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Abstract: Graph convolutional networks are widely used in skeleton-based action recognition be-
cause of their good fitting ability to non-Euclidean data. While conventional multi-scale temporal
convolution uses several fixed-size convolution kernels or dilation rates at each layer of the network,
we argue that different layers and datasets require different receptive fields. We use multi-scale adap-
tive convolution kernels and dilation rates to optimize traditional multi-scale temporal convolution
with a simple and effective self attention mechanism, allowing different network layers to adaptively
select convolution kernels of different sizes and dilation rates instead of being fixed and unchanged.
Besides, the effective receptive field of the simple residual connection is not large, and there is a
great deal of redundancy in the deep residual network, which will lead to the loss of context when
aggregating spatio-temporal information. This article introduces a feature fusion mechanism that
replaces the residual connection between initial features and temporal module outputs, effectively
solving the problems of context aggregation and initial feature fusion. We propose a multi-modality
adaptive feature fusion framework (MMAFF) to simultaneously increase the receptive field in both
spatial and temporal dimensions. Concretely, we input the features extracted by the spatial module
into the adaptive temporal fusion module to simultaneously extract multi-scale skeleton features in
both spatial and temporal parts. In addition, based on the current multi-stream approach, we use the
limb stream to uniformly process correlated data from multiple modalities. Extensive experiments
show that our model obtains competitive results with state-of-the-art methods on the NTU-RGB+D
60 and NTU-RGB+D 120 datasets.

Keywords: action recognition; graph convolutional networks; feature fusion; attention mechanism

1. Introduction

Actions play a particularly important role in human communication. These actions
convey essential messages, such as feelings and root intentions, that help us to understand
a person. Giving intelligent machines the same capabilities to understand human behavior
is important for natural human–computer interaction and for many other practical applica-
tions that have attracted much attention in recent years. Today, modern sensor technology
and algorithms for human position estimation make it much easier to access the 2D/3D
human skeleton. Human skeleton data, which can be extracted from video images using
pose estimation algorithms or captured directly using depth sensor devices, consist of time
series of skeletal joints at multiple 2D or 3D coordinate positions. Compared with the tradi-
tional RGB video recognition method, the action recognition based on skeleton data has the
advantage that the skeleton data can effectively reduce the influence of interference factors
such as illumination changes, environmental background, and occlusion in the recognition
process and are more adaptable to dynamic environments and complex backgrounds.
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Early methods based on deep learning treated human joints as a series of individual
features and organized them into characteristic sequences or pseudo-images. It is possible
for RNN or CNN to predict the motion of a mark; however, these methods ignore the
intrinsic correlation between joints and show that human topology is important information
for the human skeleton. ST-GCN [1] introduces the GCN method and one-dimensional
temporal convolution for the first time to extract motion features and graph structures
to simulate the correlation between human joints. GCN-based methods have become
increasingly popular, and many excellent works have emerged on this basis. AS-GCN [2]
and 2s-AGCN [3] propose methods for adaptively learning the relationship between spatial
joints from data. CTR-GCN [4] embeds three kinds of shared adjacency matrices divided
according to the graph into the dynamic space in the channel dimension. However, most
of these methods are biased towards modeling the spatial dimension, while ignoring the
modeling of the temporal dimension. In the time dimension feature extraction work, the
many existing works [1–3,5] relying only on fixed-size convolution kernels are far from
sufficient. To model actions with different duration, recent works [4,6] introduce multi-scale
temporal convolutions to improve and enhance ordinary temporal convolutions. These
models use fixed-size convolution kernels at each layer of the network and use different
dilation rates [7] to obtain larger receptive fields. Hence, some recent models [8,9] also use
the previous multi-scale time modeling methods.

