
Citation: Qian, X.; Yuemaier, A.;

Yang, W.; Chen, X.; Liang, L.; Li, S.;

Dai, W.; Song, Z. A Self-Organizing

Multi-Layer Agent Computing

System for Behavioral Clustering

Recognition. Sensors 2023, 23, 5435.

https://doi.org/10.3390/s23125435

Academic Editors: Yi Chang,

Houzhang Fang and Luxin Yan

Received: 2 May 2023

Revised: 29 May 2023

Accepted: 7 June 2023

Published: 8 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Communication

A Self-Organizing Multi-Layer Agent Computing System for
Behavioral Clustering Recognition
Xingyu Qian 1 , Aximu Yuemaier 2, Wenchi Yang 3, Xiaogang Chen 1,* , Longfei Liang 3, Shunfen Li 1,
Weibang Dai 1 and Zhitang Song 1

1 Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences,
Shanghai 200050, China

2 School of Physical Science and Technology, Shanghaitech University, Shanghai 201210, China
3 NeuHelium Co., Ltd., Shanghai 200050, China
* Correspondence: chenxg@mail.sim.ac.cn

Abstract: Video behavior recognition often needs to focus on object motion processes. In this work, a
self-organizing computational system oriented toward behavioral clustering recognition is proposed,
which achieves the extraction of motion change patterns through binary encoding and completes
motion pattern summarization using a similarity comparison algorithm. Furthermore, in the face of
unknown behavioral video data, a self-organizing structure with layer-by-layer accuracy progression
is used to achieve motion law summarization using a multi-layer agent design approach. Finally, the
real-time feasibility is verified in the prototype system using real scenes to provide a new feasible
solution for unsupervised behavior recognition and space-time scenes.

Keywords: field programmable gate array (FPGA); hardware implementation; real-time system;
action clustering

1. Introduction

Natural video has the power to be able to serve as unsupervised learning for static
as well as dynamic vision tasks. The variation of video frame images contains a large
amount of information about the scene and behavior [1–5]. Video data consist of frames,
and each frame is a collection of dotted data consisting of RGB pixels. Whether for the
recognition of target behaviors or the detection of abnormal behaviors, most of the usual
practices first classify the moving targets, such as the mainstream CNN + RNN [6], two-
stream [7] or 3D CNN [8], which are then combined with specific feature information for
action behavior recognition.

For video processing, the extraction of key points in the original video information
requires an intensive computational process that will undoubtedly bring about many
computational operations. For instance, the X3D approach [9] typically demands computing
power ranging from 6.2 to 48.4 GFLOPs, while the DHTOF architecture based on the RBSOR
solver [10] achieves a computing load of 511 GOPS, and consumes approximately 9.4 W of
power. Furthermore, the complex and huge computational processes are bound to affect the
processing speed. For example, FlowNet [11] uses deep learning to implement optical flow
and has a performance of 5–10 FPS. DHTOF achieves excellent processing results but only
barely reaches 48 FPS. In an end-to-end real-world application, the too-slow single-frame
processing speed cannot keep up with the video frame input rate, and it is difficult to
meet the real-time processing. More importantly, in the context of the internet of things
(IoT), a large amount of data processing tasks have compelled the shift of computation
toward the front-end to alleviate the computational burden. However, such an approach
is difficult to implement and deploy in front-end devices due to their limited computing
resources and real-time demands for data acquisition. To satisfy task processing at the
front-end under limited conditions, it is necessary to address the computational cost and

Sensors 2023, 23, 5435. https://doi.org/10.3390/s23125435 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125435
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2068-9522
https://orcid.org/0000-0003-1478-040X
https://doi.org/10.3390/s23125435
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125435?type=check_update&version=1


Sensors 2023, 23, 5435 2 of 16

real-time requirements brought about by task processing, especially in the field of video
image processing.

In fact, video information is changing continuously, and this changing situation is
already strongly regular. By disregarding the classification of moving objects or features,
and instead focusing directly on the changing relationships between video frames, it is
theoretically possible to achieve clustering and recognition of specific motion behaviors. For
example, in the case of a black-and-white silhouette performance, even without knowing
the specific identity of the performing character, the background story, etc., it is still possible
to understand the meaning of the performance action by watching it. This can be achieved
by focusing on the behavior action change situation rather than classifying the target first.
The motion states of objects can be learned by summarizing the motion laws to specific
types of motion. Then, the collected data in the database are compared for clustering.

In addition, for unlabeled video data, it is not possible to use a priori knowledge to
know the detail density and object distribution of the video to be processed, due to the
computational processing of the original video. This situation requires either selecting the
dataset or completing the filtering manually. The algorithmic model needs to be designed
in a targeted way to ensure extraction of feature values from unknown videos. For example,
the algorithm model for absolute coordinate calculation applied to the traffic information
of a certain traffic road or intersection for targeted processing is difficult to apply directly
to another intersection or even another viewpoint without modification, which will lead to
difficulties in recognition under the original calculation model.

Meanwhile, the data used by front-end devices usually come directly from contin-
uously collected information and do not have very powerful preprocessing capabilities,
especially for tasks such as video tagging. The summarization and learning methods of
motion laws also need to consider facing the raw data type of unsupervised processing
rather than preprocessed datasets.

In this work, for the traffic road scenario, we propose a self-organizing multi-layer
agent computing system (SMLACS) implemented using conventional algorithms. The
computational effort is reduced by using a binary coding approach to filter the video infor-
mation density and retain only motion information. Then, the clustering and identification
of motion processes are accomplished using a similarity comparison algorithm. Finally, a
self-organizing multilayer structure was designed and used to perform hardware feasibility
by combining FPGA with network cameras based on the data collected in real scenarios
in real-time (https://github.com/qian-git/MAMMALS, accessed on 28 October 2022).
This work aims to provide a new and feasible design idea for motion analysis or even
spatio-temporal scene applications. As a result, it achieves basic clustering and recognition
capabilities regarding functional effects only. Furthermore, the SMLACS focus on motion
information is equally applicable to blurred video data compared to the frame calculation
approach that needs finer frames as requirements.

