
state propagation or system response) and the time delay of the changing configurations.
If the system response is too fast, we cannot apply online optimization. Our objective was
to solve the online optimization problem; therefore, we assumed that the time required
for solving at least one iteration of the optimization problem is less than the time that the
system needs from the current to the next state. In our case of an underwater robot, this
assumption is reasonable.

For the time delay when changing configurations, assume that at time step k, we have
two angles: αFk and αBk. At the next time step, k + 1, assume that we obtain a solution
from the optimization problem with two angles αF(k+1) and αB(k+1). Physically, the robot
requires time, 4tα, to change from αFk to αF(k+1) and from αBk to αB(k+1), which is the
new optimal configuration. This changing time cannot be too fast, given the limitations
of the DC motors used for changing the robot configuration. However, this change must
be completed before the next time step, k + 1. If not, the configuration matrix will not be
associated with the correct corresponding time step k + 1. In other words, the time needed
for changing,4tα, must be less than the sampling time. Therefore, the consecutive values
of these two angles must be small enough.

To solve our problem, two assumptions were applied, as follows:

Assumption 1. The reactivity of the system is long enough, i.e., to solve the online optimization
problem and basic mathematical operations. In particular, the sampling time of our underwater
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robot is 0.1 (s). The computational time of one-iteration optimization and other basic mathematical
operations is in centiseconds, e.g., 0.01 (s) (this depends on the computation system) and the system
reactivity of an underwater robot, which normally depends on its shape and drag coefficients, is also
in centiseconds.

Assumption 2. The time for changing the mechanical system between two consecutive angles is
fast enough in one sampling time.

In practice, Assumption 1 is reasonable for underwater robots. Assumption 2 can be
satisfied if the derivation between two consecutive angles is small enough.

Remark 1. The problem (3) is a nonconvex parametric optimization problem, which has to be solved
at each sampling time. Thus, as obtaining exact optimal solution is too challenging or probably
impossible, the idea is to find an approximate solution.

Remark 2. The deviation of two angles αF, αB in two consecutive time steps is small enough, owing
to mechanical and electrical limitations and Assumption 2.

3. Solution

The procedure of finding the approximate solution of the problem is divided into
two steps: Predictor and corrector. In the predictor step, the problem is quickly solved (in
one iteration) to obtain the approximately optimal two angles and applied force vector.
However, the hard constraint (3d) cannot be easily satisfied with this applied force vector.
With these two angles, we can instantly compute the configuration matrix and move to the
next step, corrector. In this step, an algorithm is used to find a better applied force vector
with respect to this hard constraint. The two following subsections describe some basic
results from real-time model predictive control, which we used in the predictor step.

3.1. Sequential Quadratic Programming (SQP)

Consider a nonlinear optimization problem (NLP):

min
x

J(x) (4a)

s.t G(x) = 0 (4b)

H(x) ≥ 0 (4c)

Sequential quadratic programming (SQP) is an iterative method to find a Karush–
Kuhn–Tucker (KKT) point of an NLP. In particular, starting with an initial guess
y0 = (x0, λ0, µ0) (where x0 is a primal variable, and λ0, µ0 are Lagrangian multipliers),
an SQP method iterates:

yk+1 = yk + δk∆yk (5)

where δk ∈ (0, 1], and

∆yk+1 =

∆xk
∆λk
∆µk

 :=

 ∆xk
λ̃k − λk
µ̃k − µk

 (6)

Equation (6) is obtained from the solution point (∆xk, λ̃k, µ̃k) of the following quadratic
programming:

min
∆x∈Ωk

1
2

∆xTAk∆x +∇x J(xk)
T∆x (7a)

s.t G(xk) +∇xG(xk)
T∆x = 0 (7b)

H(xk) +∇x H(xk)
T∆x ≥ 0 (7c)



Sensors 2023, 23, 5439 7 of 18

Readers can refer to [17] for more details. The choice of the step length δk, Hessian
matrix Ak, and set Ωk ⊂ Rnx derives variants of existing SQP methods. If we choose
δk := 1, Ωk := Rnx and the Hessian matrix as in Equation (8), this is a full-step exact
Hessian SQP method, which is appealing and important [18]:

Ak := ∇2
xL(xk, λk, µk) (8)

This choice has an advantage, in that the full-step exact Hessian SQP method shows
the same high-quality local convergence behavior as the Newton–Raphson method in
the vicinity of a solution of the KKT system (for an illustration for cases with equality
constraints, see [17]). Note that a good initial guess is required not only for the primal
variable x but also for the multipliers λ, µ (for a proof, refer to [19]).

