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Abstract: The high-order mechanical resonances of the sensing element in a high-vacuum environ-
ment can significantly degrade the noise and distortion performance of seismic-grade sigma–delta
MEMS capacitive accelerometers. However, the current modeling approach is unable to evaluate the
effects of high-order mechanical resonances. This study proposes a novel multiple-degree-of-freedom
(MDOF) model to evaluate the noise and distortion induced by high-order mechanical resonances.
Firstly, the MDOF dynamic equations of the sensing element are derived using the principle of modal
superposition and Lagrange’s equations. Secondly, a fifth-order electromechanical sigma–delta sys-
tem of the MEMS accelerometer is established in Simulink based on the dynamic equations of the
sensing element. Then, the mechanism through which the high-order mechanical resonances degrade
the noise and distortion performances is discovered by analyzing the simulated result. Finally, a noise
and distortion suppression method is proposed based on the appropriate improvement in high-order
natural frequency. The results show that the low-frequency noise drastically decreases from about
−120.5 dB to −175.3 dB after the high-order natural frequency increases from about 130 kHz to
455 kHz. The harmonic distortion also reduces significantly.

Keywords: MEMS accelerometers; sigma–delta; multiple-degree-of-freedom; electromechanical
modeling; noise

1. Introduction

High-end capacitive accelerometers based on microelectromechanical system (MEMS)
technology are widely applied in seismometers [1,2], inclination measurement [3], micro-
gravity measurement [4], inertial navigation [5], etc. A high-resolution MEMS accelerometer
with a noise floor of sub-µg/

√
Hz is commonly required for seismic-grade application [1].

The total noise mainly consists of Brownian noise, quantization noise, and circuit noise [6].
Brownian noise can be lowered by improving the weight of the proof mass and the

quality factor (Q) [7,8]. Thus, the sensing element of seismic-grade MEMS accelerometers
is usually packaged in a vacuum to ensure high Q [8]. However, high Q causes the sensing
element to exhibit unstable behavior, such as a long settling time and a significant overshoot.
Hence, a closed-loop control system is necessary for the high Q sensing element to ensure
stability [6]. The closed-loop solution based on the principle of electromechanical sigma–
delta modulators (EM-Σ∆M) has been widely used in MEMS capacitive accelerometers,
which can provide high-resolution digital output and possess advantages such as high
linearity and wide bandwidth [9].

Henrion et al. first proposed a second-order EM-Σ∆M MEMS accelerometer in 1990, in
which the sensing element was used as two cascaded integrators [10]. Kulah et al. presented
a detailed noise study of second-order EM-Σ∆M MEMS accelerometers to achieve sub-µg
resolution [11]. Second-order EM-Σ∆M accelerometers have relatively poor quantization
noise shaping because the equivalent DC gain of the mechanical integrator is somewhat
low [12]. Higher-order closed-loop sigma–delta accelerometers are proposed to improve
the ability to perform quantization noise shaping. Amini et al. designed and implemented
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two cascaded switched-capacitor integrators with a sensing element to form a fourth-order
EM-Σ∆M accelerometer, improving the system’s dynamic range by 20 dB [13]. Xu et al. im-
plemented a fifth-order EM-Σ∆M accelerometer with a fully differential switched-capacitor
interface to achieve 200 ng/

√
Hz input noise density [14]. Chen et al. proposed a sixth-order

EM-Σ∆M accelerometer with a vacuum packaging sensing element based on distributed
feedback loops [15].

The circuit noise is proportional to the input-referred noise of the interface circuit
and inversely proportional to the capacitive sensitivity of the accelerometer [16]. A large
proof-mass [16], a low spring constant [17], and high aspect ratio capacitive gaps [13]
are usually adopted to improve the capacitive sensitivity. Additionally, it is necessary to
optimize the interface circuit carefully, for example, by using the technique of correlated
double sampling [18] and the feedforward noise reduction technique [19].