While multi-scale temporal convolution uses several fixed-size convolution kernels
or dilation rates at each layer of the network, we argue this scheme is inflexible. Skeleton-
based action recognition models are usually a network structure of stacked GCNs. GCN
modules close to the network output tend to have larger receptive fields and can capture
more contextual information. In addition, the receptive field of the GCN module close to the
network input is relatively small [10]. It can be concluded that different layers have different
effects on skeleton recognition. Therefore, for the learning of the temporal dimension, it is
difficult to solve the problem of semantic detail features of skeletal actions by simply using
several convolution kernels of fixed sizes or dilation rates in each layer of the network to
achieve more effective modeling. Furthermore, most current models always extract spatial
features first and connect the original input and the output of temporal features through
residuals. Residual connections allow information to be directly transmitted to subsequent
levels, thereby preserving the original features and avoiding feature disappearance layer
by layer. However, in fact, the effective receptive field is not large, and there is a great deal
of redundancy in the deep residual network, which will result in the loss of context when
aggregating spatio-temporal information. In addition, approaches such as [3,11–13] use
multi-stream networks to extract high-order features of skeletal data. This multi-stream
approach is used by many advanced models. However, skeletons are considered as overall
tree-like data structures. This means that, in some special actions, the entire input skeleton
tree in each time series can be regarded as a whole to achieve good recognition results, just
like many actions only need the participation of local body joints to be completed. For
example, action categories such as “waving” and “victory” only involve hand joints, and
action categories such as “walking” and “kicking” only involve leg joints [14]. There are
some excellent body partitioning methods that split the skeleton tree into several separate
part groups [15]. However, we believe that this is not sufficient, especially for actions that
require the participation of most joints or body parts of the whole body, such as “running”
and “high jump”.

To address some of the problems with the current model mentioned above, we intro-
duce a new training framework named MMAFF that is based on skeleton-based behavior
recognition. We propose a temporal modeling module with a multiscale adaptive attention
feature fusion mechanism. First, extracting adaptive features of multiscale spatio-temporal
topology for larger perceptual fields, instead of residual connections, we use an attention
fusion mechanism that allows us to efficiently aggregate spatio-temporal scale features
and solve the problem of context aggregation and initial feature integration. The temporal
modeling module adapts the integration of topological features to help us to complete
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the simulation of actions. Specifically, the extracted spatial topology features of specific
channels are input into our designed temporal adaptive feature fusion module. The tem-
poral adaptive feature fusion module is divided into two parts. In the first part, we use
multi-scale adaptive convolution kernels and dilation rates to optimize traditional multi-
scale temporal convolution with a simple and effective self attention mechanism, allowing
different network layers to adaptively select convolution kernels of different sizes and
dilation rates instead of being fixed and unchanged. In addition, we have used an attention
feature fusion mechanism that replaces the residual connection between the initial features
and the output of the temporal module. We focus on the information of the initial features
and the temporal dimension separately and then perform feature fusion, effectively fusing
the initial features and high-dimensional temporal features, solving the problem of context
aggregation and initial feature integration. Based on current multi-stream approaches,
we propose a partial stream processing method called the limb stream. The limb stream
integrates joint motion and bone motion modality data in the channel dimension. It uses
fewer joints and network layers to train the joint motion stream and bone motion stream
simultaneously, thus effectively reducing the number of training iterations and the number
of parameters of the entire model. Due to the fact that most movements must be completed
with the cooperation of the limbs, we consider the limbs as a whole that not only radiates
some local detailed movements but also identifies joint movements that require the co-
operation of multiple parts of the body. This allows for a more complete and centralized
representation of the motion involving a subset of joints. The framework is shown in
Figure 1. Our contributions mainly include the following points:

(1) We optimize the traditional multi-scale temporal convolution to make it more adaptive
and have the ability to fuse initial features so that a larger receptive field and local
global context can be obtained.

(2) We propose the limb stream, as a supplement to the traditional independent modality
processing method, which can obtain finer features of limb joint group motion, en-
hance the recognition ability of the model, and perform final score fusion with joint
stream and bone stream.

(3) We conduct extensive experiments on NTU-RGB+D and-NTU RGB+D 120 to com-
pare our proposed methods with the state-of-the-art models. Experimental results
demonstrate the significant improvement of our methods.
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Figure 1. We used data from the three modalities of joints, bones, and limbs for training; then, we
input the skeleton data of different modalities into the network framework, output the independent
stream state softmax score, and finally performed score fusion on the independent output to obtain
the final classification score—see Figure 2 for architectural details of MMAFF.
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Figure 2. (a–d) MMAFF is a specific structure diagram of a single-stream state, and STAF is a spatio-
temporal adaptive fusion module. Each STAF module consists of an SAGC and a TAFF module. The
ks in (d) represent the size of the convolutional kernel, while dr represents the size of the dilation
rate. Their values can vary with the number of network layer channels. X is the initial skeleton
feature, X1 is the temporal dimension feature. X and X1 are fused to output X′ through the self
attention mechanism.