2. Related Work

Clustering recognition. Clustering is a fundamental pillar for unsupervised motion
recognition in the field of computer vision. The mainstream clustering algorithms include
three categories: K-means [12], spectral, and hierarchical clustering. The K-means algorithm
relies on the value of k, which always needs to be specified before conducting any clustering
analysis. For example, Wojciech and Pawel [13] proposed a mixed parallelization of the
K-mean algorithm, while Liang et al. [14] used it to handle shape recognition tasks. Li and
Hong [15] performed image segmentation processing, while Aditya et al. [16] used fuzzy
K-means to complete the adaptive clustering process. Although the K-means algorithm is
easy to implement, its disadvantage is that the cluster number K must be predetermined,
which is a great challenge for situations where the classification is unknown. Different from
the K-means algorithm, spectral clustering is named after the construction of a spectral
matrix from a similarity matrix. Spectral clustering converts clustering problems into
graph partitioning problems, and identifies the best sub-graphs by searching. For exam-

https://github.com/qian-git/MAMMALS


Sensors 2023, 23, 5435 3 of 16

ple, Ahmed et al. [17] implemented efficient spectral clustering using Dijkstra’s algorithm,
while Wang et al. [18] proposed using message passing and density sensitive similarities to
improve spectral clustering. Spectral clustering has a stronger adaptability to data distribu-
tion, but its clustering process requires a complete statistical count of individual numbers to
effectively establish the spectral matrix. The idea of hierarchical clustering is based on estab-
lishing a simple similarity tree between sample pairs. Hierarchical clustering is generally
divided into two categories: top-down agglomerative clustering and bottom-up divisive
clustering. For example, Xing et al. [19] combined GNN and hierarchical clustering, Saquib
et al. [20] improved an efficient parameter-free hierarchy of clusters, and Lin et al. [21,22]
used deep CNN in designing hierarchical clustering. The multi-layer agents clustering
method proposed in this paper looks similar to top-down hierarchical clustering, but there
are essential differences. Hierarchical clustering establishes a clustering tree among a large
number of targets, while this paper uses a multi-layer structure to dynamically segment
frame images and automatically allocates computing resources to areas with more motion
density for fine-grained clustering. Clustering within a single agent is somewhat similar to
spectral clustering, where the process matches the best sub-classification.

Optical flow processing. In this work, attention is paid to the motion process rather
than the specific attributes of objects or background interpretation. In addition to optical
flow [23], we are also inspired by MP3 [24], which provides a method for evaluating fixed
grid occupancy in continuous frame videos. However, unlike MP3, SMLACS does not cal-
culate all of the dynamic occupancy in the entire frame, which undoubtedly requires huge
computational cost, such as the popular optical flow method, and has high computational
complexity. Compared to mainstream algorithmic models, SMLACS uses binary encod-
ing to focus only on the motion process, and algorithmic functions are achieved through
similarity comparison and minimal logical judgment. By reducing the computational
complexity of individual agents via a hierarchical clustering approach with different levels
of accuracy, SMLACS can realize clustering of motion behavior at a low computational
cost. Such an approach has an additional benefit. For example, the clustering recognition
process of SMLACS does not require attention to scene interpretation or object recognition,
even scene-based clustering criteria. Furthermore, it is not selective towards video quality
and can even handle highly blurred video data.

Most hardware implementations of optical flow have focused on the HS algorithm
and the LK algorithm [25]. For example, Lazcano et al. [26] processed 320× 240 pixel video
frames at 4 FPS by modifying the classical HSOF method on a GPU GeForce NVIDIA-GTX-
980-Ti platform. Seong et al. [27] proposed an improved strategy for storing input images
after a Gaussian filtering operation using the LK algorithm, and achieved processing
800 × 600 pixel HD video images at 30 FPS. Li et al. [28] proposed the FPGA-based
RAFT-Lite to process video images of 512 × 396 pixels at a rate of 10.4 FPS, with power
consumption reaching up to 13.103 W. Although optical flow-based video processing
can achieve high-precision functionality, the associated power consumption and resource
usage are difficult to optimize, and real-time processing issues are unavoidable, thus
limiting its potential applications. In this paper, the LCS algorithm is used to process
optical flow problems with minimal computational operations by transforming them into
memory access problems, thereby reducing computational density and workload. The use
of DTS encoding further reduces storage capacity requirements, enabling clustering and
recognition functions to be achieved with extremely low memory usage. The computational
complexity of the system problem is actually managed through a multilayer design that
distributes computations across a large number of computational agents, resulting in lower
computational complexity for each agent.

3. Method
3.1. Binary Encoding (BE) and Discrete Temporal Sequence

In terms of focusing on object motion, MP3 [24] proposes an occupancy flow pa-
rameterized by the occupancy of the dynamic objects and describes the future occu-



Sensors 2023, 23, 5435 4 of 16

pancy. Inspired by MP3 and in contrast to the optical flow method, which computes
precise values to preserve the object feature information, we propose to care only about
whether changes occur during the sampling phase of the video information as a basis
for encoding and ignore computing specific values. Therefore, based on the background
modeling method, we choose to encode binary values (0 and 1) by comparing the dif-
ference values. The process of binary encoding using optical flow is shown in Figure 1,
where the example and subsequent legends are derived from the webcam capture video
frame (https://github.com/qian-git/MAMMALS, accessed on 28 October 2022). The video
frame image divides its area into a 4 × 4 data grid, using the current video frame and the
background frame to make the difference, and different grids count the different infor-
mation of the corresponding area. Two parameters are set as the evaluation criteria: the
difference size threshold and the number threshold for exceeding the standard difference
value, and when the difference data exceed the difference criteria, their statistic is increased
by 1. The other cases indicate no change (white areas in the figure).