Besides the noises mentioned above, a new kind of noise has been reported in recent
years. This noise originates from the interaction of the output bitstreams and MEMS high-
order mechanical resonances in the electrostatic feedback force [20,21]. To evaluate this
noise, the electromechanical model of the sensing element must include high-order natural
modes. However, the conventional single-degree-of-freedom electromechanical (SDOF-EM)
model employed in most studies only considers the fundamental natural mode [22]. Zhao
et al. first used finite difference approximation to establish a multiple-degree-of-freedom
model [22,23]. However, this model neglected the interaction of the output bitstreams and
high-order mechanical resonances in the electrostatic feedback force. Thus, this model is
still unable to evaluate the new noise.

This study proposes a multiple-degree-of-freedom electromechanical (MDOF-EM)
model to evaluate the new noise resulting from high-order mechanical resonances. In
Section 2, a MDOF-EM model is established based on the modal superposition and La-
grange’s equations. Then, the MDOF-EM model is combined with a lead compensator
and a third-order modulator to form a systemic model for a fifth-order EM-Σ∆M MEMS
accelerometer. Finally, the systemic model is simulated to analyze the effect of high-order
mechanical resonances on noise and distortion performance and identify its method of
suppression.

2. MDOF-EM Model of the Sensing Element

This section establishes the MDOF-EM model of the sensing element using the prin-
ciple of modal superposition and Lagrange’s equations. Firstly, the description of finger
displacement is studied.

2.1. Description of Finger Displacement

In most studies [5–9,12,13,15–17,24–28], finger flexibility is ignored to assume the
sensing element of the seismic-grade MEMS accelerometer as a single-degree-of-freedom
(SDOF) mass–damper–spring system. However, this conventional approach is unable to
capture the effects of high-order mechanical resonances. After the sensing element has been
packaged in a high-vacuum environment, the high-order natural modes are easily excited
into resonance. The bending of fingers must also be considered to capture the effects of
high-order mechanical resonances. Thus, it is crucial to describe the finger displacement.

This study establishes the coordinate system shown in Figure 1 for the fingers. The
origin of the coordinates is at the clamped end of the movable fingers, while the slight
overlapping shift between movable and static fingers is neglected. The static fingers are
typical cantilevers tied to the anchor, whereas the movable fingers are cantilevers moving
with the rigid proof mass. Thus, according to the principle of modal superposition [29], the
displacements of the static and movable fingers are expressed as

ys1x = GT
s ys1, ys2x = GT

s ys2, ym1x = yp + GT
mym1, ym2x = yp + GT

mym2 (1)

where ys1x and ys2x denote the displacements of the static fingers belonging to capacitors
C1 and C2, respectively; ym1x and ym2x denote the displacements of the movable fingers
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belonging to capacitors C1 and C2, respectively; and yp indicates the displacement of the
rigid proof mass. Gs and Gm represent the column vectors of mode shape for movable and
static fingers, respectively, and depend only on the coordinate x. The column vectors of
mechanical modal amplitudes ys1, ys2, ym1, and ym2 rely only on time. In this study, the
mode shapes that equal one at the free end are adopted.
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Figure 1. Structural diagram of the MEMS accelerometer. (a) Top view. (b) Cross-section view of 
fingers. 
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Figure 1. Structural diagram of the MEMS accelerometer. (a) Top view. (b) Cross-section view
of fingers.

2.2. Electromechanical Dynamic Equations

The dynamic equations of the sensing element are derived from Lagrange’s equa-
tions. According to the principle of Lagrange’s equations for general electromechanical
systems [30], Lagrange’s equations for an electrostatic actuator are expressed as

d
dt

(
∂L
∂

.
qi

)
+ ∂Dc

∂
.
qi
− ∂L

∂qi
= Qi

L = T + We −V
(2)

where L denotes the Lagrangian of the system, Dc denotes the dissipation function, Qi
denotes the generalized force, qi denotes the generalized coordinate, and T, V, and We
represent the kinetic, potential, and electrical energy, respectively.