The remaining chapters of this paper are organized as follows. Section 2 presents
related work and recent progress. Section 3 details our proposed optimization. In Section 4,
we compare our results with state-of-the-art methods and conduct ablation experiments.
Section 5 summarizes the paper.

2. Related Work
2.1. Skeleton-Based Action Recognition

Skeleton-based action recognition is performed to classify actions based on inferred
sequences of keypoints. Early deep learning methods used convolutional neural networks
(CNNs) [16,17] or recurrent neural networks (RNNs) [18] to model the skeletons, but due to
the inability to explicitly learn topology, recognition performance is limited by the skeleton
structure. Recently, PoseC3D [19] modified CNN-based methods to collapse heatmaps
into 3D volumes. This preserves the spatial and temporal features of the skeleton and
greatly improves performance, but it has the disadvantage of high training overhead. In
recent years, due to the natural composition of human joints and bones, using GCNs to
extract high performance from skeletons has become a major trend in this field. Thus,
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the topology [1,3,4,6] of the human body is naturally flexible. ST-GCN [1] was the first
work to use GCN as a feature extractor to model the skeleton by using a fixed diagram
heuristic design. ST-GCN uses three joint partition methods to use data such as a spatio-
temporal skeleton. The method also provides a Temporal Convolutional Network (TCN)
for modeling temporal measurements. Based on this approach, MS-G3D [6] allows the
direct propagation of information using edges at different temporal points, effectively
improving topological spatio-temporal modeling. More recently, CTR-GCN [4] proposed
an improved channel topology instead of shared topology, like the idea of dynamic graph
convolution, which enables dynamic topology modeling in space. InfoGCN [8] develops
an information rate-based framework for learning objectives. STF [10] provides a flexible
framework for learning spatio-temporal gradients for skeleton-based action recognition.
However, many advanced methods spend a great deal of effort on spatial feature extraction,
ignoring the extraction of temporal features, and simply use the same multi-scale feature
extraction module in each layer of the network. In fact, different layers require different
receptive fields, so the temporal convolution kernel and dilation rate should also change
with the number of layers of the network.

2.2. Attention Mechanism for Action Recognition

In the task of skeletal behavior recognition. Song et al. [20] initially offered a long-
term method of short-term memory that models the differences between bony joints and
spatio-temporal attention. Chiara et al. [21] proposed a new network of spatio-temporal
transformers (ST-TR) that uses spatio-temporal transformers to model the expression of
joint relations. Cheng et al. [22] added a downward pointing mechanism to the model as a
means to improve regularization and effectively increase the accuracy of action recognition.
Ye et al. [23] proposed a dynamic GCN method. They also proposed a due diligence
approach that takes into account spatial relevance. Qiu et al. [24] proposed a method
of spatio-temporal element transformers to capture the dependencies between different
joints. In their recent work, Song et al. [25] proposed the Spatial Temporal Joint Attention
module, which allows key joints to be found in a spatial and temporal sequence to better
achieve efficient topology modeling. Zhou et al. [26] introduced a graph attention block
based on Convolutional Block Attention Module (CBAM), which is used to calculate the
semantic correlation between any two joints. TCA-GCN [27] used an MS-CAM attention
fusion mechanism to solve the problem of the contextual aggregation of skeletal features.
However, at present, the local and global context aggregation of skeletal features and the
integration of initial features are still a major difficulty, and how to effectively integrate
initial features into high-dimensional features needs further research.