Frames Background 

frame

Binary encoding

1

2
3

4

1 2 3 4

Figure 1. Class optical flow binary encoding.

In this way, the four video frames of the example in Figure 1 are encoded into the
corresponding four binary arrays. The different binary arrays under this time slice can
capture the motion of an object over time, while there is a logical sequence of changes
in the binary data of each grid on the time scale. If there is motion behavior, then the
motion pattern can be understood by the change process of the video frame through the
binary encoding method. The overall pixel profile of a video frame is not always stable.
For example, the overall pixel size may change over time due to ambient lighting. If
data are sampled and encoded for a short period of time, a fixed selection of background
frames can always be maintained, while for complex environmental conditions or long
runs, background frames need to be updated at regular intervals or when the background
changes to avoid data failure due to large gaps with the current frame image. Binary
encoding enables the conversion of high-density image information into low-density binary
array parameters that capture the perception of change. The accuracy of the information
data is determined by the number of divided grids, and a denser number of divided grids
is set if high-accuracy coding is required.

The binary encoding method enables the transformation of the perceived changes in
each grid into a simple encoded form of 0 and 1. Each individual grid can be combined on
a time scale into a time series of varying lengths that can represent the duration of change.

https://github.com/qian-git/MAMMALS


Sensors 2023, 23, 5435 5 of 16

Only because of the binary encoding, each grid exhibits a continuous process of change
that can only be represented as a continuous 1. Figure 2 shows a 4 × 4 uniform grid division
and a partial video frame of an encoded slice, after binary, encoding of a car driving. The
four grids on the upper right of the image are named A, B, C, and D. The encoded data of
the different frames of these four grids are collected to form discrete temporal sequences,
and four sets of binary discrete sequences with successive changes are obtained. From the
time scale, it is easy to see that there is an obvious correlation between the data changes of
the four grids, which is closely related to the vehicle movement process, so it will show the
sequential changes shown in the figure.

Figure 2. Video frame slicing and discrete temporal sequence coding.

If only binary encoding is used for the combination of the discrete temporal sequence,
not only are more agents required, but also the binary encoding can show a very limited
variation and can only indicate the presence or absence of object motion. Moreover, if we
only look at the data from a single grid, all of the regions where changes exist will only
turn out to be no longer stationary when the picture starts to appear at a certain time, and
then return to a stationary state again after a period, and the overall object motion process
cannot be summarized by a series of individual grid data. Therefore, the exact design of
four adjacent grids of data can use hexadecimal data to superimpose a combination of its
encoded values for each frame, which not only improves the data richness that is difficult
to express in a binary sequence, but also reduces the information density by a factor of four.
The information of consecutive frames compressed in a hexadecimal format still retains the
regularity of continuous variation. To further improve the information density, the DTS
encoding shown in Figure 3 can be applied, which integrates identical data elements and
preserves only the changing ones. Moreover, a character “0” is artificially set as an ending
symbol to indicate a complete DTS segment. For example, the fourteen frames of the grid
in Figure 2 are combined into “44557FFEEAAA20”, which can be reduced to “457FEA20”
again if we ignore the repeated encoding segments and keep only the changed parts. This
greatly reduces the information density without losing the effective data.



Sensors 2023, 23, 5435 6 of 16

0

Data

1

Data

1

Data

2

Data

2

…

Data

n

Data

n

Data

n

Data

n

0

0

Data

2

0

Data

1

Data

1

Data

2

Data

2

…

Data

n

Data

n

Data

n

Data

n

0

0

Data

2

Data

1

Data

2

…

Data

4

0

O
rd

e
r 

o
f 
d
a
ta

 t
ra

n
s
fe

r

End flag

Beginning

DTS

Figure 3. DTS encoding. Data with the same color overlay represents the duration.

3.2. Similarity Comparison

Binary coding represents the motion process of objects as a discrete temporal sequence.
The discrete temporal sequence of this type is stored as a model, and the clustering and
identification of the motion behavior of each region can be achieved by comparing the
new motion sequence with the similarity of the model. We designed the generic longest
common subsequence (LCS) algorithm as the similarity calculation algorithm to obtain the
optimal match. The specific calculation process of similarity comparison using the model
and the input sequence is performed using the longest common subsequence algorithm
approach. The computational process is a bit-by-bit comparison to determine whether the
two sequences match. The structure of the LCS algorithm is shown in Figure 4, where the
length of the sequence is i. In fact, the last term is not necessarily the end marker 0. Here,
we just take the complete sequence model as an example, the length of the model is j, and
the result of the bitwise comparison is counted by iterating through the loop twice. The data
between different comparison positions become an inheritance relationship, and finally, the
dynamic planning table of (i + 1)× (j + 1) two-dimensional array data is obtained.

For example, bit a of the input sequence of length i and bit b of the model of length j
are compared. If they do not agree, the current (a,b) data take the maximum of (a−1,b) and
(a,b−1) values; and when their values are the same, the result of the (a,b) position is the
value of its diagonal position (a−1,b−1) + 1. The dynamic planning table of the comparison
process is statistically obtained in this way. Subsequently, backtracking from the maximum
value is used, i.e., backtracking along the path from decreasing values. If the values of
(a−1,b) and (a,b−1) that are adjacent to (a,b) are both smaller than 1, the next path position
is (a−1,b−1), but if either (a−1,b) or (a,b−1) has the same value as (a,b), the next path
position is the position with the same value. Accordingly, the correspondence table of the
LCS in the figure is obtained, where the first row represents the specific characters present
in both sequences of the LCS, and the second and third rows correspond to the specific
position of each column of the first row, corresponding to its data in the input sequence
and in the model. For example, if ls2 is 3 and lm2 is 4, it means that L2 is the 3rd in the input
sequence and the 4th in the model.