3.2. Parametric Nonlinear Optimization

In this section, we describe a parametric optimization problem, P(t), in which a
parameter is changed as follows:

min
x

J(x, t) (9a)

s.t G(x, t) = 0 (9b)

H(x, t) ≥ 0 (9c)

where t is a parametric variable. Note that this is not a time variable.
The problem (9) is equivalent to the following problem P(t̄):

min
x,t

J(x, t) (10a)

s.t t− t̄ = 0 (10b)

G(x, t) = 0 (10c)

H(x, t) ≥ 0 (10d)

The problem (10) is only different from (9) by reforming variable t, which is fixed as an
additional constraint t− t̄ = 0. This is introduced to show that the first iteration of the SQP
approach of the problem is the first-order approximation of the solution manifold of this problem.
The following theorem is extracted to highlight this point. Readers can refer to [18] for the
proof and more details.

Theorem 1 (First-order prediction by exact Hessian SQP [18]). Let us assume that we found a
KKT point (x∗(0), λ∗0, µ∗(0)) of problem P(0) that satisfies the sufficient optimality conditions.
If a full-step SQP algorithm with an exact Hessian for the solution of the problem P(ε), with ε > 0
being sufficiently small, is started with this solution as an initial guess, then the nontrivial part
of the first SQP step (∆x, ∆λ, ∆µ) is identical to ε times the one-sided derivative of the solution
manifold (x∗(t), λ∗(t), µ∗(t)) of the problem P(t), i.e.,

lim
t→,t>0

1
t

 x∗(t)− x∗(0)
λ∗(t)− λ∗(0)
µ∗(t)− µ∗(0)

 =

δx
δλ
δµ

 =
1
ε

∆x
∆λ
∆µ

 (11)

3.3. Online Optimization Observation in SQP

Following Theorem 1, an observation is that the first quadratic programming solution
of a full-step exact Hessian SQP algorithm provides a good approximation of the exact
solution if the algorithm is initialized in a neighborhood of this solution. In an online
optimization scenario, it would probably be better to use an approximation of the first
correction instead of waiting until the SQP algorithm converges. After the first SQP
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iteration, we correct the solution if disturbances exist that affect the initial guess or violate
the constraints; if no further disturbance occurs, the algorithm can continue to improve the
outcome of the previous iterations. In our case of an energy-efficient configuration of the
robot, the change in the two angles αF, αB in each time step is small. Hence, from an initial
guess, two angles can be chosen after one iteration of SQP. After that, we can correct the
applied force vector to obtain a better solution.

3.4. Algorithm
3.4.1. Predictor Step

This problem (3) can be rewritten as

min
αF ,αB ,Fm ,FB

J = ‖Fm‖2 (12a)

s.t 45◦ ≤ αF, αB ≤ 90◦ (12b)

Fm ∈ F (12c)

FB −A(αF, αB)Fm = 0 (12d)

FB − Fd
B = 0 (12e)

where FB is a parametric variable, and Fd
B is its constraint and is changed during a time

instant (output from a controller). This problem has the form of problem (10) and is solved
in one iteration using SQP.

By denoting x = [αF αB Fm]T , the problem (12) can be formed as

min
x,FB

J(x) (13a)

s.t G(x, FB) = 0 (13b)

H(x) ≤ 0 (13c)

FB − Fd
B = 0 (13d)

where FB replaces the role of t and Fd
B replaces the role of t̄ in problem P(t̄).

