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Abstract: To develop a passive acoustic monitoring system for diversity detection and thereby adapt
to the challenges of a complex marine environment, this study harnesses the advantages of empiri-
cal mode decomposition in analyzing nonstationary signals and introduces energy characteristics
analysis and entropy of information theory to detect marine mammal vocalizations. The proposed
detection algorithm has five main steps: sampling, energy characteristics analysis, marginal frequency
distribution, feature extraction, and detection, which involve four signal feature extraction and analy-
sis algorithms: energy ratio distribution (ERD), energy spectrum distribution (ESD), energy spectrum
entropy distribution (ESED), and concentrated energy spectrum entropy distribution (CESED). In
an experiment on 500 sampled signals (blue whale vocalizations), in the competent intrinsic mode
function (IMF2) signal feature extraction function distribution of ERD, ESD, ESED, and CESED, the
areas under the curves (AUCs) of the receiver operating characteristic (ROC) curves were 0.4621,
0.6162, 0.3894, and 0.8979, respectively; the Accuracy scores were 49.90%, 60.40%, 47.50%, and 80.84%,
respectively; the Precision scores were 31.19%, 44.89%, 29.44%, and 68.20%, respectively; the Recall
scores were 42.83%, 57.71%, 36.00%, and 84.57%, respectively; and the F1 scores were 37.41%, 50.50%,
32.39%, and 75.51%, respectively, based on the threshold of the optimal estimated results. It is clear
that the CESED detector outperforms the other three detectors in signal detection and achieves
efficient sound detection of marine mammals.

Keywords: detection; empirical mode decomposition; energy spectrum entropy; receiver operating
characteristics

1. Introduction

Radio waves and light waves in seawater propagation undergo significant attenuation;
therefore, they cannot convey information reliably. Sound waves are currently known to
be the most effective long-distance carriers of information in the seawater medium. Their
underwater speed is four times faster than that in air. Therefore, in the dark environment
of the deep sea, marine mammals often rely on vocal communication, making the ocean
replete with vocal sounds, clicks, pulses, whistles, moans, and other evocative melodies
and songs [1]. The research and development of underwater acoustic technology includes
the acoustic characteristics of the seawater medium [2], the propagation characteristics of
sound waves in the seawater medium, and the sound characteristics of underwater targets.
Underwater signal processing is a very important part of the process of studying these
sound characteristics; it includes sound recording and preprocessing and signal feature ex-
traction, detection, and classification [3,4]. The sound of marine mammals can be recorded
using a hydrophone and recording equipment. The current sonar systems are of two types,
active and passive, and are implemented through technologies such as towed array sonars,
sonobuoys, and bottom-mounted sensors. Further, a passive acoustic monitoring system
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can be used to record a large number of raw underwater sound signals [5] which may con-
tain marine mammal sounds, ship engine sounds, sounds of lapping water, and unknown
noise. Most of these underwater sound signals are nonstationary signals. Therefore, the
raw underwater sound signals need to be processed first. These raw signals are effectively
sampled, signal feature extraction and analysis are performed on the sampled signals, and
feature extraction is used to extract the useful signal characteristics to improve the accuracy
of the detector and classifier by removing redundant data [6].

Over the years, various techniques have been developed for feature extraction, de-
tection, and classification of cetacean signals, such as short time Fourier transform (STFT).
Gillespie et al. [7] proposed a two-stage process for a detector, wherein the spectrogram
is smoothed by convolving it with a Gaussian kernel and the outlines of the sounds are
extracted using an edge detection algorithm. Lopatka et al. [8] presented some of the
advantages of the wavelet transform (WT) and spectrogram in analyzing sperm whale
clicks and proposed a new parameter called short-time window energy for detection.
Alam et al. [9] compared three time–frequency representations: the Fourier Transform, the
wavelet transform, and the Hilbert–Huang transform (HHT). Based on the results, HHT
proved to be a viable substitute for WT. Liu et al. [10] applied the instantaneous harmonic
retrieval method to calculate the instantaneous frequencies of the intrinsic mode functions
(IMFs), proving that the improved version is effective for underwater acoustic signal de-
tection. Seger et al. [11] proposed an empirical mode decomposition (EMD) detection and
classification process to extract possible signals from a dataset with minimal postprocessing
quality control. Mazhar et al. [12] used feature extraction for the recognition of individual
humpback whale vocalizations. Pace et al. [13] presented three feature extraction methods
(cepstral, linear prediction, and mel-scale frequency cepstral coefficients (MFCCs)) to ex-
tract the characteristics of humpback whale vocalizations. The detection stage is the process
of identifying the target marine mammal signals among other unwanted signals that may
exist. Most detection and classification algorithms use signal attributes to develop feature
extraction methods and capture different feature parameters of the target signal. However,
they attempt to generate the best profile of the desired signal according to the current target
and environmental conditions and observe the series of characteristic parameters. Murray
et al. [14] reported a self-organizing neural network (NN) for categorizing the repertoire
of false killer whale vocalizations. In addition, it is worth noting that neural networks
have made significant advancements and have demonstrated remarkable performance in
the field of underwater sound classification [15,16]. Ibrahim et al. [17] used MFCCs and
discrete WT to extract the features of North Atlantic right whale up-calls and proposed a
new up-call detection algorithm and classifiers, such as support vector machines (SVMs),
which can be applied to classify the call types. Statistical-based detection and classification
techniques, such as Gaussian mixture models, hidden Markov models, NNs, and SVMs, use
statistical inference to discover the best patterns for matching signal features. In addition,
in threshold-based technologies, detection and classification techniques are set for the
model based on a defined threshold. The model then searches for correlations between the
dataset structure and the known templates. The adaptive setting of the optimal threshold
and the recording of the detection results when the threshold is exceeded or unattained
have improved signal detection accuracy. Altes et al. [18] presented a locally optimal
detector that correlated spectrogram data with maximum-likelihood parameter estimation.
Bouffaut et al. [19] proposed a new method based on the passive application of a stochastic
matched filter to detect Antarctic blue whale Z-calls in noisy underwater environments.
Erbe et al. [20] proposed a new detection method using the entropy of information theory
(Shannon) which detects the calls of a variety of cetaceans and surpasses the performance
of two commonly used detectors based on peak energy detection and multi-band energy
detection. Permutation entropy and sample entropy (SE) are measures of complexity that
have been used as metrics for the unattended detection of whistles and clicks in passive
acoustic monitoring (PAM) data. Siddagangaiaha et al. [21] proposed these metrics and
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tested their detection capabilities by applying them to PAM data from two study sites:
Eastern Taiwan Strait in Taiwan and Honolua Bay in Hawaii, United States.