Sensors 2023, 23, 5435 7 of 16

s1

s2

s3

s4

s5

Si

0

…

m1

m2

m3

m4

m5

m6

…

m6

mj

Sequence

Length is i
Model

Length is j

Dynamic Planning Sheet

LCS Table

…

…

…

(i+1)*(j+1)

Path-

retroactive

Data

Sequence location

Model location

Figure 4. LCS algorithm operation process.

3.3. A Single Agent Processing

The processing procedure of a single agent, as shown in Figure 5, includes modules
such as agent state management, history encoder, compare core, model library, history state,
and model_op. The agent state module mainly handles the working status, configuration,
data exchange, and other operations of the agent, enabling, for example, the dynamic
configuration of the processing area and the adjustment of which specific areas to handle
in multi-level structures. The history encoder module receives input encoding information
and carries out DTS coding operations, as shown in Figure 3. The compare core module
uses the LCS algorithm for similarity comparison, traverses the model library, and finds
the best-matching model, where the model ID is outputted and saved in the history state
module for prioritized fast comparison of the next frame’s data. The model library saves
all of the learned models of the agent, such as using one BRAM as a model library for each
agent in Section 4. The model_op module fuses the current complete DTS features with the
adapted model based on the LCS matching result, ensuring the model is updated to follow
the changing situation.

Compare

Core

History State

Input

model_id

LCS_table

merge_model

History

Encoder

New

Model_op

Merge

DTS

Model Library

model

Agent State

model

Output

Data channel

Figure 5. Structure of a single agent.



Sensors 2023, 23, 5435 8 of 16

3.4. Multi-Layer Self-Organizing Structure

BE of the raw video data enables the perception of whether the relevant grid has
changed. If the range of the grids is large, which means that the number of grids is small,
less information can be obtained through binary coding. For example, if the whole image is
not divided, only one grid is stored, so when the overall representation is 1, it only indicates
that there is motion in the current frame, but no more detailed information is available.
Assuming a pixel-by-pixel division, the detailed shape of the moving object can be obtained
through binary coding alone. However, this approach is computationally intensive and
loses the advantage of binary coding, so the amount of information available is determined
by the size of the divided grid.

However, a video cannot have all of its frames changed, and there will always be some
areas where no moving objects always pass by. Furthermore, if the set grid range is small,
there may be quite a lot of grids that are always producing invalid data. We propose to
use a progressive subdivision layer structure to capture the motion process of the video.
The idea of the scheme is to provide more computational resources to the existence of more
dense change regions for more detailed data processing. The specific agent system building
structure of the scheme is expressed as a layer-by-layer input of agent resources from coarse
precision regular summaries to refined regions. According to this dynamic allocation idea,
we design a multi-layer structure (MLS) for coarse-to-fine precision progression, and its
structure is shown in Figure 6. The green box in the figure indicates the region monitored by
an agent, and the yellow divided dashed line in the green box indicates the corresponding
four binary encoded regions that receive and process the hexadecimal encoded temporal
sequence of the four binary data in the green box by the computing agent.

(a) (b) (c) (d)

Figure 6. The case of the dynamic segmentation layer by layer. The four-layer dynamic subdivision
represented by (a–d), where (a) represents the coarsest accuracy that covers the entire image, and
(b–d) are successively refined subdivisions of the changing area based on the previous layer.

When an agent keeps a model with multiple temporal sequences, it indicates that there
are multiple variations in the region that the agent is responsible for monitoring. This agent
then seeks four agents in an idle state to be responsible for monitoring each of the four
dashed regions in the figure with a co-working model such as this agent. For example, in
the initial operation of the system, the design is shown in Figure 6a that divides the whole
screen into only four grids and uses only one agent as the first layer that can be responsible
for the whole screen for motion monitoring. The data received by the agent of the first layer
is very coarse and is only for determining whether there is a regular change in the four
areas of the division but not to obtain more detailed information. Subsequently, the agent
of the first layer looks for four agents as the second layer to refine the four binary encoding
regions received by the agents of the first layer, and divide the four smaller regions for
binary encoding, respectively. Similarly, the third layer is subdivided within the size of the
agent management area of the second layer, and the fourth layer is subdivided within the
agent management area of the third layer. The agent’s working state switches and the data
reception is achieved by filtering the received data for point-to-point transmission. At the



Sensors 2023, 23, 5435 9 of 16

same time, the execution process of the agent does not participate in any data exchange
behavior except for receiving the input data of each frame at the beginning, which avoids
data dependency and improves the processing speed, which can be easily realized to
increase the processing speed to the video frame rate.

3.5. Summary

Although binary coding and DTS compression reduce accuracy by ignoring a lot of
details in the image frames, they focus more on capturing motion information of continuous
frames and encode it as a series of discrete sequences. Compared with clustering algorithms,
such as K-means that require traversal and multiple calculations, the LCS algorithm can
perform similarity comparisons solely through judgment rather than numerical calculation,
resulting in faster processing speeds. Additionally, the multi-level structure effectively
distributes the computational complexity of video image processing to numerous agent
functions, allowing for relatively simple tasks for each agent, making them easier to control.
The top-down self-organizing configuration method dynamically allocates computing
resources to regions with more frequent changes when facing unknown unsupervised
videos, without the need for targeted design. Of course, this self-organizing method also
has certain limitations. It encodes the entire region and cannot distinguish between a
single target or multiple target scenes, since any change within the corresponding area
leads to DTS encoding based solely on binary information, without distinguishing whether
simultaneous changes in different regions have associations.