2.2.1. Energy Function

The kinetic energy of the system is expressed as

T =
1
2

mp
.
y2

p + N
(∫ l

0

1
2

ρm
.
y2

m1xdx +
∫ l

0

1
2

ρm
.
y2

m2xdx +
∫ l

0

1
2

ρs
.
y2

s1xdx +
∫ l

0

1
2

ρs
.
y2

s2xdx
)

(3)
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where mp denotes the mass of the proof-mass, N denotes the number of movable or static
fingers in capacitor C1 or C2, and ρm and ρs represent the mass per unit length of the
movable and static fingers, respectively. Using Equations (1) and (3) leads to

T =
1
2

mt
.
y2

p +
.
ypλT

m
( .
ym1 +

.
ym2
)
+

1
2

.
yT

m1γm
.
ym1 +

1
2

.
yT

m2γm
.
ym2 +

1
2

.
yT

s1γs
.
ys1 +

1
2

.
yT

s2γs
.
ys2 (4)

where mt denotes the mass sum of the proof mass and all movable fingers, and the equiva-
lent mass λm, γm, and γs are expressed as

λm = N
∫ l

0
ρmGmdx, γm = N

∫ l

0
ρmGmGT

mdx, γs = N
∫ l

0
ρsGsGT

s dx (5)

In this study, the fingers’ bending is described by the Euler–Bernoulli beam theory,
which assumes that the cross-section remains orthogonal to the neutral axis after bend-
ing [31]. Thus, the potential energy of the system is expressed as

V =
1
2

kpy2
p +

N
2

∫ l

0
EIm(y′′m1x)

2dx +
N
2

∫ l

0
EIm(y′′m2x)

2dx +
N
2

∫ l

0
EIs(y′′ s1x)

2dx +
N
2

∫ l

0
EIs(y′′ s2x)

2dx (6)

where kp denotes the stiffness of the spring supporting the proof-mass; E denotes Young’s
modulus; Im and Is denote the moment of inertia of the cross-section in movable and static
fingers, respectively; and ” represents the second derivative to the coordinate x. Using
Equation (1) with (6), the potential energy of the system is expressed as

V =
1
2

kpy2
p +

1
2

yT
m1kmym1 +

1
2

yT
m2kmym2 +

1
2

yT
s1ksys1 +

1
2

yT
s2ksys2 (7)

where the equivalent stiffness values km and ks for movable and static fingers are expressed
as

km = N
∫ l

0
EImG′′mG′′ Tmdx, ks = N

∫ l

0
EIsG′′ sG′′ Ts dx (8)

when the fingers are bent, the capacitances can be computed via integration after neglecting
the fringe effect.

C1 = N
[∫ l

0
εh

d−yp−GT
mym1+GT

s ys1
dx +

∫ l
0

εh
D+yp+GT

mym1−GT
s ys1

dx
]

C2 = N
[∫ l

0
εh

d+yp+GT
mym2−GT

s ys2
dx +

∫ l
0

εh
D−yp−GT

mym2+GT
s ys2

dx
] (9)

where d and D denote the gaps between the movable and static fingers, h denotes the
height of the fingers, and ε represents the permittivity of the air, as shown in Figure 1. This
study uses EM-Σ∆M to realize a digital output of the seismic-grade MEMS accelerometer.
According to the feedback principle of the EM-Σ∆M accelerometer [32,33], the electrical
energy is expressed as

We =
1
2

C1

(
Vf So −Vf

)2
+

1
2

C2

(
Vf So + Vf

)2
(10)

where Vf denotes the feedback voltage, and So∈(−1, 1) represents the one-bit output
bitstream, which controls the applied direction of feedback voltage.

2.2.2. Dissipative Function

The damping coefficient of MEMS accelerometers mainly results from the squeeze-film
viscous damping between the movable fingers and the static ones. It can be evaluated
based on the quality factor Q [34]. The squeeze-film damping is directly proportional to the
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total length of all movable fingers [35], so the damping coefficient per unit finger’s length
can be expressed as

cu =
√

mtkp/(2NlQ) (11)

According to the principle of the quadratic dissipative function [30], the dissipative
function of the system is expressed as

Dc = N
(∫ l

0

1
2

cu
.
y2

m1xdx +
∫ l

0

1
2

cu
.
y2

s1xdx
)
+ N

(∫ l

0

1
2

cu
.
y2

m2xdx +
∫ l

0

1
2

cu
.
y2

s2xdx
)

(12)