The use of time–frequency distributions (TFDs) [22], the short-time Fourier transform
(STFT), the Wigner–Ville distribution [23], and WT [24] to achieve more accurate signal
resolutions for nonstationary and nonlinear signals is an interesting area of research. At
present, most of the TFD functions, based on the kernel window, have the advantage
that the spectrum of the signal can be easily and quickly parsed; however, these methods
are often limited by the length of the sampling points of each function conversion time,
resulting in a decrease in the instantaneous frequency (IF) resolution, and it is impossible to
accurately analyze the time and frequency characteristics. HHT [25], proposed by Huang
in 1996, is a mathematical tool used for analyzing signals, particularly in the field of signal
processing. It is a linear operator that can be applied to a wide range of signals, including
nonstationary and nonlinear signals, which applies the sifting process of EMD. (The EMD
method decomposes a signal into a set of IMFs and a residual function (RF).) The HHT
algorithm is used to provide a high-frequency resolution analysis of a signal, which is
achieved by analyzing the signal at the IMF level. Each IMF has a distinct frequency range,
and the HT is used to extract the IF of each IMF, allowing for a detailed analysis of the
signal’s frequency content over time.

To develop a diverse passive acoustic monitoring (PAM) system capable of adapting
to the challenges of complex underwater environments, research on marine mammal
sounds can be divided into the following main areas: signal data recording in the field,
preprocessing of raw data, extraction of signal characteristics, signal detection analysis,
and signal classification dataset systems (Figure 1).
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Figure 1. The five main areas of research on marine mammal vocalization.

Firstly, field signal data recording involves collecting raw data in underwater en-
vironments. Subsequently, preprocessing steps, such as filtering, noise reduction, and
interference removal, are necessary to enhance the quality and distinguishability of the
signals. Next, feature extraction is a crucial step that involves extracting key characteristics
of cetacean sounds from complex underwater signals. The feature extraction algorithms
need to capture energy characteristics, spectral properties, and other relevant information of
cetacean sounds. Such feature extraction algorithms assist in identifying and distinguishing
cetacean sounds from environmental noise and interference. Additionally, signal detection
analysis and the deployment of signal classification dataset systems are essential steps.
Detection algorithms should effectively detect cetacean sounds and differentiate them from
other types of signals. This differentiation aids in further signal analysis and subsequent
classification of cetacean sounds. Therefore, we have developed efficient feature extraction
and detection algorithms. These algorithms can extract and analyze key features of cetacean
sounds, enabling accurate detection. This has significant implications for cetacean research,
marine ecosystem conservation, and environmental management.

In this study, we successfully developed the energy characteristics analysis methods
proposed in previous research [26,27] by harnessing the advantages of the empirical mode
decomposition (EMD) method to parse the sound signals of multiple marine mammals. The
sound signals were transferred from the time domain to the frequency domain using the
marginal frequency (MF) method, and the changes in signal energy were obtained. It can
be found that different marine mammal species emit a variety of behavioral sounds with
unique energy characteristics. Therefore, we introduced the concept of the average number
of data with entropy in information theory [28], where the higher the entropy, the greater
the amount of information that can be transmitted, and vice versa. In other words, we can
calculate the entropy to determine the amount of information contained in the signal and
the degree of its change. When the information is more certain and specific, the entropy is
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lower, and when it is more uncertain and confusing, the entropy is higher. Then, according
to the total signal energy or main frequency domain of energy concentration, the energy
distribution function of each sampling frequency in the spectrum is normalized. The energy
distribution function of each sampling signal can be represented by a probability function,
and after entering the calculation formula for entropy, the entropy of the energy spectrum
in each sampling signal can be obtained, which is called the energy spectrum entropy.
Four signal feature extraction and analysis algorithms are proposed in this paper: energy
ratio distribution (ERD), energy spectrum distribution (ESD), energy spectrum entropy
distribution (ESED), and concentrated energy spectrum entropy distribution (CESED). The
time–energy distributions or energy spectrum entropy distributions generated by these
algorithms are observed, and threshold-based technologies of detection theory are used
in the signal feature extraction function distribution of each algorithm to successfully and
efficiently realize sound detection of marine mammals.

The remainder of the paper is organized as follows. In Section 2, the proposed detection
algorithm with five main steps and four signal feature extraction and analysis algorithms
are presented. The sampling process, energy characteristics analysis, MF distributions,
feature extraction, and signal detection are described. In Section 3, the receiver operating
characteristic (ROC) curves of ERD, ESD, ESED, and CESED with the optimal estimated
threshold are presented. In Section 4, the signal feature extraction function distributions
of ERD, ESD, ESED, and CESED for the areas under the curves (AUCs) and detection
accuracy with the optimal estimated threshold are discussed. In addition, the ROCs of
ERD, ESD, ESED, and CESED for the sound of the bowhead whale and the Bryde’s whale
are presented. Finally, Section 5 concludes the paper.

2. Method

Based on the EMD method, four signal feature extraction and analysis algorithms
are proposed, namely, ERD, ESD, ESED, CESED, and there are five main steps: sampling,
energy characteristics analysis, MF distribution, feature extraction, and detection, as shown
in Figure 2. The proposed method was applied in the field of marine mammal vocalization
signal detection.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 21 
 

 

number of data with entropy in information theory [28], where the higher the entropy, the 
greater the amount of information that can be transmitted, and vice versa. In other words, 
we can calculate the entropy to determine the amount of information contained in the 
signal and the degree of its change. When the information is more certain and specific, the 
entropy is lower, and when it is more uncertain and confusing, the entropy is higher. Then, 
according to the total signal energy or main frequency domain of energy concentration, 
the energy distribution function of each sampling frequency in the spectrum is normal-
ized. The energy distribution function of each sampling signal can be represented by a 
probability function, and after entering the calculation formula for entropy, the entropy 
of the energy spectrum in each sampling signal can be obtained, which is called the energy 
spectrum entropy. Four signal feature extraction and analysis algorithms are proposed in 
this paper: energy ratio distribution (ERD), energy spectrum distribution (ESD), energy 
spectrum entropy distribution (ESED), and concentrated energy spectrum entropy distri-
bution (CESED). The time–energy distributions or energy spectrum entropy distributions 
generated by these algorithms are observed, and threshold-based technologies of detec-
tion theory are used in the signal feature extraction function distribution of each algorithm 
to successfully and efficiently realize sound detection of marine mammals. 

The remainder of the paper is organized as follows. In Section 2, the proposed detec-
tion algorithm with five main steps and four signal feature extraction and analysis algo-
rithms are presented. The sampling process, energy characteristics analysis, MF distribu-
tions, feature extraction, and signal detection are described. In Section 3, the receiver op-
erating characteristic (ROC) curves of ERD, ESD, ESED, and CESED with the optimal es-
timated threshold are presented. In Section 4, the signal feature extraction function distri-
butions of ERD, ESD, ESED, and CESED for the areas under the curves (AUCs) and de-
tection accuracy with the optimal estimated threshold are discussed. In addition, the 
ROCs of ERD, ESD, ESED, and CESED for the sound of the bowhead whale and the 
Bryde’s whale are presented. Finally, Section 5 concludes the paper. 

2. Method 
Based on the EMD method, four signal feature extraction and analysis algorithms are 

proposed, namely, ERD, ESD, ESED, CESED, and there are five main steps: sampling, en-
ergy characteristics analysis, MF distribution, feature extraction, and detection, as shown 
in Figure 2. The proposed method was applied in the field of marine mammal vocalization 
signal detection.  

 
Figure 2. Proposed detection algorithm with five main steps and four signal feature extraction and 
analysis algorithms. 