4. Prototype System

To verify the feasibility of SMLACS, we designed a prototype verification system.
As shown in Figure 7, it consisted of a rich storage resource platform UltraScale + EG
board, MIPI camera, and an LCD screen. The UltraScale + EG board is based on Xilinx
Zynq−UltraScale’s all programmable SOC. It has four ARM Cortex A53 processors (PS) and
600 K series−7 programmable logic (PL) cells. The PS and PL are connected internally by
the AXI bus. The camera’s sampling rate is up to 60 FPS. Furthermore, the board is equipped
with 912 blocks of on-chip block RAM(BRAM), each with a capacity of 36 Kb, part of which
is delivered to each agent to save and query the sequence model. The computational data
of the sampling module of the video images and the subsequent processing of the model
output results are stored in the DRAM.

Figure 7. Prototype system. The green box in the picture is the FPGA board, the red box is the MIPI
camera, and the blue box is the LCD screen.



Sensors 2023, 23, 5435 10 of 16

The software interfaces of the prototype system are shown in Figure 8. In the hardware
architecture, the MIPI controller outputs the video frames captured by the camera to the
system and performs operations such as frame decoding and background differencing
of the video frames. Following the frame difference calculation, the original image and
differencing results are quickly transferred to the PS through AXI VMDA. The PS binary
encodes the differencing results and then transmits them to the agent network to perform
clustering recognition. The application receives and aggregates the clustering model
recognition results from the agent network and performs discriminative clustering of all of
the results into several different types, as well as image labeling and modification of the
original image combined with the clustering results.

AXI bus

Client 

Software

MIPI Controller

DRAM

VMDA

LCD Controller

Agent

Network
Camera

DDR Controller

LCD

Frame Decoding 

Background 

Differencing

Figure 8. Prototype system working framework.

The internal processing logic of each agent in the prototype system is shown in Figure 9.
The agent network receives binary encoded data that flow through each agent’s connector
module. If an agent is working, information is recorded in the connector module of that
agent about the working mode, the area where the data are received, the level they are in,
etc. If the binary-encoded data flow through, they are recorded in the connector module
of that agent. If the flow through the binary encoded data matches, the data are saved;
otherwise, they are passed on with assistance. Of course, when the subdivision has been
carried out in the screen monitored by that agent, the transmitted data are saved and passed
on at the same time to ensure that higher-level agents can receive the data. In this way, on
the one hand, the data flow can save the transmission overhead, on the other hand, it can
be effectively managed. Each agent is internally applied with a separately used BRAM to
ensure the efficiency of model queries and to avoid I/O problems caused by the frequent
use of mass storage.

Connector

(State, encode)

16 bits D_in

16 bits D_out

data_ready

4bits D_in Agent

Logic

Compare

Core
RAM

5bits result

d_en

4bits Predict_id

4bits Predict_flag

4bits D_in

D_in_valid

D_in_ready

...

Binary Coded 

Dataset

Clustering Recognition

Results

Agent Network

Figure 9. Structure diagram of the agent network operations.



Sensors 2023, 23, 5435 11 of 16

5. Experiment and Result
5.1. Experiment

Our design uses a four-layer structure and requires a fully uniform partitioning case.
The design applies 1 + 4 + 16 + 64 computational agents to participate in the computational
process, with a total of 85 agents. If the number of layers increases, the maximum number
of computational nodes increases exponentially. We used the street view dataset (https:
//github.com/qian-git/MAMMALS, accessed on 28 October 2022), which was collected
from live intersections via a webcam. To achieve an end-to-end unsupervised processing
pipeline, a MIPI camera with a resolution of 1280 × 720 pixels was used to capture the
frames of the dataset in real-time. During the data collection phase, we recorded the
clustering performance displayed on the screen along with the output results and the
model saved of each agent post-experiment. Our FPGA system operated at a frequency of
200 MHz, while the camera had a capture rate of 60 FPS. In total, 500 vehicle video samples
were tested.

5.2. Clustering Performance

Figure 10 shows the effect of the self-organized dynamic segmentation of part of the
upper left corner of the screen in Figure 6. (The area is already an agent monitoring range
for the second layer). It can be found that as the number of moving vehicles increases, the
system gradually and dynamically performs a more fine-grained regular summary based
on the changing clustering categories. The agents used for the computation are configured
in regions where more variation exists, such as the upper right part of the region displayed
in Figure 10, while its upper left part is largely unsegmented, as the region is mostly static.
The gray boxes in Figure 10 represent agents configured to handle corresponding areas. For
example, Figure 10a illustrates that an agent on the second level divides the area into four
grids, and Figure 10b shows that four third-level agents have been configured to perform
finer segmentation, and so on. The green markers indicate the successful matching of
behavior models for this region in the current frame, accurately identifying them, while
red markers indicate recognition errors.

Through the clustering recognition behavior of SMLACS, the output results of the node
network after each frame processing can spontaneously build the form of a structure with
the multi-layer classification effect. Depending on the clustering results, the classification is
performed at different levels of fineness, and the higher the fineness, the more categories
there are.

To evaluate the clustering recognition accuracy of the prototype system, a standard
for manual classification was employed to categorize the verification dataset into multiple
categories. The dataset was classified into three classes based on road and driving style,
and further divided into seven classes based on vehicle size. By comparing the saved
models and outputs of all agents with the manually classified data, the accuracy of the
prototype system was confirmed. In addition, real-time recognition accuracy was evaluated
to assess the system’s processing performance. Real-time recognition accuracy refers to
the proportion of working agents that correctly identify behavior under the current vehicle
video. Only first-level agents cover the entire screen while agents in other levels only
process part of the screen area. Therefore, there may be idle agents when some agents work.
For example, when vehicles travel on the left side of the road in Figure 6, the agents on the
right do not receive any motion information and are not in the working state. Therefore,
recognition effectiveness statistics should not consider the condition of idle agents. The
clustering results of the first and second level agents in the prototype system are consistent
with manual classifications of driving style, with real-time recognition accuracy of 97.4%
and 97.3%, respectively. The third and fourth level agents have more classification types
because they handle smaller areas and each agent’s clusters change in different areas.
As such, calculating classification accuracy for individual agents is not meaningful since
different agents deal with different changes in varied areas. Nevertheless, the third-level
recognition accuracy reaches 88.5% and the fourth-level recognition accuracy reaches 88%.

https://github.com/qian-git/MAMMALS
https://github.com/qian-git/MAMMALS


Sensors 2023, 23, 5435 12 of 16

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 10. Dynamic division scenarios in operation. (a–h) represents the real-time dynamic recogni-
tion situation in the upper left corner of the screen. Each gray box represents an area covered by an
agent, where green indicates correct clustering and red indicates clustering errors.