Using Equation (1) with (12) leads to

Dc =
1
2

c
.
y2

p +

(
.
ypηT

m
.
ym1 +

1
2

.
yT

m1ξm
.
ym1 +

1
2

.
yT

s1ξs
.
ys1

)
+

(
.
ypηT

m
.
ym2 +

1
2

.
yT

m2ξm
.
ym2 +

1
2

.
yT

s2ξs
.
ys2

)
(13)

where ηm, ξm, and ξs denote the equivalent damping coefficient and are expressed as

ηm = N
∫ l

0
cuGmdx, ξm = N

∫ l

0
cuGmGT

mdx, ξs = N
∫ l

0
cuGsGT

s dx (14)

2.2.3. Virtual Work Contributed by the Inertial Force

The virtual work contributed by the inertial force includes that from proof-mass,
movable fingers, and static fingers.

δWi = −mpaδyp + N
∫ l

0
−ρmaδym1xdx + N

∫ l

0
−ρmaδym2xdx + N

∫ l

0
−ρsaδys1xdx + N

∫ l

0
−ρsaδys2xdx (15)

Using Equation (1) with (15) leads to

δWi = −δyp(mta)− δyT
m1(λma)− δyT

m2(λma)− δyT
s1(λsa)− δyT

s2(λsa) (16)

where the equivalent mass λs is expressed as

λs = N
∫ l

0
ρsGsdx (17)

According to the principle of generalized forces [30], the generalized force vector from
Equation (16) is expressed as

Q =
[
−mta −λma −λma −λsa −λsa

]T (18)

2.2.4. Dynamic Equations

According to the dynamics of the electromechanical system, when voltage sources
are directly applied to the capacitors without resistors and inductors, only the dynamic
equations of the mechanical part are applicable [30]. The electrical equation represents
the simple charging of capacitors, i.e., q = CV. The charging aims to provide electrostatic
feedback force, which has been included in mechanical dynamic equations. In other words,
the charging affects the system’s performance by changing the electrostatic feedback force.
Thus, just as in the previously reported studies [13,32], the electrical equation of charging
is not expressed in this study.

Using Equations (4), (7), (10), (13), and (18) with (2), the dynamic equations of the
system are expressed as

M
..
y + D

.
y + Ky = Q + Fe (19)

where the amplitude vector y, mass matrix M, damping matrix D, stiffness matrix K, and
electrostatic force vector Fe are expressed as
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y =


yp

ym1
ym2
ys1
ys2

, M =


mt λT

m λT
m

λm γm
λm γm

γs
γs

, D =


c ηT

m ηT
m

ηm ξm
ηm ξm

ξs
ξs

, K =


kp

km
km

ks
ks

, Fe =


Fep

Fem1
Fem2
Fes1
Fes2

 (20)

The elements of the electrostatic force vector are expressed as

Fep = Fe0(So − 1)2
[

1/
(
1− ỹp

)2 − 1/
(

D̃ + ỹp

)2
+ 2

(
rT

m ỹm1 − rT
s ỹs1

)
/
(
1− ỹp

)3
]

−Fe0(So + 1)2
[

1/
(
1 + ỹp

)2 − 1/
(

D̃− ỹp

)2
− 2

(
rT

m ỹm2 − rT
s ỹs2

)
/
(
1 + ỹp

)3
] (21)

Fem1 = Fe0(So − 1)2
[

rm/
(
1− ỹp

)2 − rm/
(

D̃ + ỹp

)2
+ 2(rmm ỹm1 − rms ỹs1)/

(
1− ỹp

)3
]

(22)

Fem2 = −Fe0(So + 1)2
[

rm/
(
1 + ỹp

)2 − rm/
(

D̃− ỹp

)2
− 2(rmm ỹm2 − rms ỹs2)/

(
1 + ỹp

)3
]

(23)

Fes1 = −Fe0(So − 1)2
[

rs/
(
1− ỹp

)2 − rs/
(

D̃ + ỹp

)2
+ 2(rsm ỹm1 − rss ỹs1)/

(
1− ỹp

)3
]

(24)

Fes2 = Fe0(So + 1)2
[

rs/
(
1 + ỹp

)2− rs/
(

D̃− ỹp

)2
− 2(rsm ỹm2 − rss ỹs2)/

(
1 + ỹp

)3
]