2.3. Conventional Multi Stream Training

Some recent approaches [4,28] and earlier approaches [3,11] generate data of different
modalities (bone and motion) based on the raw input skeleton data. Traditional methods
use different modality data to train a particular architecture multiple times and then
integrate the solutions. However, these traditional methods based on multiple streams
will lead to a significant increase in the total number of parameters and are not very
efficient. Song et al. [15] started research on a single modality pipeline very early on,
integrating different modality streams in the early stage and centralizing them into the
backbone network to achieve a single modality representation. However, before merging,
each modality will be processed through several separate networks, which again invisibly
increases the number of training parameters. Of course, we found that PSUMNet [14]
proposed the idea of divisional stream to integrate the traditional stream state, as well as
the training body, hand, and leg parts. However, it may be due to configuration reasons
that our results in reproducing the PSUMNet [14] model are not very ideal. Hence, inspired
by the partial stream and traditional stream state, we combined the two methods, and
we performed a number of experiments to prove that our proposed limb stream state can
achieve good results when applied to traditional stream state.
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3. Method

In this section, we introduce specific method details for skeleton-based action recog-
nition, as shown in Figure 2. Section 3.1 introduces the basic theory in this field. Section
3.2 introduces the components of MMAFF. We detail the specific architecture of the used
SAGC module in Section 3.3. In Section 3.4, we describe the TAFF module in detail. In
Section 3.5, we replace the commonly used multi-stream fusion method [4,29] with a
multi-modality approach.

3.1. Preliminaries

In most skeleton behavior recognition tasks, the GCN-based method is usually used to
construct the human skeleton structure as an undirected spatio-temporal graph G = (V, E),
where V and E represent the sets of joints and bone edges, respectively. Consequently,
X ∈ R3×T×N can be used to describe the temporal skeleton sequence, where N and T
represent the number of joints and the size of the temporal window, respectively. Ac-
cording to the relationship between the joints and barycenter, the nodes are divided into
three subgraphs to build the adjacency matrix. GCN’s operation with input feature map
X ∈ RC×T×N is as follows:

Fout = ∑
p∈P

ApXΘp (1)

where P = {pid, pc f , pcp} denotes graph subsets, and pid, pc f , and pcp indicate identity, cen-
trifugal, and centripetal joint subsets, respectively. Θp denotes the pointwise convolution
operation. Ap is the p-th channel shared adjacency matrix.

3.2. MMAFF

Next, we focus on the specific details of the MMAFF framework in the single-stream
state, since different streams are shared under different network structures. Figure 2a
is an overview of the network structure of the MMAFF single-stream state. The input
initial skeleton data X are first processed by the Multi-Modality Adaptive Feature Fusion
Framework (MMAFF). The processing results are transformed by global average grouping
(GAP) and fully connected layers (FC) so that layer-by-layer predictions of individual
streams can be obtained. MMAFF consists of multiple Spatio-Temporal Adaptive Fusion
(STAF) blocks.

The specific structure of STAF is shown in Figure 2b. Each STAF block contains a
Spatial Attention Graph Convolution module (SAGC) and a Temporal Adaptive Feature
Fusion module (TAFF). The SAGC module in Figure 2c is used to dynamically extract
the information from spatial dimensions, and the TAFF module in Figure 2d is used to
adaptively extract temporal relations between joints and fuse multi-scale temporal features
with initial features. Next, we elaborate on the details of each module.

3.3. SAGC Module

We first adopt [4] to construct a dynamic topology for spatial attention map convolu-
tion to dynamically model spatial attention maps. As shown in Figure 2c, we simultane-
ously feed the initial skeleton data into two parallel branches, each of which is processed
by a 1 × 1 convolution and a temporal pooling block. Attention features are modeled by
performing a subtraction operation on the pooled outputs of the two branches. This feature
map is summed with the predefined adjacency matrix Ap to obtain the final channel-wise
topologies Acwt, i.e., we use the attentional feature fusion mechanism to replace the ordi-
nary residual connection to better aggregate the information of spatial and temporal scales.
For details, see the TAFF module in Section 3.4.