The quadratic programming used to find direction in SQP, ∆xk, ∆FB, is as follows:

min
∆x,∆FB

1
2

∆xT∇2
xL∆x +∇x JT∆x +∇FB JT∆FB +

1
2

∆FB
T∇2

FB
L∆FB + ∆FB

T∇2
x,FB
L∆x (14a)

s.t G +∇FB GT∆FB +∇xGT∆x = 0 (14b)

H +∇FB HT∆FB +∇xHT∆x ≤ 0 (14c)

∆FB − ∆Fd
B = 0 (14d)

where L is a Lagrangian function.
The problem (14) is quadratic: it can be efficiently solved by functions in MATLAB,

CPLEX, or others. Note that in the predictor step, only one iteration of SQP is performed.

3.4.2. Corrector Step

By solving Problem (12) in the predictor step, we obtained a solution for two angles
αF, αB and the applied force vector Fm. The two angles can be applied to the robot; however,
with one iteration, Fm does not easily satisfy the hard constraint (12c). With two angles, we
have a configuration matrix, A; the following optimization problem is solved to find a new
applied force vector Fm:

min
Fm

J = ‖WFFm‖2 + ‖WB(AFm − Fd
B)‖2 (15a)

s.t Fm ∈ F (15b)

where WF, WB are weighting vectors.
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The problem (15) can be considered a classical control allocation problem and be
efficiently solved by optimization-based methods or pseudo-based methods [8]. The dead-
zone compensation [20] is applied if necessary.

Algorithm 1 shows the procedure to solve the energy-efficient configuration and
control allocation problem for our robot.

Algorithm 1 Energy-efficient and control allocation algorithm.

Input: Parametric variable Fd
B (output from the controller)

Output: Local optimal angles αF, αB and applied force vector Fm
Predictor step:

1: Initial guess: primal–dual variable, (xk, λk, µk); Hessian matrix ∇2
xL, and ∇x J, G, ∇xG,

∇x H, H: all are evaluated at (xk, λk, µk).
2: Solve QP problem (14) and obtain corresponding solution (∆xk, λ̃k, µ̃k)

3: Compute multipliers direction ∆λk = λ̃k − λk, ∆µk = µ̃k − µk
4: Update xk+1 = xk + ∆xk, λk+1 = λk + ∆λk = λ̃k, and µk+1 = µk + ∆µk = µ̃k . This is

the initial guess for the next time step.
5: Extract two angles αF, αB from vector xk+1
6: Compute configuration matrix, A, corresponding to two angles αF, αB.

Corrector step:
7: Solve problem (15) to obtain applied force vector Fm

Remark 3. The difference between online optimization and real-time schemes is the initial strategy.
This depends on each specific problem. However, in some systems, the initial values are fixed because
of limitations or typical applications. For such systems, an offline optimization procedure may
be conducted first to find a suitable initial guess. If not, the solution of the current step can be
improved in comparison with the previous step. For our dynamically reconfigurable underwater
robot, for instance, because of transportation and karst exploration, from the beginning of a mission,
the initial configuration of the robot is chosen as αF = αB = 45◦. Then, the initial guess is
αF = αB = 45◦, Fm = 0.

4. Simulation Results

This section presents the simulation results of the proposed approach for our simulated
robot. The control diagram of the simulation is shown in Figure 4. A PID or quaternion-
based controller was used to derive desired control vector Fd

B. The proposed algorithm
inside the energy-efficient control allocation block found the applied force vector, Fm,
corresponding to each desired control vector. The inputs of the thrusters (PWM) were
interpolated from vector Fm by using inverse thruster characteristics. The next subsection
presents more details about the simulated robot and thruster characteristics.

Figure 4. Control loop simulation.