5.3. Hardware Evaluation

The resource utilization of the prototype system on the FPGA platform is shown in
Table 1. Due to the fact that besides implementing the BE + LCS + MLS algorithms, this
project also included a real-time output feature for demonstration purposes. We separately
displayed the resource usage of both the version excluding the output and that of the whole
system. In terms of FFs and LUTs, the actual number of agents used was less than that
at the theoretical level because some of the stationary regions were not assigned agents
to work. Moreover, the FPGA platform provided an extremely rich set of resources (FFs
totaling 548,160, with the utilization rate of 10.38%, and the system utilization rate of
25.49%; LUTs totaling 274,080, with the utilization rate of 31.97%, and the system utilization
rate of 58.86%). So, few optimization operations, such as resource reuse, were performed
during the software compilation phase.

Table 1. FPGA Resource Utilization.

Resource Available Utilization Rate Utilization Rate
(Excluding Output) (Excluding Output) (Whole System) (Whole System)

LUT 274,080 87,612 31.97% 161,327 58.86%
LUTRAM 144,000 − − 9396 6.53%

FF 548,160 56,910 10.38% 139,699 25.49%
BRAM 912 85 9.32% 161 17.65%

DSP 2520 − − 8 0.32%
IO 328 68 20.73% 42 12.80%

BUFG 404 2 0.50% 11 2.72%

In the prototype system, the storage space provided by the BRAM was always limited.
The design allowed each agent to save up to 16 models, with each model’s length limited



Sensors 2023, 23, 5435 13 of 16

to a maximum of 32 bits. During the system operation, assuming all agents had saved
the maximum number of models, and using the LCS algorithm for similarity comparison
that required traversing all models, even with the assumption that the 85 agents operated
almost non-parallelly, the system could still process a single frame in 0.22 ms. As for
the system operation count, a maximum of 256 grid areas were need to be encoded for
the binary encoding of video frames, in addition to the processing required by the DTS
coding, LCS algorithm, and model maintenance modules of the 85 agents. Excluding
the screen output display, the estimated operation count of the system was 1.53 MOPs,
with a total parameter size of 132.9 Kb, and the system only required 42.5 Kb of BRAM
capacity. It can be seen that the operational requirements of the prototype system were
far below the amount of hardware resources provided by the FPGA platform, and also
much lower than other similar research results of intelligent video processing applications.
When compared with the same resource conditions, while meeting the requirements of
clustering recognition application, there were still plenty of resources and time available to
implement other functional requirements.

Furthermore, the operating power consumption of SMLACS is shown in Table 2. The
total power consumption when the platform was running was about 5.059 W, of which the
static power consumption was about 0.762 W, accounting for about 15% of the total power
consumption. In terms of dynamic power consumption, counting from the type division,
the consumption of clocks was about 0.504 W and accounted for 12%; the logic part was
411 mW, which was about 10%; there was about 144 mW consumption for BRAM access,
which only accounted for 3%, while the PS side consumed 2.594 W, which accounted for
60% overall. This is because while the algorithm part was processing the analysis, it was
also processing and displaying the effect based on the sampled video and clustering results,
and this algorithm part consumed a lot of power. The power consumption in terms of
filtering out the video output for BE + LCS + MLS is about 1.162 W, where the consumption
of a single agent was only 14 mW, while the access consumption of all agents to BRAM was
only 76 mW.

Table 2. Total dynamic and static power dissipation.

Power Rate Power Rate

Device Static PS 0.1 W 13% 0.762 W 15%PL 0.662 W 87%

Dynamic Power

Clocks 0.504 W 12%

4.297 W 85%

Signals 0.425 W 10%
Logic 0.411 W 10%

BRAM 0.144 W 3%
DSP 0.006 W <1%
PS 2.594 W 60%

The system was instantiated in Verilog on a Xilinx Zynq UltraScale FPGA and designed
to operate at a 200-MHz clock rate. Each individual unit was synthesized, placed, and was
routed employing the Vivado Design Suite, and was also verified for coherence with the
target clock frequency. Given a cycle count of 43.52 K cycles per each frame, the proposed
framework could yield an image processing performance of up to 4595 frames/s. Compared
to other methods, such as X3D [9], RAFT-Lite [28], and DHTOF [10], that used optical flow
for video image processing, our system reduced the number of operations by 3–5 orders
of magnitude in computation and lowered the power consumption by approximately
8.1–11.3 times. Admittedly, this work may fall short of achieving a complexity performance
similar to the other systems.



Sensors 2023, 23, 5435 14 of 16

6. Discussion
6.1. Application Scenario

The experimental process demonstrates a self-organizing multi-layer agent system
using binary encoding that is verified through an FPGA-based prototype to achieve low-
cost computing demands and real-time processing for unsupervised video cluster learning
with reduced resource consumption. The proposed solution can be deployed on front-end
devices for local processing at coarse precision levels to meet the primary recognition and
low-power ongoing operation requirements. Additionally, the resource utilization and
temporal overhead of the prototype system are minimal, providing ample headroom for
the simultaneous implementation of other functions.