Acwt = βQ(Xin) + Ap (2)
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where β is a learnable parameter, Ap is the p-th channel shared topology, and Q is the
topological relationship of the specific channel, defined as

Q(Xi) = σ(TP(φ(Xin))− TP(ψ(Xin))) (3)

where σ, φ and ψ are 1 × 1 convolutions, TP is temporal pooling. After we obtain the
channel-wise topologies Acwt, we input the initial skeleton features into a 1 × 1 convolu-
tion and multiply the results with Acwt to aggregate the spatial dimension information
as follows:

Xout = Acwt ⊗ (θ(Xin)) (4)

where θ is a 1 × 1 convolution block. ⊗ is matrix multiplication operation.

3.4. TAFF Module

The multi-scale temporal adaptive feature fusion module consists of two parts: the
TA module (temporal adaptive) and TFF module (temporal feature fusion). The first part
can dynamically adjust the size of the convolution kernel and dilation rate at different
network layers. As shown in Figure 2d, this module is improved on the basis of traditional
multi-scale temporal convolution, which contains four branches. Each branch uses a 1 × 1
convolution to reduce the channel dimension. The two branches on the left are the core
of the adaptive function. By introducing a simple attention mechanism, the size of the
convolution kernel and the dilation rate can be dynamically adjusted. The convolution
kernel size (ks) and dilation rate (dr) can be dynamically resized according to different
dimensions of the output channel. Inspired by the attention mechanism [30], we use the
following specific method formula:

t = abs(
log(Cl , 2) + b

gamma
) (5)

where Cl is l-th network layer output channel dimension, and gamma and b are expressed
as the parameters of the mapping function, set to 2 and 1, respectively. At layers 1–4 of
the network, ks is 3, and at layers 5–10 of the network, ks is 5. Similarly, dr is 2 at layers
1–7 of the network, and at layers 8–10 of the network, dr is 3. Four branches of different
scales obtain X1 through the aggregation function. We did not introduce more branches,
so there was almost no change in the parameter and computational complexity. Specific
experiments can be found in Section 4.4.

For the second part, we use an attention feature fusion module to aggregate contextual
information of different scales as well as different dimensions along the channel dimension.
For the initial feature fusion problem in spatio-temporal modeling, we were inspired by
TCA-GCN [27] model. Instead, we use the AFF module in [31] to fuse the features of
different branches, and we use two input branches: one branch is X (the initial skeleton
data), while the other branch is X1 (multi-scale aggregated features). We focus on the
information of the initial features and the temporal dimension separately and then perform
feature fusion, effectively fusing the initial features and high-dimensional temporal features,
solving the problem of context aggregation and initial feature integration and improving
the effectiveness of modeling. As shown in Figure 2d, the above expression is specifically
expressed as

X′ = X⊗M(·) + X1 ⊗ (1−M(·)) (6)

where X denotes the residual connection of the input, and X1 is the concatenated output of
multi-scale convolution. The specific formula for M(·) [31] is expressed as

Sigmoid(L(X ] X1)⊕ G(X ] X1)) (7)

where L(·) and G(·) are the local channel context and global channel context, respectively.
Local context information is added to global context information within the attention
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module. Initial feature fusion is performed on the input features X and X1. After sigmoid
activation function, the output value is between 0 and 1. We hope to take the weighted
average of X and X1 and subtract this group of fusion weights by 1, which can be used as
soft selection. Through training, the network can determine their respective weights.

3.5. Limb-Modality Generator

As mentioned before, we continued the multi-stream fusion scheme to train the joint
and bone data separately, while integrating the joint-motion stream and bone-motion
stream together, which we called the limb stream. Limb (XL) includes all joints in the limb.
For the NTU-RGB+D dataset, the number of joints for the limb stream is 22. Since most
actions are performed by the limbs, the limbs can better reflect the characteristics of the
motion information, and the global motion information can be propagated to a specific
local joint group without losing the global motion information. Therefore, as shown in
Figure 1, the training used data from three modalities: joint, bone, and limb.

Then, the subsequent integration of the solution was performed by performing
weighted averaging on each predicted score of the modality to obtain the final classi-
fication. Changing the number of limb stream network layers may limit the total number
of parameters used in the entire model. Replacing the motion stream with the limb stream
can also reduce the training frequency and total training time.

Finally, we integrate joint motion and bone motion modality data in the channel
dimension to generate X ∈ R2C×T×N , which is the specific representation of the limb
stream. We then use this as part of the input to the network. Concatenating the modality
data helps to model the inter-modality relations in a more direct manner.