  

Figure 2. Proposed detection algorithm with five main steps and four signal feature extraction and
analysis algorithms.

2.1. Sampling

The marine mammal sound signals used in this study were obtained from the website
of the Monterey Bay Aquarium Research Institute (MBARI), Moss Landing, CA, USA [29].
Figure 3 shows the A and B calls of two sets of blue whales with a sampling time of 235.72 s
and a sampling frequency of 4800 Hz. One set of signals, A and B, belonging to the blue
whales were captured as valid sampling signals during the experimental process of this
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study. The sampling time for this valid signal sampling was 100 s, 500 sampled signals
were divided evenly, and each sampling signal lasted 200 ms. It can be observed that the
first half of this valid signal sample contained 250 sampling signals for the A call zone of
50 s and that the second half contained 250 sampling signals for the B call zone of 50 s.
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4800 Hz) and one set of valid sampling signals (duration: 100 s; 500 sampling signals) that included
A and B call zones.

2.2. Energy Characteristics Analysis

EMD was used as the basic theoretical framework for the energy characteristics analy-
sis of the IMF and rf of the sampling signal. The sampling signal X(t) can be decomposed
into N IMFs and one rf after the shifting process of EMD.

X(t) =
N

∑
i=1

IMFi(t) + r f (t) (1)

where IMFi(t) is the ith IMF and rf is the residual function for the 500 sampling signals.
The EMD for each sampling signal can obtain 21 sampling signals with 4 IMFis (3 IMFs
and 1 rf ), 185 sampling signals with 5 IMFis (4 IMFs and 1 rf ), 254 sampling signals with
6 IMFis (5 IMFs and 1 rf ), and 40 sampling signals with 7 IMFis (6 IMFs and 1 rf ); two of
the sampling signals are shown in Figure 4.

The total signal energy, Etotal, can be defined as the sum of the energies of all the IMFs.
This is because the energy of the original signal is distributed among the different IMFs,
and adding up the energies of all the IMFs gives the total energy of the original signal.

Etotal =

N

∑
i=1

IMF2
i (t) + r f 2(t) (2)

The ith IMF energy ratio is:

EIMFi =
IMF2

i
Etotal

∗ 100% (3)

As shown above, the average energy ratio of each IMFi can be calculated for 500 sam-
pling signals, and the IMFi with the higher average energy ratio is defined as the competent
IMF (CIMF) among the 500 sampling signals. The average energy ratios of IMF1, -2, -3, -4,
-5, -6, and -7 are 31.92%, 25.09%, 19.29%, 12.14%, 6.62%, 1.90%, and 0.21%, respectively, as
shown in Table 1. The average energy intensity densities are mainly concentrated in IMF1,
-2, -3, and -4; the top two, IMF1 and IMF2, with high average energy ratios are taken as the
CIMFs, which are used as the IMFs for the main signal analysis of the algorithm.
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Figure 4. (a). One of the 500 sampling signals (blue whale vocalization): A call zone (20~20.2 s) with
4 IMFs and 1 rf. (b). One of the 500 sampling signals (blue whale vocalization): B call zone (73~73.2 s)
with 4 IMFs and 1 rf.

Table 1. Average energy ratio of each IMFi for 500 sampling signals (blue whale vocalization).

IMFi IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7

Average
energy ratio (%) 31.92 25.09 19.29 12.14 6.62 1.90 0.21

2.3. Marginal Frequency

According to the theory of the TFD function, after implementing HT for each IMFi,
the sampling signal can be expressed as the sum of the real and imaginary parts, and the IF
of the ith IMF, Fi(t), can be calculated as:

Xi(t) = IMFi(t) + jHT{IMFi(t)} = Ai(t)ejθi(t) (4)

Fi(t) =
1

2π

dθi(t)
dt

(5)

The sampling frequency bandwidth is f Hz, and the MF distribution (MF; frequency–
energy distribution) of the ith IMF is defined as:

MFi =
IMF2

i f (t)

Etotal
∗ 100% (6)
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Thus, the average MF distributions of IMF1 and IMF2 for 500 sampling signals were
obtained, as shown in Figure 5.
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Figure 5. Average MF distributions of (a) IMF1 with threshold 0.3 (red line) and (b) IMF2 for
500 sampling signals with threshold 0.4 (red line) (blue whale vocalization).

Further, the appropriate threshold was selected. As shown in Table 2, when the threshold
was 0.3, the main frequency band of IMF1 was 27–49 Hz, the frequency of the highest energy
ratio was 39 Hz, and the main frequency domain was 1–150 Hz; when the threshold was 0.4,
the main frequency band of IMF2 was 9–43 Hz, the frequency of the highest energy ratio was
13 Hz, and the main frequency domain was 1–100 Hz. To observe the tendency of the MF
spectrogram, the energy of the A call and B call signals was mainly distributed around the
frequency of the highest energy ratio for IMF1 and IMF2, respectively.

Table 2. Signal extraction parameters of 500 sampling signals (blue whale vocalization).

IMFi Threshold Frequency of Highest
Energy Ratio (Hz)

Main Frequnecy
Band (Hz)

Main Frequency
Domain (Hz)

IMF1 0.3 39 27~49 1~150

IMF2 0.3 13 9~43 1~100

2.4. Feature Extraction

After the sampling signals were subjected to EMD and energy characteristics analysis,
the four signal feature extraction and analysis algorithms proposed in this paper, ERD,
ESD, ESED, and CESED, which served as the theoretical basis for signal detection, were
applied. Since the CIMFs had a higher average energy ratio among all IMFis of the sampling
signals and the energy signature component of the signal was distinct, the CIMFs and
higher-energy IMFis were taken as the main signals in the detection process.

2.4.1. Energy Ratio Distribution (ERD)

The energy ratio EIMFi(t) of the IMFi of a sampling signal was calculated according to
Equation (3) in the energy characteristics analysis, and then the time–energy distribution
of each IMFi was obtained from the 500 sampling signals, as shown in Figure 6, for IMF1
and IMF2. The CIMF with the highest energy distribution ratio was IMF1, and the energy
distributions of the two groups can be observed in Figure 6a, which individually fall in the
A and B call zone. The A and B calls can be analyzed using IMF1. Figure 6b shows the
energy distribution ratio of IMF2. It can be seen that there is an energy distribution in the
A call zone, but the signal energy is relatively weaker in the B call zone.
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Figure 6. Time–energy distribution of (a) IMF1 and (b) IMF2 for 500 sampling signals (blue whale
vocalization) using ERD.

2.4.2. Energy Spectrum Distribution (ESD)

From Equation (6), for the MF, the MF distribution of the ith IMF of the sampling
signal was calculated, and the MF frequency–energy distribution of each sampling signal
was obtained. Then, in the main frequency domain of the MF of each sampling signal,
the energy of all instantaneous frequencies was scanned, and the frequency of the highest
energy ratio Max(EIMFi(f )) was obtained.

max(EIMFi( f )) = max{MFi( f )| f = f1 ∼ f2} (7)

f : f 1~f 2 is the main frequency domain of the MF of the sampling signal. The time–energy
distribution of each IMFi can be obtained for 500 sampled signals, as shown in Figure 7 for
IMF1 and IMF2, which are the energy ratios of the IF with the highest energy in the MF.
The energy distributions of the A call and B call can be clearly observed in Figure 7a for
IMF1, but from Figure 7b it is almost impossible to identify the energy distribution of the B
call for IMF2.
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2.4.3. Energy Spectrum Entropy Distribution (ESED)

For each IMFi, the IF can be calculated using the HT, which provides the time-
frequency–energy distribution, called the Hilbert energy spectrum.