6.2. Limitation and Future Directions

This work was designed with a multi-layer structure to meet the self-organizing ability
for changing situations, and it operates in a top-down manner regarding video frame
coverage. This allows the system to encode any changes in video frames into a form of
motion situation. While top-down encoding functions well for encoding and clustering
single-object motion, it fails to differentiate multiple-object motion situations as top-level
agents encode them as a new motion situation. For example, two people with the same
motion process but following one another, will not be recognized as two unknown moving
objects, but rather will be encoded as one DTS. The problem of distinguishing multiple-
object situations is not only limited to top-level agents, but also each layer of agents cannot
distinguish them well due to the unknown occupancy size of moving objects in the video.

Directly evaluating the entire frame is not feasible for handling multi-object situations,
which requires fine-grained data processing techniques such as optical flow. One approach
involves precision computation and feature extraction similar to other behavior recognition
algorithms, while the other involves transforming absolute coordinate motion into relative
motion. Two solutions have been conceived based on our current system. Solution 1 is also
inspired by the grid occupancy method of MP3 [24]. It extracts object motion information
based on the motion changes of consecutive frames, and performs DTS encoding to extract
the motion intent of each moving object. Solution 2, different from a top-down approach,
adopts a bottom-up hierarchical structure that captures absolute coordinate motion through
finer image segmentation at the bottom layer. The movements of different objects can be
separately captured based on their absolute coordinate information, enabling multi-object
processing on higher layer proxies.

7. Conclusions

Video behavior processing poses a challenge in addressing the computational demand,
processing frame rate, and power consumption brought about by high-density computing.
This paper proposes a motion detection algorithm named SMLACS based on background
modeling and optical flow methods. Using binary coding to reduce computational re-
quirements and directly extract inter-frame motion changes, SMLACS summarizes motion
information. We designed a prototype verification system based on the FPGA platform and
tested SMLACS through real-time processing. Experimental results demonstrate that SM-
LACS achieves unsupervised video behavior clustering and recognition capabilities well,
while significantly reducing computational and power consumption, providing real-time
processing capabilities.

Author Contributions: Conceptualization, X.C., X.Q. and S.L.; methodology, X.C., X.Q. and A.Y.;
software, X.Q. and A.Y.; validation, X.Q. and X.C.; formal analysis, X.Q. and X.C.; investigation,
W.D. and W.Y.; resources, A.Y., X.Q. and L.L.; data curation, X.Q., X.C. and W.D.; writing—original
draft preparation, X.Q.; writing—review and editing, X.C. and W.Y.; visualization, X.C. and X.Q.;
supervision, L.L. and W.Y.; project administration, Z.S. and L.L.; funding acquisition, Z.S. All authors
have read and agreed to the published version of the manuscript.



Sensors 2023, 23, 5435 15 of 16

Funding: This research was funded by the Strategic Priority Research Program of the Chinese
Academy of Sciences grant number XDB44010200.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

BE Binary Encoding
MLS Multi-Layer Structure
LCS Longest Common Sequence

References
1. Luan, Y.; Han, C.; Wang, B. An Unsupervised Video Stabilization Algorithm Based on Key Point Detection. Entropy 2022, 24, 1326.

[CrossRef]
2. Jing, L.; Tian, Y. Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach.

Intell. 2021, 43, 4037–4058. [CrossRef] [PubMed]
3. Wilson, G.; Cook, D.J. A Survey of Unsupervised Deep Domain Adaptation. ACM Trans. Intell. Syst. Technol. 2020, 11, 51.

[CrossRef] [PubMed]
4. Hamdi, S.; Bouindour, S.; Snoussi, H.; Wang, T.; Abid, M. End-to-End Deep One-Class Learning for Anomaly Detection in UAV

Video Stream. J. Imaging 2021, 7, 90. [CrossRef] [PubMed]
5. Jaiswal, A.; Babu, A.R.; Zadeh, M.Z.; Banerjee, D.; Makedon, F. A Survey on Contrastive Self-Supervised Learning. Technologies

2021, 9, 2. [CrossRef]
6. McLaughlin, N.; Martinez del Rincon, J.; Miller, P. Recurrent Convolutional Network for Video-Based Person Re-identification.

In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30
June 2016; pp. 1325–1334.

7. Feichtenhofer, C.; Pinz, A.; Zisserman, A. Convolutional Two-Stream Network Fusion for Video Action Recognition. In
Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 1933–1941.

8. Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning Spatiotemporal Features with 3D Convolutional Networks. In
Proceedings of the 2015 IEEE ICCV, Santiago, Chile, 7–13 December 2015; pp. 4489–4497.

9. Feichtenhofer, C. X3D: Expanding Architectures for Efficient Video Recognition. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020.

10. Johnson, B.; Thomas, S.; Rani, J.S. A High-Performance Dense Optical Flow Architecture Based on Red-Black SOR Solver. J.
Signal Process. Syst. 2020, 92, 357–373. [CrossRef]

11. Dosovitskiy, A.; Fischer, P.; Ilg, E.; Häusser, P.; Hazirbas, C.; Golkov, V.; Smagt, P.v.d.; Cremers, D.; Brox, T. FlowNet: Learning
Optical Flow with Convolutional Networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision
(ICCV), Santiago, Chile, 7–13 December 2015; pp. 2758–2766.