4.1. Simulated Robot

The simulated robot we built is shown in Figure 5a, which is the same as our proto-
type robot. Note that in the simulations, external disturbances and model uncertainties
were not considered. The robot has three forward thrusters and four backward thrusters.
The two blue cylinders are waterproof tubes containing electronic boards, and the two
green cylinders are battery tubes. The thruster characteristics are shown in Figure 5b, which
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approximates the T200 thruster of BlueRobotics [21]. The saturation values of the thrusters
are 1100 µs and 1900 µs. The dead zone of the thrusters is [1475 µs− 1525 µs]. The robot
can vary its configuration. The dynamic model of the robot is simplified as Equation (16).
Assume that all feedback states are completely estimated:

Fu = muu̇− duu (16a)

Fv = mvv̇− dvv (16b)

Fw = mwẇ− dww (16c)

Γp = mp ṗ− dp p (16d)

Γq = mq q̇− dqq (16e)

Γr = mr ṙ− drr (16f)

where mu, mv, mw, mp, mq, mr are the total masses (dry mass+added mass or inertia) along
each motion axis; du, dv, dw, dp, dq, dr are the quadratic damping terms for each motion
axis. Note that all coupling terms are neglected. Because the weight of our prototype
robot in water is approximately 15 kg, the dynamic parameters of the robot are chosen as
mu = mv = mw = 15 kg, mp = mq = mr = 1 kg, du = dv = dw = dp = dq = dr = 1 kg.

(a) (b)

Figure 5. Simulated robot and thruster characteristics. (a) Simulated robot, unit of three axis is meter.
(b) Thruster characteristics.

In general, the robot operates with a control loop, in which a controller derives a
desired control vector Fd

B. In this section, we describe our simulations of the problem
(3) when Fd

B is the dynamic parameter. We simulated two missions—path-following and
station-keeping (observation) problems—which are important in underwater robotics.

4.2. Path-Following Problem

For the path-following problem, a line of sight (LoS)-based guidance method [22] was
used in this simulation. We compared the energy-like criterion between the two static
configurations and the dynamic one in this mission. A PID controller was used in this
simulation. The chosen path is a spatial ellipse, which is parameterized as follows:

x = 60 cos(0.2618t) (17)

y = 60 sin(0.2618t) (18)

z = sin(0.2618t) + 5 (19)

where t is a path parameter.
The desired composite speed is Ud = 2m/s. The initial posture of the robot is

[x(0) y(0) z(0) φ(0) θ(0) ψ(0)]T = [64(m) 3(m) 0 0 0 3π/4]T . The initial
speed of the AUV is [u(0) v(0) w(0) p(0) q(0) r(0)]T = [1.5(m/s) 0 0 0 0 0]T.
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To evaluate the efficiency of our approach (dynamic configuration) in comparison
with that of others (static configurations), we simulated the path-following problem for the
three cases described in Table 1.

Table 1. Simulation cases for path-following problem.

No. Case Two Angles αF , αB Notes

1 αF = αB = 700 Simulation results in Figure 6
2 αF = αB = 900 Simulation results in Figure 7
3 dynamic Simulation results in Figure 8

6

-50

4Z
(m

)

2

50

trajectory

Y(m)

0

X(m)

0

0
50 -50

Robot's path

Reference path

(a)

0 50 100 150 200

time(s)

1100

1200

1300

1400

1500

1600

1700

1800

1900

P
W

M
(

s
)

PWM

(b)

Figure 6. Path following for ellipse with configuration (αF = αB = 700). (a) Trajectory of robot.
(b) PWM of 7 thrusters.
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Figure 7. Path following for ellipse with configuration (αF = αB = 900). (a) Trajectory of robot.
(b) PWM of 7 thrusters.
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Figure 8. Path following for ellipse with dynamic configuration. (a) Trajectory of robot. (b) PWM of
7 thrusters. (c) Evolution of 2 angles.