(25)

where the remaining electrostatic force Fe0, normalized wide gap D̃, normalized displacements
ỹp, ỹm1, ỹm2, ỹs1, ỹs2, and length coefficients rm, rs, rmm, rms, rsm, and rss are expressed as

Fe0 =
NεhV2

f l

2d2 (26)

D̃ = D/d, ỹp = yp/d, ỹm1 = ym1/d, ỹm2 = ym2/d, ỹs1 = ys1/d, ỹs2 = ys2/d (27)

rm =
1
l

∫ l

0
Gmdx, rs =

1
l

∫ l

0
Gsdx, rmm =

1
l

∫ l

0
GmGT

mdx, rms =
1
l

∫ l

0
GmGT

s dx, rsm =
1
l

∫ l

0
GsGT

mdx, rss =
1
l

∫ l

0
GsGT

s dx (28)

In Equations (21)–(25), because the normalized finger displacements ỹm1 ∼ ỹs2 are much smaller
than 1, the dependence of electrostatic forces on normalized finger displacements is approximated
linearly to improve the simulation speed.

If ignoring the flexibility of the fingers, i.e., the normalized finger displacements ỹm1 ∼ ỹs2 are
assumed to be zero, the MDOF-EM model given in Equation (19) degrades into the SDOF-EM model
that is widely adopted in current studies [5–9,12,13,15–17,24–28].

mt
..
y + c

.
y + kpy = −mta +

Fe0(So − 1)2(
1− ỹp

)2 −
Fe0(So − 1)2(

D̃ + ỹp

)2 −
Fe0(So + 1)2(

1 + ỹp
)2 +

Fe0(So + 1)2(
D̃− ỹp

)2 (29)

2.3. Differential Capacitance
Using linear approximation for Equation (9), the differential capacitance between C1 and C2 is

approximately

∆C =
Nεhl

d

 1
1− ỹp

− 1
1 + ỹp

+
1

D̃ + ỹp
− 1

D̃− ỹp
+

rT
m ỹm1 − rT

s ỹs1(
1− ỹp

)2 − rT
m ỹm1 − rT

s ỹs1(
D̃ + ỹp

)2 +
rT

m ỹm2 − rT
s ỹs2(

1 + ỹp
)2 − rT

m ỹm2 − rT
s ỹs2(

D̃− ỹp

)2

 (30)
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If the normalized finger displacements ỹm1 ∼ ỹs2 are assumed to be zero, the differential
capacitance for the SDOF-EM model is acquired:

∆C =
Nεhl

d

[
1

1− ỹp
− 1

1 + ỹp
+

1
D̃ + ỹp

− 1
D̃− ỹp

]
(31)

2.4. Selection of Finger Mode Order
If more natural modes of the fingers are adopted, the precision of the MDOF-EM model will

increase. However, more modes result in more degrees of freedom and a slower simulation speed
of the EM-Σ∆M system. In this study, the frequency domain simulation of a finger is used to
determine the mode number. The material properties and dimensions are listed in Table 1. The
driving acceleration of the finger is 1 g, and the damping is 3.76× 10−6 N*s/m2. The simulation result
is shown Figure 2. The displacements generated by the second- to fifth-order modes are minimal
compared with that of the first-order mode. In other words, the error remains small even though only
the first-order mode is selected for the MDOF-EM model. However, the complexity of the model can
decrease significantly. Therefore, this study only chooses the first-order mode of the fingers.

Table 1. Parameters for modeling and simulation.

Parameters Value Unit

Density (ρ) 2330 kg/m3

Young’s modulus (E) 169 GPa
Length of spring (Ls) 840 µm
Width of spring (ws) 9 µm

Proof-mass (mp) 9.11 × 10−7 kg
Width of movable and static fingers (w) 10 µm
Length of movable and static fingers (l) 325 µm

Height of fingers (h) 60 µm
Number of movable or static fingers in C1 or C2 (N) 144 —