12. Ahmed, M.; Seraj, R.; Islam, S.M.S. The k-means Algorithm: A Comprehensive Survey and Performance Evaluation. Electronics
2020, 9, 1295. [CrossRef]

13. Kwedlo, W.; Czochanski, P.J. A Hybrid MPI/OpenMP Parallelization of K -Means Algorithms Accelerated Using the Triangle
Inequality. IEEE Access 2019, 7, 42280–42297. [CrossRef]

14. Bai, L.; Liang, J.; Guo, Y. An Ensemble Clusterer of Multiple Fuzzy k -Means Clusterings to Recognize Arbitrarily Shaped Clusters.
IEEE Trans. Fuzzy Syst. 2018, 26, 3524–3533. [CrossRef]

15. He, L.; Zhang, H. Kernel K-Means Sampling for Nyström Approximation. IEEE Trans. Image Process. 2018, 27, 2108–2120.
[CrossRef] [PubMed]

16. Karlekar, A.; Seal, A.; Krejcar, O.; Gonzalo-Martin, C. Fuzzy K-Means Using Non-Linear S-Distance. IEEE Access 2019,
7, 55121–55131. [CrossRef]

17. Taloba, A.I.; Riad, M.R.; Soliman, T.H.A. Developing an efficient spectral clustering algorithm on large scale graphs in spark. In
Proceedings of the 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo,
Egypt, 5–7 December 2017; pp. 292–298. [CrossRef]

18. Wang, L.; Ding, S.; Jia, H. An Improvement of Spectral Clustering via Message Passing and Density Sensitive Similarity. IEEE
Access 2019, 7, 101054–101062. [CrossRef]

http://doi.org/10.3390/e24101326
http://dx.doi.org/10.1109/TPAMI.2020.2992393
http://www.ncbi.nlm.nih.gov/pubmed/32386141
http://dx.doi.org/10.1145/3400066
http://www.ncbi.nlm.nih.gov/pubmed/34336374
http://dx.doi.org/10.3390/jimaging7050090
http://www.ncbi.nlm.nih.gov/pubmed/34460686
http://dx.doi.org/10.3390/technologies9010002
http://dx.doi.org/10.1007/s11265-019-01490-5
http://dx.doi.org/10.3390/electronics9081295
http://dx.doi.org/10.1109/ACCESS.2019.2907885
http://dx.doi.org/10.1109/TFUZZ.2018.2835774
http://dx.doi.org/10.1109/TIP.2018.2796860
http://www.ncbi.nlm.nih.gov/pubmed/29432094
http://dx.doi.org/10.1109/ACCESS.2019.2910195
http://dx.doi.org/10.1109/INTELCIS.2017.8260077
http://dx.doi.org/10.1109/ACCESS.2019.2929948


Sensors 2023, 23, 5435 16 of 16

19. Xing, Y.; He, T.; Xiao, T.; Wang, Y.; Xiong, Y.; Xia, W.; Wipf, D.; Zhang, Z.; Soatto, S. Learning Hierarchical Graph Neural Networks
for Image Clustering. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision (ICCV), Montreal, QC,
Canada, 10–17 October 2021; pp. 3447–3457. [CrossRef]

20. Sarfraz, S.; Sharma, V.; Stiefelhagen, R. Efficient Parameter-Free Clustering Using First Neighbor Relations. In Proceedings of
the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019;
pp. 8926–8935. [CrossRef]

21. Lin, W.A.; Chen, J.C.; Chellappa, R. A Proximity-Aware Hierarchical Clustering of Faces. In Proceedings of the 2017 12th IEEE
International Conference on Automatic Face & Gesture Recognition (FG 2017), Washington, DC, USA , 30 May–3 June 2017;
pp. 294–301. [CrossRef]

22. Lin, W.A.; Chen, J.C.; Castillo, C.D.; Chellappa, R. Deep Density Clustering of Unconstrained Faces. In Proceedings of the 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8128–8137.
[CrossRef]

23. Zhai, M.; Xiang, X.; Lv, N.; Kong, X. Optical flow and scene flow estimation: A survey. Pattern Recognit. 2021, 114, 107861.
[CrossRef]

24. Casas, S.; Sadat, A.; Urtasun, R. MP3: A Unified Model to Map, Perceive, Predict and Plan. In Proceedings of the 2021 IEEE/CVF
CVPR, Nashville, TN, USA, 20–25 June 2021; pp. 14398–14407. [CrossRef]

25. Blachut, K.; Kryjak, T. Real-Time Efficient FPGA Implementation of the Multi-Scale Lucas-Kanade and Horn-Schunck Optical
Flow Algorithms for a 4K Video Stream. Sensors 2022, 22, 5017. [CrossRef] [PubMed]

26. Lazcano, V.; Rivera, F. GPU Based Horn-Schunck Method to Estimate Optical Flow and Occlusion. In Theory and Applications of
Models of Computation; Springer: Cham, Switzerland, 2019; pp. 424–437. [CrossRef]

27. Seong, H.S.; Rhee, C.E.; Lee, H.J. A Novel Hardware Architecture of the Lucas–Kanade Optical Flow for Reduced Frame Memory
Access. IEEE Trans. Circuits Syst. Video Technol. 2016, 26, 1187–1199. [CrossRef]

28. Li, Y.; Gao, Y.; Su, Z.; Chen, S.; Liu, L. FPGA Accelerated Real-time Recurrent All-Pairs Field Transforms for Optical Flow. In
Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022; pp. 4799–4804. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ICCV48922.2021.00345
http://dx.doi.org/10.1109/CVPR.2019.00914
http://dx.doi.org/10.1109/FG.2017.134
http://dx.doi.org/10.1109/CVPR.2018.00848
http://dx.doi.org/10.1016/j.patcog.2021.107861
http://dx.doi.org/10.1109/CVPR46437.2021.01417
http://dx.doi.org/10.3390/s22135017
http://www.ncbi.nlm.nih.gov/pubmed/35808512
http://dx.doi.org/10.1007/978-3-030-14812-6_26
http://dx.doi.org/10.1109/TCSVT.2015.2437077
http://dx.doi.org/10.1109/CAC57257.2022.10054761

	Introduction
	Related Work
	Method
	Binary Encoding (BE) and Discrete Temporal Sequence
	Similarity Comparison
	A Single Agent Processing
	Multi-Layer Self-Organizing Structure
	Summary

	Prototype System
	Experiment and Result
	Experiment
	Clustering Performance
	Hardware Evaluation

	Discussion
	Application Scenario
	Limitation and Future Directions

	Conclusions
	References