HSi =
Ei(t, f )
Etotal

=
IMF2

i (t, f )
Etotal

(8)

The energy distribution function Ei(t, f) contains the sampling time (t) and sampling
frequency (f ), where the energy distribution function of each sampling signal defines
Eij ∈ {Eim, . . . , Ein}. Here, i is the IMF number of the sampling signal and j is the sampling
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frequency range from m to n. Then, the energy distribution function is normalized according
to the total energy of the signal, and the energy distribution function of each sampling
signal can be expressed by the probability functions Pij ∈ {Pim, . . . , Pin}, which can indicate
the signal energy density of the ith IMF in the sampling signal.

Pi
(
Ej
)
= P

(
Eij

)
=

Eij

Etotal
(9)

where i is the ith IMF of the sampling signal and j is the sampling range from m to n.
Since entropy can be used to measure the information uncertainty and is proportional to
the amount of uncertainty in the data, the greater the uncertainty, the greater the entropy.
Therefore, the entropy of the energy spectrum of each sampling signal can be calculated,
which is called the ESED. In information theory, the unit of entropy depends on the
logarithmic base used, with bits being the most commonly used unit. When the natural
logarithm (base e) is used, the unit of entropy is nats.

ESED = H(E) = −
i

∑
i=1

n

∑
j=m

P
(
Eij

)
log P

(
Eij

)
(10)

The energy spectrum entropy (H) of each IMFi can also be determined.

ESED of ith IMF = Hi(E) = −
n

∑
j=m

Pi(Ej)log Pi(Ej) (11)

We obtained the ESED of each IMFi for 500 sampling signals, as shown in Figure 8.
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In the MF process, the main frequency domain of the sampling signal can be deter-
mined, and most of the energy of the sampling signal will be concentrated in the main
frequency domain. If the main frequency domain is equal to the sampling frequency range,
the energy spectrum entropy of each IMFi in the main frequency domain, called Hicd, can
be calculated, and the main frequency domain ranges from c to d.

Hicd(E) = −
d

∑
j=c

Pi(Ej)log Pi(Ej) (12)
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2.4.4. Concentrated Energy Spectrum Entropy Distribution (CESED)

Since Etotal is the total energy of the sampling signal in the ESED, the frequency
distribution is in the full frequency domain. However, when calculating the entropy in
the ESED process, only the sampling frequency range is calculated. Hence, the calculated
entropy may deviate from the real value. In addition, from the MF process, it is known
that the energy of the sampling signal will be concentrated in the main frequency domain.
Therefore, to increase the integrity of the sampling signal analysis, the energy distribution
function is normalized in the main frequency domain of the sampling signal so that the best
and worst values of each variable are adjusted between 0 and 1, and the energy distribution
function of each sampling signal is redefined for Eij ∈ {Eia, . . . , Eib}, where i is the IMF
number of the sampling signals and j is the main frequency domain from a to b. The
maximum energy distribution function is max(Ei), max(Ei) = max{Eia, . . . , Eib}, and the
smallest energy distribution function is min(Ei), min(Ei) = min{Eia, . . . , Eib}. The energy
distribution function of each sampling signal can be expressed by the probability functions
Pij ∈ {Pia, . . . , Pib}, which can also provide the signal energy density of the ith IMF in the
sampling signal.

Sij =
Eij −min

(
Eij

)
max

(
Eij

)
−min

(
Eij

) (13)

Pi
(
Ej
)
= P

(
Eij

)
=

Sij

∑b
j=a Sij

(14)

Thus, the CESED of each IMFi can be calculated as follows:

CESED of the ith IMF = CHi(E) = −
b

∑
j=a

Pi(Ej)log Pi(Ej) (15)

The CESED of each IMFi in the 500 sampled signals was obtained, as shown in Figure 9.
The energy distribution of the A call and B call can be clearly observed in Figure 9 for IMF1
and IMF2.
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2.5. Detection

Through aural listening and visual inspection of the spectrogram or signal energy
magnitude, the desired signal and unwanted signal can be manually interpreted to detect
the target signal false alarms and missed detections by means of an experienced human
operator (EHO) [30]. In the energy distribution function for 500 sampling signals, the
average energy of the A call zone was approximately 3.09, whereas the average energy of
the B call zone was approximately 21.51. Hence, a threshold of 3.09 was selected. When
the signal energy is greater than the threshold, the desired signal is considered to be 1, and
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when the signal energy is less than the threshold, the signal is regarded as an unwanted
signal denoted as 0. Thus, 175 desired signals were obtained from the 500 sampled signals,
of which 90 were in the A call zone, 85 were in the B call zone, and 325 were unwanted
signals. The detection results generated by the EHO process were considered as real data
and compared with the detection data of the detector proposed in this paper.

In our study, we used the ROC [31] of signal detection theory as a tool to analyze
the performance of the detectors, select the best signal detection model, and set the best
threshold for the same model. ROC analysis is a two-bit classification model, that is, there
are only two categories of detection outputs. In addition, the result of signal detection
needs to be defined by an appropriate threshold. Thus, the predicted and true values of
four possible parameter results were considered as the number of true positives (TPs), i.e.,
signals correctly detected as valid, false positives (FPs), i.e., signals incorrectly detected as
valid, true negatives (TNs), i.e., signals correctly detected as invalid, and false negatives
(FNs), i.e., signals incorrectly detected as invalid. The true-positive rate is defined as
TPR = TP/(TP + FN), and the false-positive rate is defined as FPR = FP/(FP + TN). Next,
given a two-digit classification model and an appropriate threshold, it is possible to cal-
culate a coordinate point, with the X-axis displaying the FPR and the Y-axis displaying
the TPR, from the true values and predicted values of all sampled signals. Each threshold
setting will yield different values for the FPR and TPR. Consider an ROC curve drawn
between the X- and Y-axes (0,1). The perfect prediction is at the point (0,1) in the upper left
corner of the ROC spatial coordinates, that is, the predicted value and true value of the
detection output are 100% concurrent at this point. Therefore, if the curve is closer to the
upper left corner of the graph coordinates (0,1), the point above the curve represents a better
classification result and the point below the curve represents a poor classification result.
Thus, we can obtain the analysis results of the sampling signal detection performance in
the ROC curve chart. In our experiment, we evaluated the four signal feature extraction
and analysis algorithms described above, ERD, ESD, ESED, and CESED, using 500 sample
signals and compared the ROC detection performances.

In the detection process, according to the Bayes criterion [31], we considered the
problem as a binary classification task with two hypotheses: H1 representing the positive
class (“yes”) and H0 representing the negative class (“no”). Our goal was to make the
optimal classification decision based on the observed feature values. To achieve this, we
needed to consider two types of errors: false negatives (positive instances incorrectly
classified as negative instances) and false positives (negative instances incorrectly classified
as positive instances). By weighting these two types of errors, we were able to choose an
appropriate threshold that minimized the classification error.