The energy-like criterion evolutions of the path-following problem for the three sim-
ulation cases are shown in Figure 9. We found that the path-following performance was
guaranteed for all three cases (see Figures 6a, 7a and 8a). However, with the dynamic
configuration, from the energy perspective, the dynamic configuration showed better per-
formance than the other two (see Figure 9). Note that this is only a local optimal solution,
and in the configuration space, another optimal solution could exist. For each specific
mission, from the initial values (αF = αB = 45◦), the robot configuration converges to a
local optimal solution. If the mission is suddenly changed, this means that the desired
control vector is largely disturbed. This will be carefully investigated and could be an
interesting future work, so it is not mentioned in this paper. Following Figure 9, we have
two instances at which the energy consumption of the dynamic configuration is larger
than the fixed configuration. This happened because some disturbances were injected into
the controller to investigate the response of the system with respect to the uncertainties,
although this is out of the scope of this paper and will be in the future research. In par-
ticular, for the first instance, from 23.4(s) to 27.6(s), a small disturbance was injected into
the controller, and for the second one, from 46.8(s) to 46.9(s), a very large disturbance
was injected into the controller in a short time. With a small disturbance, the performance
of the path-following problem was guaranteed. However, with a very large disturbance,
following a path was not guaranteed (a peak in Figure 8a). Indeed, Theorem 1 was violated
in this case.
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Figure 9. Energy-like criteria for path-following problem.

4.3. Station-Keeping (Observation) Problem

For the station-keeping (observation) problem, the robot normally has to rotate about
some DOFs and maintain a constant position, e.g., constant depth. This probably could not
be achieved by an under-actuated system, which has some uncontrollable DOFs. Owing to
our robot’s versatility, the dynamically reconfigurable robot can easily perform this mission.
In this part, we present the simulation results of the observation problem with our robot,
in which the robot dove to the desired depth and then rotated with the desired angular
velocities, i.e., [xd yd zd](m)T = [0 0 1]T and [pd qd rd](rad/s)T = [1 1 1]T .
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The controller was designed with quaternion techniques to avoid singularities (gimbal
lock) [23]. The simulations included fixed and dynamic configurations. The simulation
results of the fixed configurations, in which αF = αB = 900, are shown in Figure 10.
The simulation results of the dynamic configurations are depicted in Figure 11. Note that
in the simulation, we assumed that all states of the robot could be completely measured
or estimated.
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Figure 10. Simulation results with fixed configuration. (a) Positions of robot. (b) Angular velocities.
(c) Robot trajectory. (d) PWM evolution of 7 thrusters.
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Figure 11. Simulation results with dynamic configuration. (a) Positions of robot. (b) Angular
velocities. (c) Robot trajectory. (d) PWM evolution of 7 thrusters. (e) Two angles’ evolution:
αF-blue; αB-red.

The control performance was guaranteed in both the fixed and dynamic configurations.
The robot reached the desired depth (Figures 10a and 11a) and followed the desired
angular velocities (Figures 10b and 11b). As shown in Figures 10d and 11d, the energy-like
criterion of fixed configuration was better than that of dynamic configuration because the
two angles αF = αB = 90◦ could be considered a local optimal solution in this mission
(mainly the rotation task). The two angles’ evolution is shown in Figure 11e, which
converge to 90◦, the same as in the fixed configuration. With initial value αF = αB = 45◦,
the robot’s configuration continues to improve through the samples. Following Figure 11
(observation problem), the normally rotating priority task is considered. A locally optimal
fixed configuration (rotating priority) is chosen. The dynamic configuration converges to
the chosen optimal fixed configuration through the time. This shows that our approach
drove the system to the locally optimal configuration.

Remark 4. The proposed method can be used to find the local energy-efficient configuration of a
dynamically reconfigurable robot, as described in the previous sections, for problems in which the
change in the parametric variable is small enough. However, missions requiring a large change
in the parametric variable (the desired control vector) or one DOF to vary from uncontrollable to
controllable or vice versa during configuration changes are outside the scope of the proposed method
and will be a future research area in terms of system stability and controller design considering
a switching mechanism between controllable and uncontrollable DOFs. The experiment we next
describe highlights this remark.