Narrow gap (d) 3 µm
Wide gap (D) 10 µm

Feedback voltage (Vf) 2.5 V
Dielectric constant of air (ε) 8.854 × 10−12 F/m

Sampling frequency (f s) 250 kHz
Capacitance–voltage conversion (KV_C) 6.67 V/pf

Quality factor (Q) 2000 —
Brownian noise 23.6 ng/

√
Hz

2.5. Parameters for Fingers with Uniform Rectangle Cross-Section
For the fingers with a uniform rectangle cross-section, which are widely used in current research,

the normalized modal shape is expressed as [29]

Gm =
cosh(1.875x/l)− cos(1.875x/l)− 0.734(sinh(1.875x/l)− sin(1.875x/l))

2
(32)

Gs =
cosh(1.875 (l − x)/l )− cos(1.875 (l − x)/l )− 0.734(sinh(1.875 (l − x)/l ) + sin(1.875 (l − x)/l ))

2
(33)

Incorporating Equations (32) and (33) into (5), (8), (14), (17), and (28), the equivalent mass,
stiffness, damping coefficient, and length coefficients are expressed as

λm = λs = 0.39Nρwhl, γm = γs = 0.25Nρwhl (34)

km = ks = 0.254NEw3h/l3 (35)

ηm = 0.39Ncul, ξm = ξs = 0.25Ncul (36)

rm = rs = 0.39, rmm = rss = 0.25, rms = rsm = 0.061 (37)
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where w denotes the width of the movable and static fingers, and ρ represents the density.
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3. EM-Σ∆M System Based on MDOF-EM Model of the Sensing Element
This section establishes the EM-Σ∆M system of the seismic-grade MEMS accelerometer using an

MDOF-EM model of the sensing element. In the EM-Σ∆M system, the MDOF-EM model is described
using the state-space equation:

.
z =

[
0 I

−M−1K −M−1D

]
z +

[
0

M−1(Q + Fe)

]
(38)

in which the state vector is expressed as

z =
[
yp, ym1, ym2, ys1, ys2,

.
yp,

.
ym1,

.
ym2,

.
ys1,

.
ys2

]T
(39)

There is hope that the higher-order EM-Σ∆M system can be used to improve the shaping
performance for quantization noise. However, the higher-order EM-Σ∆M system has disadvantages,
such as a higher risk of instability and a more complex circuit [9]. The fifth-order EM-Σ∆M system
has much better noise shaping performance than the second-, third-, and fourth-order systems, and
can guarantee its stability [12]. However, an EM-Σ∆M system with an order higher than five does
not further improve the noise performance [9]. Thus, a fifth-order EM-Σ∆M system is established to
study the effect of the high-order mechanical resonances on the noise and distortion. However, there
is no barrier to establishing the EM-Σ∆M system with other orders using the MDOF-EM model of
the sensing element.

The established MDOF EM-Σ∆M system is shown in Figure 3, where the fifth-order one-bit
feedforward and distributed feedback (DFFF) topology diagram proposed in [32] is adopted. The
system consists of a MEMS sensing element, displacement–voltage conversion, a lead compensator,
a third-order modulator, and an electrostatic force block. The parameters for the lead compensator
and third-order modulator were supplied by our interface circuit suppliers and are described in [32].
In future, the interface circuit will be integrated with the MEMS sensing element to implement the
experimental validation. Time-multiplexing feedback technology is adopted in the EM-Σ∆M system,
so a pulse generator is used to control the feedback phase.
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4. Simulation and Discussion of Noise and Distortion
The MDOF EM-Σ∆M system is simulated, and the result is compared with that of the SDOF

EM-Σ∆M system, which is established based on the SDOF-EM model of the sensing element given
in Equations (29) and (31). The parameters adopted in the system are listed in Table 1. With the
parameters listed in Table 1, Brownian noise can be computed using the formula from [8], and the
result is 23.6 ng/

√
Hz.

The input acceleration has an amplitude of 0.5 g and a frequency of 30 Hz. The sampling
frequency fs is 250 kHz. The simulated power spectrum density (PSD) of the one-bit output bitstream
is shown in Figure 4. The low-frequency noise obtained from the MDOF system is approximately
−120.5 dB, much higher than that obtained from the SDOF system, which is around −176.5 dB. The
harmonic distortion obtained from the MDOF system is also more severe than that obtained from
the SDOF system, especially for the high-order harmonic distortion terms. Compared to the SDOF
system, the only improvement in the MDOF system is that the high-order natural modes of the
sensing element are included. The lead compensator and third-order modulator of the MDOF system
match those of the SDOF system. Thus, the noise and distortion degeneration must be induced by
the high-order mechanical resonances of the sensing element.