Specifically, we used a threshold to divide the feature values into two regions: one
region representing predictions corresponding to the positive class (“yes”) and the other
region representing predictions corresponding to the negative class (“no”). Then, we made
the classification decision based on the region where the feature value fell. For example,
if the feature value were greater than the threshold, it would be classified as a positive
instance; if the feature value were less than the threshold, it would be classified as a negative
instance. This paper provides two ways to select thresholds: median and optimal estimated
threshold methods.

(1) Based on statistical features (medians): This approach to determining the threshold
value utilizes Chebyshev’s inequality theory. According to this theory, the threshold
can be set based on the energy of the sampling signal relative to the median plus a
certain number of times the deviation is multiplied by a factor M [20]. This method
allows for dynamic adjustment of the threshold based on the statistical features of the
signal, enabling adaptation to different types of signals. Its advantages include:

Adaptability: The threshold can be dynamically adjusted based on the statistical
features of the signal, allowing it to adapt to variations in different signals;
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Robustness: By considering statistical features, threshold selection becomes more
robust with respect to variations in signal characteristics, thereby improving
detection performance.

(2) Based on receiver operating characteristic (ROC) analysis (the optimal estimated
threshold): Another criterion for selecting the threshold is by analyzing the receiver
operating characteristic (ROC) curve. The ROC curve illustrates the trade-off between
the true-positive rate and the false-positive rate at different threshold values. The
point on the ROC curve closest to the coordinate (0,1) represents the optimal esti-
mated result. Thus, the threshold chosen at this point can be considered the optimal
estimated threshold, maximizing the system’s performance in terms of detection accu-
racy. By describing the process of setting the adaptive threshold based on statistical
measures and selecting the optimal estimated threshold using the ROC curve, the
study acknowledges the importance of threshold determination and highlights the
use of adaptive techniques to enhance the detection accuracy and robustness of the
system. Its advantages include:

Performance optimization: Choosing the threshold based on the ROC curve
allows identification of the optimal estimated threshold that maximizes the
system’s detection accuracy. This can enhance the overall detection performance;
Objective evaluation: The ROC curve provides a visual representation of the
classifier’s performance, allowing for quantitative assessment of the balance be-
tween the true-positive rate and the false-positive rate. This objective evaluation
helps in selecting a threshold that balances detection accuracy.

By applying these threshold selection methods, algorithms can effectively determine
the appropriate threshold for classifying signals as “yes” or “no,” thereby improving the
accuracy and robustness of the detection system.

3. Analysis Results

After processing the 500 sample signals through the four signal feature extraction and
analysis algorithms, the signal feature extraction function distribution of each algorithm
was obtained, along with the time–energy distribution of ERD, the time–energy distribution
of ESD, the energy spectrum entropy distribution of ESED, and the energy spectrum entropy
distribution of CESED, as shown in Figures 5–8 respectively.

The median values of the IMF1 signal feature extraction function distributions of ERD,
ESD, ESED, and CESED were set as the thresholds; these were 25.38, 1.55, 1.69, and 5.45,
respectively. The numbers of TPs in the A call zone region were 35, 47, 37, and 47, whereas
the numbers of those in the B call zone were 80, 83, 79, and 85, respectively. The sums of the
two give the total numbers of detections, which were 115, 130, 116, and 132, respectively.
The detection ratios for the TPRs were 65.71%, 74.29%, 66.29%, and 75.43%, respectively.
The numbers of FP parameters in the A call zone were 86, 70, 86, and 40, whereas the
numbers of those in the B call zone were 50, 38, 47, and 60, respectively. The sums of the
two give the numbers of false alarms, which were 136, 108, 133, and 100, respectively, and
the FPRs were 41.72%, 33.23%, 40.80%, and 30.37%, respectively, as shown in Table 3.

The median values of the IMF2 signal feature extraction function distributions of ERD,
ESD, ESED, and CESED were set as the thresholds; these were 22.42, 3.49, 1.42, and 4.38,
respectively. The numbers of TPs in the A call zone were 69, 107, 62, and 72, respectively,
whereas the numbers of those in the B call zone were 17, 40, 12, and 85, respectively.
The sums of the two give the numbers of detections, which were 86, 107, 74, and 157,
respectively. The detection ratios of the TPRs were 49.14%, 61.14%, 42.29%, and 89.71%,
respectively. The number of FPs in the A call zone were 96, 77, 97, and 64, respectively,
whereas the numbers of those in the B call zone were 73, 56, 86, and 34, respectively.
The sums of the two give the numbers of false alarms, which were 169, 133, 183, and 98,
respectively, and the FPRs were 52.15%, 40.92% 56.44%, and 30.06%, respectively, as shown
in Table 4.
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Table 3. IMF1 signal feature extraction function distributions of ERD, ESD, ESED, and CESED with
the parameters TP and FP, with the medium as the threshold.

IMF1
Threshold
(Median)

True Position (TP) False Position (FP)
A Call Zone

Number
B Call Zone

Number
Detection
Number

Detection
Ratio (TPR)

A Call Zone
Number

B Call Zone
Number

False Alarm
Number

False Alarm
Ratio (FPR)

ERD 35 80 115 65.71% 86 50 136 41.72%
ESD 47 83 130 74.29% 70 38 108 33.23%

ESED 37 79 116 66.29% 86 47 133 40.80%
CESED 47 85 132 75.43% 40 60 100 30.37%

Table 4. IMF2 signal feature extraction function distributions of the ERD, ESD, ESED, and CESED
with the parameters TP and FP, with the median as the threshold.

IMF2
Threshold
(Median)

True Position (TP) False Position (FP)
A Call Zone

Number
B Call Zone

Number
Detection
Number

Detection
Ratio (TPR)

A Call Zone
Number

B Call Zone
Number

False Alarm
Number

False Alarm
Ratio (FPR)

ERD 69 17 86 49.14% 96 73 169 52.15%
ESD 107 40 107 61.14% 77 56 133 40.92%

ESED 62 12 74 42.29% 97 86 183 56.44%
CESED 72 85 157 89.71% 64 34 98 30.66%

Based on these four signal feature extraction function distributions and the threshold
settings, the ROC curves for the four detectors in IMF1 and IMF2 were delineated from the
highest to the lowest values of the signal feature extraction function distribution, as shown
in Figure 10. From these two ROC plots, it is clear that the CESED detector outperformed
the other three detectors in terms of signal detection.
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The optimal estimated thresholds of the IMF1 signal feature extraction function dis-
tributions of ERD, ESD, ESED, and CESED were 33, 2.4, 1.9, and 5.4, respectively. The
numbers of TPs in the A call zone were 24, 28, 31, and 47, whereas the numbers of those
in the B call zone were 77, 80, 79, and 85, respectively. The sums of the two give the total
numbers of detections, which were 101, 108, 110, and 132, respectively. The detection ratios
of the TPRs were 7.71%, 61.71%, 62.86%, and 75.43%, respectively. The numbers of FPs in
the A call zone were 73, 45, 78, and 40, respectively, whereas the numbers of those in the
B call zone were 27, 17, 35, and 60, respectively. The sums of the two give the numbers
of false alarms, which were 100, 62, 113, and 100, respectively, and the FPRs were 30.67%,
19.08%, 34.66%, and 30.37%, respectively, as shown in Table 6.
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Table 5. IMF1 signal feature extraction function distributions of ERD, ESD, ESED, and CESED with
the parameters TP and FP and the optimal estimated thresholds.