5. Experiment Results

The real robot was tested in a swimming pool with different configurations. In this test,
the robot performed four tasks with two corresponding angles: travel straight (from point
A to point B, αF = αB = 45◦), complete a turn 180◦ (around point B, αF = 85◦, αB = 45◦),
dive to a predefined depth (from point B to point C, αF = 85◦, αB = 85◦), and perform
a sway (from point C to point D, αF = 85◦, αB = 85◦). The robot trajectory is illustrated
in Figure 12a. The values of the two angles (αF, αB) for each trajectory are depicted in
Figure 12d. The desired control vector (output from the PID controller), including the
desired force and torque elements, is shown in Figure 12b,c. Thanks to our robot, which
can vary its configuration by changing two angles αF, αB, we can divide the feasible space
of these two angles into four regions (Figure 13), in which the robot has priority in its DOFs:
surge priority, sway/heave priority, and rotating priority. The term priority means that the
robot prefers to use such a task in the priority region. For our experiment, the two angles
converged to the corresponding priority region.
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Figure 12. Experiment results. (a) Experiment descriptions. (b) Desired forces expressed in body
frame. (c) Desired torques expressed in body frame. (d) Evolution of two angles.

Figure 13. Two angles in feasible map and priority regions.

When we applied the proposed method to this trajectory, with initial values αF = αB = 45◦,
the trajectory was reasonable and optimal from point A to point B and when turning
around point B. Nevertheless, to directly dive from point B to point C, the robot had to
considerably change its configuration enough because the heave DOF is uncontrollable
with αF = αB = 45◦ and the proximity of these angle values. As such, the robot could
not directly perform this dive. So, the robot can use a hybrid mechanism between dynamic
and static states during its operations. For some parts of the trajectory, the robot can use
the dynamic mechanism and, for others, the robot can use a static one with time spent to
change the configuration.

6. Conclusions and Future Studies

In this paper, we proposed an approach for an energy-efficient configuration and
the control allocation of a dynamically reconfigurable underwater robot that was built
for karst or confined environment exploration. The energy-like criterion was minimized
with respect to the robot constraints. The proposed method was solved online (for each
sampling time), corresponding to the robot’s dynamic configuration. The approach was
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divided into two steps: a predictor step and a corrector step. In the predictor step, the solution
of one iteration SQP was chosen for the robot configuration. In the corrector step, quadratic
programming, as a classical CA method, was solved to adjust the applied force vector that
could be assigned for the actuators. The simulation results showed the efficiency of the
proposed method through the application of two problems: path following and station
keeping (observation). In the future, we will perform real tests with this method. Moreover,
external disturbances and model uncertainties will be considered in our subsequent studies.

Author Contributions: Conceptualization, T.D., L.L., R.Z.; methodology, T.D., L.L., R.Z. and B.R.;
software, T.D., L.L. and R.Z.; validation, T.D., L.L. and R.Z.; writing—original draft preparation, T.D.;
writing—review and editing, L.L.; supervision, L.L. and R.Z.; project administration, L.L.; funding
acquisition, L.L. All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by the LabEx NUMEV (ANR-10-LABX- 0020) within the I-SITE
MUSE (ANR-16-IDEX-0006) and the Region Occitanie (french FEDER funds).

Acknowledgments: The authors would like to thank Numev Labex, MUSE, Montpellier University;
Region Occitanie; and FEDER for supporting this study.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous Underwater Robot
SQP Sequential Quadratic Programming
PWM Pulse Width Modulation
DOF Degree of Freedom
MPC Model Predictive Control
CA Control Allocation
PID Proportional–Integral–Derivative controller

Appendix A. Configuration Matrix

The elements of the configuration matrix A are presented in Table A1. Note that
d and di, i ∈ {F, e, t} are geometrical distances corresponding to the shape of the robot.
βi, i ∈ {1, 2, ..., 7} is an angle.

Table A1. Elements of a matrix.
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√
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Table A1. Cont.
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Appendix B. Notations

This section describes the notations used in the paper. However, further notations are
introduced when needed.

A Configuration matrix
uB

i (3× 1) unit vector of direction of the ith thruster with respect to body frame
rB

i (3× 1) unit vector of position of the ith thruster with respect to body frame
Fm (m× 1) applied force vector of m thrusters
Fm,i Applied force magnitude of the ith thruster
Fd

B (6× 1) desired control vector (including force and torque) with respect to
body frame

FB = ( f
τ) (6× 1) resulting control vector (including force and torque) with respect to

body frame
⊗ Cross product
‖ · ‖ Euclidean norm
m Number of thrusters
n Number of degrees of freedom (DOFs)
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