To explain why the high-order mechanical resonances can increase the noise and distortion,
the PSD of the finger displacements is studied first. The PSDs of the moveable and static finger
displacements in capacitors C1 and C2 are shown in Figure 5a,b, respectively. The static finger
displacement peaks at about 129.4 kHz. Another peak occurs for the movable finger displacement at
about 134.8 kHz. The natural frequency simulation of the sensing element shown in Figure 6 verifies
that two high-order natural modes exist around 130 kHz. The finger displacements related to the
two higher-order natural modes are also massive. The peaks of the finger displacement PSDs show
that the high-order mechanical resonances of the sensing element are excited in the high-vacuum
environment.
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Figure 6. High-order natural modes of the sensing element. (a) High-order natural mode in proof-
mass and movable fingers; (b) High-order natural mode in the static finger. The color closer to the
red represents that the displacement is larger, while the color closer to the blue represents that the
displacement is smaller.
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Secondly, the steady-state relationship between the output and the input acceleration is derived.
In a closed-loop accelerometer, the spring restoring force is minimal, so the equilibrium of proof mass
is achieved using electrostatic force and inertial force:

Fep/2−ma = 0 (40)

where the factor of (1/2) is the duty cycle of the electrostatic force feedback phase. Because the
normalized displacement of proof-mass ỹp is much smaller than 1, the electrostatic force given in
Equation (21) can be approximated as

Fep ≈ Fe0(So − 1)2
(

1− 1/D̃2 + a
)
− Fe0(So + 1)2

(
1− 1/D̃2 − b

)
(41)

where the coefficients a and b denote the displacement terms from fingers.

a = 2
(
rT

m ỹm1 − rT
s ỹs1

)
b = 2

(
rT

m ỹm2 − rT
s ỹs2

) (42)

Substituting Equation (41) into (40) leads to

ma = Fe0(a + b)/2− 2Fe0

(
1− 1/D̃2

)
So − Fe0(a− b)So + Fe0(a + b)S2

o /2 (43)

As shown in Equation (43), the finger displacement term couples with the steady-state relation-
ship between the output and the input acceleration. Notably, there is a force term resulting from the
product of output and finger displacement.

F = −Fe0(a− b)So (44)

Because the high-order natural modes considering the bending of the fingers are excited into
resonance, the finger displacement term (a − b) must have high power around the high-order natural
frequencies. On the other hand, the output So also has high power around the high-order natural
frequencies because the noise shaping of EM-Σ∆M moves the power of the output noise to the
high-frequency band, as shown in Figure 4a. As a result, the product of the finger displacement term
(a − b) and output So must produce low-frequency forces in the bandwidth via frequency mixing.
These low-frequency forces add extra acceleration to the bandwidth, so extra low-frequency noise
appears in the output. Meanwhile, the additional acceleration at the frequency where the harmonic
occurs enhances the harmonic distortion term.

5. Suppression of Noise and Distortion
Section 5 concludes that the high-order mechanical resonances of the sensing element can

increase the noise and distortion. Increasing the damping of the MEMS sensing element can suppress
the noise and distortion because higher damping results in lower resonant vibrations [34]. However,
this method also increases Brownian noise, which is directly proportional to the square root of the
damping coefficient [14].

As shown in Equation (44), the power of the mixed force term must decrease with the reduction
in the power of the bitstream output and finger displacement. Additionally, the lower output power
provides more downward finger displacement because the output is fed back into the sensing element
to generate the electrostatic force applied to the fingers. Thus, the noise and distortion must decrease
with the decreasing output power. As shown in Figure 4a, the output power in the frequency band
around 1/2 fs is high. Additionally, because the sampling principle causes the power spectrum to
repeat with a frequency period of fs, it is necessary to adjust the natural frequency of high-order
modes to avoid (1/2 + n)fs, where n = 1, 2, 3, . . . . Secondly, the vibrational amplitude is inversely
proportional to the square of natural frequency [34], so the natural frequency of high-order modes
should increase to the greatest extent possible. Finally, the pulse sampling voltage may also excite the
high-order modes into resonance if their natural frequencies are equal to nfs, where n = 1, 2, 3, . . . .
Overall, the natural frequency of high-order modes should be increased and distanced from nfs/2,
where n = 1, 2, 3, . . . .