IMF1 (the Optimal
Estimated Threshold)

True Position (TP) False Position (FP)
A Call Zone

Number
B Call Zone

Number
Detection
Number

Detection
Ratio (TPR)

A Call Zone
Number

B Call Zone
Number

False Alarm
Number

False Alarm
Ratio (FPR)

ERD 24 77 101 57.71% 73 27 100 30.67%
ESD 28 80 108 61.71% 45 17 62 19.08%

ESED 31 79 110 62.86% 78 35 113 34.66%
CESED 47 85 132 75.43% 40 60 100 30.37%

The optimal estimated thresholds of the IMF2 signal feature extraction function dis-
tributions of ERD, ESD, ESED, and CESED were 24, 3.8, 1.55, and 4.25, respectively. The
number of TPs in the A call zone were 61, 64, 56, and 66, respectively, whereas the numbers
of those in the B call zone were 14, 37, 7, and 82, respectively. The sums of the two give the
total numbers of detections, which were 75, 101, 63, and 148, respectively. The detection
ratios of the TPRs were 42.86%, 57.71%, 36.00%, and 84.57%, respectively. The numbers of
FPs in the A call zone were 84, 71, 81, and 46, respectively, whereas the numbers of those in
the B call zone were 66, 53, 69, and 23, respectively. The sums of the two give the numbers
of false alarms, which were 150, 124, 151, and 69, respectively, and the FPRs were 46.32%,
38.15%, 46.32%, and 21.17%, respectively, as shown in Table 6 and Figure 11.

Table 6. IMF2 signal feature extraction function distributions of ERD, ESD, ESED, and CESED with
the parameters TP and FP and the optimal estimated threshold.

IMF2 (the Optimal
Estimated Threshold)

True Position (TP) False Position (FP)
A Call Zone

Number
B Call Zone

Number
Detection
Number

Detection
Ratio (TPR)

A Call Zone
Number

B Call Zone
Number

False Alarm
Number

False Alarm
Ratio (FPR)

ERD 61 14 75 42.86% 84 66 150 46.32%
ESD 64 37 101 57.71% 71 53 124 38.15%

ESED 56 7 63 36.00% 81 69 151 46.32%
CESED 66 82 148 84.57% 46 23 69 21.17%
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Figure 11. (a) The number of TPs in the A call zone of IMF1 and the B call zone of IMF1 and the
detection number for IMF1 with ERD, ESD, ESED, and CESED. (b) The number of TPs in the A call
zone of IMF2 and the B call zone of IMF2 and the detection number for IMF2 with ERD, ESD, ESED,
and CESED.

In this paper, four detectors (ERD, ESD, ESED, and CESED) were proposed and
two different threshold selection methods were used for experimental evaluation: the
median and optimal estimated threshold methods. The detailed experimental results are
documented in Tables 3, 4 and 6. According to the experimental results, CESED exhibited
the best detection performance in terms of detection ratio (TPR) and false-alarm ratio
(FPR). These results in the paper indicate that the CESED detector outperformed the other
detectors in terms of detection performance. Furthermore, choosing the optimal estimated
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threshold instead of the median threshold yielded better detection performance in the
experimental setup.

4. Discussion

In ROC curves, the TP parameter represents the number of samples that are positive
and correctly predicted as positive by the detector. From the MF distribution, it can be
observed that, since the energy of the B call signal was mainly distributed in IMF1, as
shown in Figure 11a, the detection abilities of the four signal feature extraction and analysis
algorithms in the B call zone of IMF1 were similar, and the TP values are very close to the
actual values. However, there was a gap between the TP values and the actual values in the
A call zone of IMF1. Regarding the 500 sampled signals of IMF1, the CESED algorithm had
the best signal detection ability, and the TPP value reached 75.43%. In addition, Figure 11b
shows that, since the energy of the A call signal was mainly distributed in IMF2, the
detection abilities of the four signal feature extraction and analysis algorithms in the A call
zone of IMF2 were similar, and the TP values were close to each other. However, regarding
the B call zone of IMF2, except for CESED, the other three algorithms could not accurately
detect the B call signal. Regarding the 500 sampled signals of IMF2, CESED also had the
best signal detection ability, with a TPP value of up to 84.57%. Therefore, CESED has good
signal detection ability and can successfully detect marine mammal sounds.

The AUC represents the area under the ROC curve and is a statistic that is commonly
used to assess the predictive power of a detector. As mentioned earlier, the closer the ROC
curve is to the upper left (0,1), the better the predictive ability. Therefore, the larger the
area under the ROC curve, the better the predictive power, which means the higher the
detection efficiency of the detector. When the AUC is 1, the detector is perfect. When the
AUC > 0.5, the detection effect is better than random guessing and the model has a certain
predictive value. When the AUC is 0.5, the detection effect of the detector is the same
as random guessing and the detector has no predictive value. When the AUC < 0.5, the
detector classification effect is worse than random guessing, but if a counter-prediction is
made, the detector classification effect can be better than random guessing.

Accuracy, Precision, Recall, and F1 scores are performance metrics [32] commonly used
in machine learning and statistical analysis to evaluate the performance of detection and
classification models by calculating ratios based on the four parameters of the ROC curve.

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Precison =
TP

TP + FP
(17)

Recall(Sensitivity) =
TP

TP + FN
(18)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(19)

Regarding the 500 sample signals of blue whale vocalization, where the CIMF was
selected as IMF2, for the signal feature extraction function distributions of ERD, ESD,
ESED, and CESED, the AUCs of the ROC curve were 0.4621, 0.6162, 0.3894, and 0.8979,
respectively; the Accuracy scores were 49.90%, 60.40%, 47.50%, and 80.84%, respectively;
the Precision scores were 31.19%, 44.89%, 29.44%, and 68.20%, respectively; the Recall
scores were 42.83%, 57.71%, 36.00%, and 84.57%, respectively; and the F1 scores were
37.41%, 50.50%, 32.39%, and 75.51%, respectively, based on the thresholds of the optimal
estimated results, as shown in Table 7. Further, the four different cetacean sound recordings
were acquired from three sources. The sounds of the bowhead whale and the Bryde’s
whale were obtained from the website of the Scripps Institution of Oceanography at the
University of California, San Diego, CA, USA [33]; the sounds of dolphin whistles were
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sourced from the supplementary data of reference [21]; the sounds of pattern dolphin clicks
were obtained from the website of the Kuroshio Ocean Education Foundation [34]; and the
detection performance of the proposed method was evaluated.

Table 7. Performance metrics of ERD, ESD, ESED, and CESED for AUC, Accuracy, Precision, Recall,
and F1 scores of CIMFs with the optimal estimated thresholds for the blue whale, the bowhead
whale, the Bryde’s whale, dolphin whistles, and pattern dolphin clicks, along with key parameters,
including sampling frequency, sampling time, number of samples, average energy ratio, and main
frequency domain.