4. Experiments
4.1. Datasets

NTU-RGB+D 60. NTU-RGB+D 60 [32] is a large-scale human action recognition dataset
containing 56,880 sample data, 60 actions, RGB video, a depth map sequence, 3D skeletal
data, and infrared (IR) video for each sample. Each dataset is captured simultaneously
by three Kinect V2 cameras. The RGB video has a resolution of 1920 × 1080, the depth
map and IR video are both 512 × 424, and the 3D skeleton data contain 3D coordinates of
25 body joints per frame. Each sample contains one motion and is guaranteed to have up
to two subjects simultaneously captured from different views by three Microsoft Kinect v2
cameras. The author of this dataset recommends two of her benchmarks: (1) cross-subject
(X-sub): training data are taken from her 20 subjects, and test data are taken from her other
20 subjects; (2) cross-view (X view): training data are taken from camera views 2 and 3, and
test data are taken from camera view 1.

NTU-RGB+D 120. NTU-RGB+D 120 [33] is currently the largest dataset with 3D joint
annotations for human action recognition, which is a supplementary version of the previous
version, covering all the previous data and adding an additional 60 categories. In total,
113,945 samples over 120 classes are performed by 106 volunteers, captured with three
camera views. This dataset contains 32 setups, each representing a specific location and
background. The authors of this dataset recommend two benchmarks: (1) cross-subject
(X-sub): training data are obtained from 53 subjects, and test data are obtained from the
other 53 subjects; (2) cross-setup (X-Setup): training data are sampled with even setup IDs,
and test data are sampled with odd setup IDs.

4.2. Implementation Details

As shown in Figure 1, the input skeleton to each of the streams contains different
numbers of joints. For NTU-RGB+D 60 and NTU-RGB+D 120 datasets, the joint and bone
stream has an input skeleton with a total of 25 joints, while the limb stream has the input
skeleton with a total of 22 joints. Within the MMAFF architecture, we use 10 STAFs for the
joint and bone stream, and 8 STAFs (L1, L4-L10) to process the limb stream.
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All experiments were conducted with the PyTorch deep learning framework. The
Pytorch version was 1.7.1, and we set num-workers to 32. In addition, we used two NVIDIA
A800 GPUs. The cross-entropy method is used as the loss function. Our models are trained
with Stochastic Gradient Descent (SGD) with momentum (0.9). When training the model
on the two datasets, we used the warmup strategy for the first 5 epochs. Considering
the learning rate, we set this to 0.1 and used decays at 35 epochs and 55 epochs, ending
the training at 80 epochs. For NTU-RGB+D 60 and NTU-RGB+D 120, we used the pre-
processing [34], setting the batch size to 128. Joint, bone, and limb streams all used the
same implementation configuration as above.

4.3. Comparison with State-of-the-Art Methods

Most recent state-of-the-art networks [4,22,29] adopt a four-way ensemble method,
but we adopt the three-way ensemble method described in Section 3.5.

We compare our results with state-of-the-art networks on two datasets: NTU-RGB+D
60 [32] and NTU-RGB+D 120 [33]. Comparisons for each dataset are shown in Tables 1 and 2.
We report the results of three ensembles. Our model obtains state-of-the-art results on
almost all benchmarks. Specifically, the best recognition effect was obtained with the
NTU-RGB+D 120 dataset, indicating that our method has more advantages in identifying
large datasets. Table 2 shows that our accuracy was improved by 0.2% and 0.3% compared
to state-of-the-art models on the X-Sub and X-Set of NTU-RGB+D 120, respectively.

Table 1. Comparison of top-1 accuracy (%) with state-of-the-art methods for NTU-RGB+D 60 dataset.