For instance, the natural frequency of high-order modes increases to about 455 kHz upon
decreasing the finger length to 175 µm and increasing the number of movable fingers to 272. The
natural frequency of about 455 kHz is far from nfs/2, allowing it to suppress the high-order mechanical
resonances of the sensing element. With the new finger dimensions, the updated PSDs obtained from
the MDOF system are shown in Figures 7 and 8. Comparing the results from Figures 5 and 7 reveals
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that the resonant peak of finger displacements decreases from about −55 dB to −125 dB after the
natural frequency increases from about 130 kHz to 455 kHz. Thus, the appropriate adjustment of
the high-order natural frequency effectively suppresses the high-order mechanical resonances of
the sensing element. Finally, comparing the output PSDs shown in Figures 4a and 8 shows that the
low-frequency noise drastically decreases from about −120.5 dB to −175.3 dB, and the high-order
harmonic distortion terms also decrease significantly. Notably, Figures 4b and 8 show that the low-
frequency noise and distortion performance have already improved to the same level as the SDOF
system. Overall, carefully designing the natural frequency of the high-order modes of the sensing
element is very useful for suppressing the noise and distortion induced by high-order mechanical
resonances.
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Figure 8. PSD of output for the system with a high-order natural frequency of about 455 kHz.

A comparison of this work with previously reported works is presented in Table 2. The
quantization and Brownian noises obtained in this work are low. The main improvement of this work
is the MDOF model that considers the fingers’ flexibility, which can be used to optimize the sensing
element in future.
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Table 2. Comparison of this work with previously reported works.

Authors Principle Model Type Quantization
Noise (dB)

Brownian Noise
(ng/
√

Hz)
Mass for Sensing
Acceleration (mg)

Chae et al. [11] Sigma–delta SDOF — 700 2.8
Dong et al. [25] Sigma–delta SDOF −170 850 1.2
Amini et al. [13] Sigma–delta SDOF −120 1000 5

Abdolvand et al. [16] Sigma–delta SDOF — 50 38
Almutairi et al. [26] Sigma–delta SDOF −130 278 1.62

Chen et al. [15] Sigma–delta SDOF −125 278 1.62
Xu et al. [27] Sigma–delta SDOF −140 30 62
Utz et al. [7] Analog open loop SDOF — 100 1.86

Zhang et al. [28] Sigma–delta SDOF −120 0.693 1.11 × 104

This work Sigma–delta MDOF −175.3 32 1.04

6. Conclusions
This study proposes a novel MDOF model for seismic-grade EM-Σ∆M MEMS accelerometers.

The novel MDOF model was used to evaluate the noise and distortion degeneration induced by the
high-order mechanical resonances of the sensing element. The simulation results and discussion
from the novel MDOF model show that the high-order mechanical resonances of the sensing element
produce resonant peaks of the finger displacements. Then, the product of the finger displacements
and the output results in extra low-frequency forces in the bandwidth via frequency mixing. These
low-frequency forces add extra acceleration to the sensing element to degrade the noise and distortion
performance. Finally, to suppress the degeneration of the noise and distortion performance, the
natural frequency of the sensing element’s high-order modes should be increased and distanced from
nfs/2, where n = 1, 2, 3, . . . . The results show that the low-frequency noise drastically decreases from
approximately −120.5 dB to −175.3 dB after the high-order natural frequency increases from about
130 kHz to 455 kHz. The harmonic distortion also reduces significantly.

In future, an optimization process of the sensing element and EM-Σ∆M system should be
studied based on the novel MDOF model to ensure better performance. It is also important to
investigate the effect of high-order mechanical resonances of the sensing element on the stability of
the EM-Σ∆M system based on the novel MDOF model.
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