Species Sampling
Frequency (Hz)

Sampling
Time (ms)

Number of
Sampled CIMF Average Energy

Ratio
Main Frequency

Domain (Hz)
Optimal Estimated

Threshold
Performance

Metric ERD ESD ESED CESED

Blue whale
[27] 4800 200 500 2 25.09% 1~100 4.38

AUC
Accuracy
Precision

Recall
F1 score

0.4621
49.90%
31.19%
42.83%
37.41%

0.6162
60.40%
44.89%
57.71%
50.50%

0.3894
47.50%
29.44%
36.00%
32.39%

0.8979
80.84%
68.20%
84.57%
84.57%

Bowhead
whale [29] 4800 200 500 2 34.73% 1~100 2.55

AUC
Accuracy
Precision

Recall
F1 score

0.7388
60.61%
35.77%
76.86%
48.82%

0.5944
58.99%
30.84%
54.55%
39.40%

0.8061
68.89%
42.53%
77.69%
54.97%

0.8980
81.45%
67.83%
58.79%
80.17%

Bryde’s
whale [29] 2400 200 500 5 29.59% 1~100 1.10

AUC
Accuracy
Precision

Recall
F1 score

0.7254
69.60%
49.02%
67.57%
56.82%

0.6678
62.55%
42.61%
66.22%
51.85%

0.7735
72.99%
50.48%
78.95%
61.58%

0.8320
74.28%
51.98%
78.95%
62.69%

Dolphin
whistle [31] 96,000 200 200 1 68.03% 2000~8000 8.36

AUC
Accuracy
Precision

Recall
F1 score

0.8800
87.00%
44.12%
68.18%
53.57%

0.8945
86.00%
42.86%
81.82%
56.25%

0.6777
61.31%
18.39%
72.73%
29.36%

0.7582
79.00%
29.17%
63.64%
40.00%

Pattern
dolphin
click [32]

44,100 200 300 1 30.96% 1~1000 7.10

AUC
Accuracy
Precision

Recall
F1 score

0.7812
67.67%
51.85%
81.55%
63.40%

0.6525
58.47%
43.40%
66.35%
52.47%

0.7953
75.00%
62.73%
66.99%
64.79%

0.7589
69.44%
54.35%
72.12%
61.98%

The sound of the bowhead whale had a sampling frequency of 4800 Hz; each signal
sampling time was 200 ms, and 500 signals were sampled. The CIMF was IMF2, with an
average energy ratio of 34.73%, and the main frequency domain was distributed in the
range of 1–100 Hz, as shown in Table 7. In the IMF2 signal feature extraction function
distributions of ERD, ESD, ESED, and CESED, the AUCs of the ROC curve were 0.7388,
0.5944, 0.8061, and 0.8980, respectively; the Accuracy scores were 60.61%, 58.99%, 68.89%,
and 81.45%, respectively; the Precision scores were 35.77%, 30.84%, 42.53%, and 67.83%,
respectively; the Recall scores were 76.86%, 54.55%, 77.69%, and 58.79%, respectively;
and the F1 scores were 48.82%, 39.40%, 54.97%, and 80.17%, respectively, based on the
thresholds of the optimal estimated results, as shown in Figure 12a.
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The sound of the Bryde’s whale had a sampling frequency of 2400 Hz; each signal
sampling time was 200 ms, and 500 signals were sampled. The CIMF was IMF5, the average
energy distribution ratio of the CIMF was 29.59%, and the main frequency domain was
distributed in the range of 1–100 Hz, as shown in Table 7. In the IMF5 signal feature
extraction function distributions of ERD, ESD, ESED, and CESED, the AUCs of the ROC
curve were 0.7254, 0.6678, 0.7735, and 0.8320, respectively; the Accuracy scores were 69.60%,
62.55%, 72.99%, and 74.28%, respectively; the Precision scores were 49.02%, 42.61%, 50.48%,
and 51.98%, respectively; the Recall scores were 67.57%, 66.22%, 78.95%, and 78.95%,
respectively; and the F1 scores were 56.82%, 51.85%, 61.58%, and 62.69%, respectively,
based on the thresholds of the optimal estimated results, as shown in Figure 12b.

The sound of dolphin whistles had a sampling frequency of 96,000 Hz; each signal
sampling time was 200 ms, and 200 signals were sampled. The CIMF was IMF1, the
average energy distribution ratio of the CIMF was 68.03%, and the main frequency domain
was distributed in the range of 2000–8000 Hz, as shown in Table 7. In the IMF1 signal
feature extraction function distributions of ERD, ESD, ESED, and CESED, the AUCs of
the ROC curve were 0.8800, 0.8945, 0.6777, and 0.7582, respectively; the Accuracy scores
were 87.00 %, 86.00%, 61.31%, and 79.00%, respectively; the Precision scores were 44.12%,
42.86%, 18.39%, and 29.17%, respectively; the Recall scores were 68.18%, 81.82%, 72.73%,
and 63.64%, respectively; and the F1 scores were 53.57%, 56.25%, 29.36%, and 40.00%,
respectively, based on the threshold of the optimal estimated results.

The sound of pattern dolphin clicks had a sampling frequency of 44,100 Hz; each
signal sampling time was 200 ms, and 300 signals were sampled. The CIMF was IMF1,
the average energy distribution ratio of the CIMF was 30.96%, and the main frequency
domain was distributed in the range of 1–1000 Hz, as shown in Table 7. In the IMF1 signal
feature extraction function distributions of ERD, ESD, ESED, and CESED, the AUCs of
the ROC curve were 0.7812, 0.6525, 0.7953, and 0.7589, respectively; the Accuracy scores
were 67.67%, 58.47%, 75.00%, and 69.44%, respectively; the Precision scores were 51.85%,
43.40%, 62.73%, and 54.35%, respectively; the Recall scores were 81.55%, 66.35%, 66.99%,
and 72.12%, respectively; and the F1 scores were 63.40%, 52.47%, 64.79%, and 61.98%,
respectively, based on the threshold of the optimal estimated results. The results showed
that the CESED algorithm performed the best in detecting marine mammal sounds. Please
refer the Table A1 of Appendix A for the descriptions of key features of the four proposed
feature extraction algorithms, and the Table A2 of Appendix A for the List and descriptions
of all equations featured in the article and their parameters.

5. Conclusions

This paper proposed an EMD-based energy spectrum entropy distribution signal
detection method for marine mammal vocalizations which involved four signal feature
extraction and analysis algorithms: ERD, ESD, ESED, and CESED. The signal feature
extraction function distributions, namely, the time–energy distribution of ERD, the time–
energy distribution of ESD, the energy spectrum entropy distribution of ESED, and the
energy spectrum entropy distribution of CESED, were used to realize sound detection of
marine mammals. The analysis of the experimental results showed that the CESED detector
performed significantly better than the other three detectors in terms of the AUC and the
accuracy of the detection parameters, mainly for the following reasons:

(1) EMD can perform energy decomposition for multicomponent signals in the environment
of nonstationary signals and present the energy state of signals as a function of IMFs.