Methods X-Sub (%) X-View (%) Years

ST-GCN [1] 81.5 88.3 2018
AS-GCN [2] 86.8 94.2 2019
2s-AGCN [3] 88.5 95.1 2019

DGNN [5] 89.9 96.1 2019
SGN [34] 89.0 94.5 2020

Shift-GCN [11] 90.7 96.5 2020
DC-GCN + ADG [22] 90.8 96.6 2020

DDGCN [35] 91.1 97.1 2020
MS-G3D [6] 91.5 96.2 2020

MST-GCN [36] 91.5 96.6 2021
EfficientGCN-B4 [25] 91.7 95.7 2021

CTR-GCN [4] 92.4 96.8 2021
STF [10] 92.5 96.9 2022

ST-GCN++ [37] 92.6 97.4 2022
Info-GCN [8] 92.7 96.9 2022

TCA-GCN [27] 92.8 97.0 2022
PSUMNet [14] 92.9 96.7 2022
FR Head [38] 92.8 96.8 2023
STF-Net [39] 91.1 96.5 2023
RSA-Net [40] 91.8 96.8 2023

Our approach
(3 ensemble) 93.1 96.9 2023
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Table 2. Comparisons of the top-1 accuracy (%) against state-of-the-art methods on the NTU-
RGB+D 120.

Methods X-Sub (%) X-Set (%) Years

ST-GCN [1] 70.7 73.2 2018
2s-AGCN [3] 82.5 84.2 2019

SGN [34] 79.2 81.5 2020
Shift-GCN [11] 85.9 87.6 2020

DC-GCN + ADG [22] 86.5 88.1 2020
MS-G3D [6] 86.9 88.4 2020

MST-GCN [36] 87.5 88.8 2021
EfficientGCN-B4 [25] 88.3 89.1 2021

CTR-GCN [4] 88.9 90.6 2021
STF [10] 88.9 89.9 2022

ST-GCN++ [37] 88.6 90.8 2022
Info-GCN [8] 89.4 90.7 2022

TCA-GCN [27] 89.4 90.8 2022
PSUMNet [14] 89.4 90.6 2022
FR Head [38] 89.5 90.9 2023
STF-Net [39] 86.5 88.2 2023
RSA-Net [40] 88.4 89.7 2023

Our approach (Joint) 85.2 86.8 2023
Our approach (Bone) 86.3 88.0 2023
Our approach (Limb) 81.5 83.1 2023

Our approach
(Joint + Bone) 89.1 90.3 2023

Our approach
(3 ensemble) 89.7 91.2 2023

4.4. Ablation Study

In this section, we demonstrate the effectiveness of the proposed MMAFF. All experi-
mental ablation studies are conducted on the NTU-RGB+D 60 and NTU-RGB+D 120 cross
subject benchmark. As shown in Figure 2, we adopt [4] as our baseline network architecture
with a total of 10 stacked GCN blocks.

TA Module. For the multi-scale temporal convolution module, we dynamically adjust
the size of the convolution kernel and the size of the dilation rate according to the different
dimensions of the output channels. Table 3 shows the improvement of classification
accuracy by dynamically changing ks, and Table 4 shows the improvement of classification
accuracy by dynamically changing dr. Msconv [4] is the multi-scale convolution. We
validate the effect of the TA module. When we simultaneously change the size of the
convolution kernel and dilation rate in Msconv, the overall effect of the TA module is
shown in Table 5. We only show the effect on a single stream state, with an accuracy
improvement of 0.2%. The computational and parameter quantities do not increase. If
several branches were added, this would bring more improvements, and the corresponding
inference time would also increase.

Table 3. The effectiveness of the dynamic kernel size ks in our TA module, compared with the
traditional Msconv.

Methods
Output Channel

Acc (%)
64 128 256

Msconv 5 5 5 89.8

kernel size 3 5 5 89.9
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Table 4. The effectiveness of the dynamic dilation rate dr in our TA module, compared with the
traditional Msconv.

Methods
Output Channel

Acc (%)
64 128 256

Msconv 2 2 2 89.8

dilation rate 2 2 3 90.0

Table 5. Comparison between TA module and traditional Msconv.