(2) The energy density intensity of the signal was concentrated in the main frequency
domain. Energy characteristics analysis and the MF method were used to extract and
analyze the signal in the main frequency domain to improve the resolution of the
signal analysis.

(3) Theoretical methods of EMD and entropy were used to analyze the parameters of
signal data change in the signal feature extraction function distribution and the energy
spectrum entropy distribution and achieve the signal detection effect.
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In order to develop a diverse passive acoustic monitoring (PAM) system that can adapt
to the challenges of complex marine environments, this study utilized the advantages of
empirical mode decomposition (EMD) for the analysis of nonstationary signals as well as
energy feature analysis and entropy from information theory for the detection of marine
mammal vocalizations and the analysis of various marine mammal sound signals. This
article proposes a detection method for marine mammal vocalizations using four signal
feature extraction analysis algorithms: energy ratio distribution (ERD), energy spectrum
distribution (ESD), energy spectrum entropy distribution (ESED), and concentrated energy
spectrum entropy distribution (CESED). Among these algorithms, the primary focus was on
the innovative research of the concentrated energy spectrum entropy distribution (CESED).
By observing the time–energy distribution or the entropy distribution generated by these
algorithms, appropriate thresholds were selected based on a threshold-based approach for
signal detection using the feature extraction function distribution. The performance of the
detection method was evaluated by comparing it with traditional energy ratio analysis
and energy spectrum analysis methods, using the performance metrics of AUC, Accuracy,
Precision, Recall and F1 score for the ROC curve, and it showed better detection results.
This method can be applied in the field of marine mammal sound signal detection theory.
Additionally, the establishment of a complete cetacean bioacoustics database could be a
target of future efforts. By applying the proposed detection method to actual preprocessed
whale and dolphin sounds, the analysis and detection of signal features from sampled audio
signals can be performed. This can serve as a crucial technology for the development of
marine bioacoustics monitoring systems, marine biology research, and defense technology.
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Abbreviations

AUC Area under the curve
CESED Concentrated energy spectrum entropy distribution
CIMF Competent intrinsic mode function
EHO Experienced human operator
EMD Empirical mode decomposition
ESD Energy spectrum distribution
ESED Energy spectrum entropy distribution
ERD Energy ratio distribution
FN False negative
FP False positive
HHT Hilbert–Huang transform
HMM Hidden Markov model
IF Instantaneous frequency
IMF Intrinsic mode function
MBARI Monterey Bay Aquarium Research Institute
MF Marginal frequency
MFCCS Mel-scale frequency cepstral coefficients
NN Neural network
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PAM Passive acoustic monitoring
rf Residual function
ROC Receiver operating characteristics
SE Sample entropy
STFT Short-time Fourier transform
SVM Support vector machine
TFD Time–frequency distribution
TN True negative
TP True positive
WT Wavelet transform

Appendix A

Table A1. Descriptions of key features of the four proposed feature extraction algorithms.

Algorithms Key Features Distribution

ERD EIMFi(t) The energy ratio of IMFi with the total energy Time-energy

ESD Max(EIMFi(f )) Highest energy of spectrum with the main frequency domain
(f = f1~f2) Time-energy

ESED

Hsi
Eij
P(Eij)
Hi(E)

Hilbert Spectrum of IMFi
Energy distribution, i is the IMFs, j is the frequency(m~n)
Probability functions
Energy spectrum entropy with the total energy

Time-entropy

CESED CHi(E) Energy spectrum entropy with the main frequency domain
(f = f1~f2) Time-entropy

Table A2. List and descriptions of all equations featured in the article and their parameters.

Index Equation Description Parameters Description

1 X(t) =
N
∑

i=1
IMFi(t) + r f (t)

The EMD method decomposes a signal into
a set of IMFs and an rf

IMFi(t) The ith intrinsic mode function

rf (t) The residual function

2 Etotal =
N
∑

i=1
IMF2

i (t) + r f 2(t)
The total energy is the sum of the energies
of all the IMFs and rf Etotal The total energy of the signal

3 EIMFi =
IMF2

i
Etotal

∗ 100%
The ith IMF energy ratio is divided by the
total energy, Etotal

EIMFi The ith IMF energy ratio

4 Xi(t) = IMFi(t) + jHT{IMFi(t)} = Ai(t)ejθi (t)
The signal can be expressed as the sum of
the real and imaginary parts

HT{IMFi(t)} Hilbert transform for the ith intrinsic
mode function

Ai(t) Amplitude of signal

θi(t) Angular frequency of signal

5 Fi(t) = 1
2π

dθi (t)
dt

By taking the derivative of the phase angle
and dividing it by 2π, the instantaneous
frequency of the IMF can be obtained

Fi(t) Instantaneous frequency

6 MFi =
IMF2

i f (t)

Etotal
∗ 100%

The sampling frequency bandwidth is f Hz,
the MF (frequency–energy distribution) of
the ith IMF

MFi The ith IMF marginal frequency
distribution

7 max(EIMFi( f )) = max{MFi( f )| f = f1 ∼ f2}
The energy of all instantaneous frequencies is scanned and the frequency of the highest energy ratio in
the main frequency domain of MF; f: f1–f2 is the main frequency domain of the MF of the
sampling signal

8 HSi =
Ei (t, f )
Etotal

=
IMF2

i (t, f )
Etotal

Hilbert energy spectrum (HS;
time–frequency–energy distribution) Ei(t,f )

The energy distribution function Ei(t, f)
contains the sampling time (t) and the
sampling frequency (f)

9 Pi
(
Ej
)
= P

(
Eij

)
=

Eij
Etotal

The energy distribution function can be
expressed by the probability functions; it is
normalized according to the total energy of
the signal

P(Eij) The probability functions

Eij
The energy distribution, i is the IMF
number, and j is the sampling frequency
range m to n

10 ESED = H(E) = −
i

∑
i=1

n
∑

j=m
P
(
Eij

)
logP

(
Eij

) The entropy of the energy spectrum of each
sampling signal H(E) Energy spectrum entropy distribution

(ESED)

11
ESED of ith IMF = Hi(E)

= −
n
∑

j=m
Pi(Ej)log Pi(Ej)

The energy spectrum entropy (H) of each IMFi can also be determined
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Table A2. Cont.

Index Equation Description Parameters Description

12 Hicd(E) = −
d
∑
j=c

Pi(Ej)log Pi(Ej)
The energy spectrum entropy of each IMFi in the main frequency domain, called Hicd, and the main
frequency domain, which ranges from c to d

13 Sij =
Eij−min

(
Eij

)
max

(
Eij

)
−min

(
Eij

) Sij, the signal energy density of the ith IMF in the sampling signal, where i is the IMF number of the
sampling signal and j is the main frequency domain from a to b

14 Pi
(
Ej
)
= P

(
Eij

)
=

Sij

∑b
j=a Sij

The energy distribution function can be expressed by the probability functions; it is normalized
according to the main frequency domain of the sampling signal

15
CESED of the ith IMF = CHi(E)

= −
b
∑
j=a

Pi(Ej)log Pi(Ej)
The concentrated energy spectrum entropy (CH) of each IMFi can also be determined
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