Methods Params (M) Acc (%)

Msconv (Joint) 1.4 89.8
TA (Joint) 1.4 90.0

Contribution of each component. We scrutinize the contribution of each MMAFF
component as shown in Table 6. We adopt [4] as our baseline network architecture. We
observe that TA and TFF improve the baseline accuracy by 0.2% and 0.4% on NTU-RGB+D
60 cross subject, and the accuracy improved by 0.2% and 0.5% on NTU-RGB+D 120 cross
subject. In the table, 4s represents the traditional fusion of four streams, while 3s represents
the fusion of our joints, bones, and limb streams. Through experiments, we found that the
total parameter quantity for 4s is 5.6 M, and the total training inference time is 72 h. Our
model needs to be trained three times, with a total training inference time of 55.5 h, which
is less than the baseline. However, the introduction of the AFF [31] module has resulted in
an increase in the total number of parameters. These results demonstrated that the TAFF
module guides our model to learn better representation for action classification.

Table 6. Comparison of classification accuracy when applying each module of our proposed MMAFF
to the baseline.

Methods Params (M) NTU60 NTU120 Time

Baseline (4s) 5.6 92.4 88.9 72 (h)
w TA (3s) 5.6 92.6 (+0.2) 89.1 (+0.2) 54 (h)
w TFF (3s) 7.9 92.8 (+0.4) 89.4 (+0.5) 54 (h)

w TA, TFF (3s) 7.9 93.1 (+0.7) 89.7 (+0.8) 55.5 (h)

Single-stream comparative ablation experiments. In order to verify the effect of our
model based on the fusion of three stream states (joint, bone and limb), we compared
the single stream state with the advanced method [4], as shown in Table 7. Our model
outperforms the state-of-the-art methods by 0.4% and 0.5% for the joint stream and bone
stream, respectively. We replace the two motion streams with a better-performing limb
stream, which is 0.4% better than a single motion stream. We verify the effectiveness of the
proposed multi modality skeleton-based action recognition model.

Table 7. Performance comparison of our model with traditional standalone streams on different
data streams.

Stream CTR-GCN Ours

Joint 89.8 90.2 (+0.4)
Bone 90.2 90.7 (+0.5)
Limb - 87.8

Joint motion 87.4 -
Bone motion 86.9 -

For the evaluation of the model, not only accuracy but also convergence speed
should be considered. In order to comprehensively evaluate the model proposed in this
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article, we conducted experiments on the X-Sub and X-View benchmarks of the NTU-
RGB+D 60 dataset. As our model was improved on the basis of CTR-GCN, we compared
the convergence processes of CTR-GCN and MMAFF networks. Details are shown in
Figures 3 and 4.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60

A
cc
u
ra
cy
(%
)

Epochs

CTR-GCN

Ours

Figure 3. Convergence process of bone stream for two types of networks on X-Sub benchmark.
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Figure 4. Convergence process of joint stream for two types of networks on X-View benchmark.

It can be observed that as the number of iterations (epochs) increases, the recognition
accuracy first rapidly increases and then slowly slows down. When the number of iterations
(epochs) reaches a certain value, all curves can converge to the maximum value and then
stabilize. Before 35 iterations, there may be some fluctuations in recognition accuracy, but
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the overall trend is upward. At the 36th iteration, the recognition accuracy of all curves
will be significantly improved. Afterwards, the curve had almost no fluctuation amplitude.

Comparing the curves of two types of networks, the orange curve (MMAFF) performs
almost the best on both X-Sub and X-View benchmarks, with small fluctuations, high
recognition accuracy, and fast convergence speed.

5. Conclusions

In this paper, we propose a multi-modality adaptive feature fusion framework (MMAFF)
to increase the receptive field of the model in spatial and temporal dimensions. Firstly,
we propose a TAFF module that includes a TA module and TFF module, which can
dynamically adjust the size of convolution kernel and dilation rate at different network
layers and aggregate multi-scale context information along channel dimensions. Then, we
introduce the limb stream; as a supplement to the traditional independent modal processing
method, the limb stream enables richer and more dedicated representations for actions
involving a subset of joints. Extensive experiments show that our model has advanced
performance on different types of datasets.

In future research, we plan to extract features from both temporal and spatial graph
dimensions simultaneously, rather than extracting spatial information first and then tem-
poral information, in order to reduce feature redundancy. We will consider introducing
language text models in the future to improve the performance of action recognition and
reduce computational complexity.
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