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Abstract: Trajectory data has gained increasing attention in the transportation industry due to its
capability of providing valuable spatiotemporal information. Recent advancements have introduced
a new type of multi-model all-traffic trajectory data which provides high-frequency trajectories of
various road users, including vehicles, pedestrians, and bicyclists. This data offers enhanced accuracy,
higher frequency, and full detection penetration, making it ideal for microscopic traffic analysis. In
this study, we compare and evaluate trajectory data collected from two prevalent roadside sensors:
LiDAR and camera (computer vision). The comparison is conducted at the same intersection and
over the same time period. Our findings reveal that current LiDAR-based trajectory data exhibits
a broader detection range and is less affected by poor lighting conditions compared to computer
vision-based data. Both sensors demonstrate acceptable performance for volume counting during
daylight hours, but LiDAR-based data maintains more consistent accuracy at night, particularly
in pedestrian counting. Furthermore, our analysis demonstrates that, after applying smoothing
techniques, both LiDAR and computer vision systems accurately measure vehicle speeds, while
vision-based data show greater fluctuations in pedestrian speed measurements. Overall, this study
provides insights into the advantages and disadvantages of LiDAR-based and computer vision-based
trajectory data, serving as a valuable reference for researchers, engineers, and other trajectory data
users in selecting the most appropriate sensor for their specific needs.

Keywords: roadside LiDAR; roadway sensor; traffic trajectory data

1. Introduction

For decades, researchers have been dedicated to improving traffic operations and traf-
fic safety by studying driving behaviors and interactions between road users. Field traffic
data plays a critical role in these studies, and its quality heavily relies on the development
of sensor technology. In the early days of traffic research, traffic data collection involved
manual methods, such as human observation and stopwatches, which had limitations in
terms of data richness and accuracy [1,2].

With the continued increase in traffic volume, promoting the utilization of existing
transportation networks is deemed more cost-effective compared to constructing new
roads. Consequently, there is a greater need for more accurate and higher-quality traffic
data to enhance the efficiency of the transportation network. In order to obtain more
precise data, researchers and engineers have devised various solutions. In the late 1920s, a
horn-based sensor was introduced as the first solution, which was triggered by the sound
of a vehicle’s horn. Around the same time, an on-roadway treadle sensor was invented.
This sensor, comprised of two metal plates, could collect pass-presence information by
detecting pressure variations [3]. Despite having some mechanical issues, this sensor
remained a popular choice for detecting vehicles at actuated traffic signals for many years.
Additionally, an electro-pneumatic sensor was developed to overcome these mechanical
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problems. However, due to its high cost and limited counting accuracy, this sensor was not
widely adopted [1].

While treadle sensors demonstrated satisfactory performance in detecting vehicle
presence, engineers were still unsatisfied due to their susceptibility to damage when
placed on the road surface. These sensors could be easily lifted by snowplows, requiring
reinstallation after road resurfacing. These challenges prompted researchers and engineers
to explore traffic sensors that could be permanently installed in or over the road, addressing
these limitations.

Inductive loop detectors, which are installed in the road to provide vehicle pass/presence
information, quickly gained dominance in the market due to their good performance,
flexibility of design, and durability. Although a single loop detector could only collect
pass/presence information for a specific location within one lane, by combining multiple
loop detectors, various traffic parameters such as speed, vehicle length, and density could
be derived through algorithms. Nowadays, over many decades of use, engineers have
developed a mature installation and maintenance standard for inductive loop detectors,
making them one of the most widely used sensors worldwide.

Despite researchers and engineers finding inductive loop detectors advantageous, they
never stopped seeking other alternative sensor options due to some inherent limitations
of loop detectors that could not be overlooked. Firstly, the data obtained from the loop
detector is not accurate enough to facilitate advanced microscopic traffic analysis because
loop detectors can only measure the traffic flow passing fixed cross lines. Secondly, the data
quality collected by loop detectors may be affected by the pavement conditions, weather,
and any operations to the road that can affect loop integrity. Thirdly, although in-roadway
sensors are not as easy-broken as on-roadway sensors, maintenance costs tend to be higher
due to the potential need for road closures.

In addition to the inductive loop detector, various traffic sensors have been deployed
over the past few decades, including infrared sensors, ultrasonic detectors, acoustic detec-
tors, magnetometers, and more. They have all achieved a certain degree of success in field
traffic data collection, but due to the high cost and lack of comprehensive standards, they
are not widely used.

Since the 2000s, researchers have started to seek traffic data containing dynamic
temporal-spatial information. This type of traffic data needs to be able to provide the loca-
tion of road users at a high frequency in order to generate vehicle moving trajectories. There
are three main advantages of this type of data. Firstly, using high-frequency trajectory data
can generate a continuous smooth time-space diagram, which improves studying traffic
flow and understanding microscopic driving behavior. Secondly, macroscopic trajectory
data provides precise origin-destination information, which greatly helps city planners
to better estimate the number of trips and link travel time, and track trip distribution.
Thirdly, trajectory data is good for the detection of some unique events, such as pedestrian
Jaywalking and vehicle red-light running. In addition, trajectory data can also be used to
perform some initiative-taking traffic safety analyses, such as near-miss detection. These
diverse benefits have made researchers increasingly pursue this type of data.

In the initial stages, to get trajectory data, researchers used footage from the traffic
camera to track the vehicles by recording the location of vehicles frame-by-frame manu-
ally, which is time-consuming and prone to errors. More recently, with advancements in
communication and sensing technology, a wide range of in-vehicle devices, such as global
positioning systems (GPS) and cellular phones, have been employed to collect trajectory
data [4]. Vehicles equipped with these devices, known as probe vehicles or floating vehicles,
continuously update their location information through wireless communications while
traveling on the road [5]. Although this trajectory data is valuable, it still faces certain
limitations: Firstly, since only a portion of vehicles is equipped with these devices, the data
collected cannot fully represent real-time traffic conditions [6]. Secondly, the data quality is
influenced by various aspects, such as the loss of cellular phone signal and inaccurate GPS
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positioning, among other reasons. Third, most providers of such data primarily include
vehicle data, while other road users, such as pedestrians and bicyclists, are not included.

Obtaining multi-model all-traffic trajectory data from onboard devices is not a suitable
choice due to the fact that not all road users carry location-tracking and communicating
devices. As a result, scientists have turned their attention back to the roadway sensor since
the roadway sensor can theoretically detect all objects that are not obstructed within the
detection range. Up to now, there are two popular solutions. One is the roadside LiDAR-
based solution, which uses 360-degree roadside LiDAR. It establishes a local coordinate
system centered on LiDAR to detect the location of the object by calculating the time
difference between the time the laser beam emitted from the sensor and reflected back to the
sensor from the object. The other solution is a vision-based approach, which has advanced
with the development of information technology. Researchers can now automatically
identify the vehicles and pedestrians in each frame of the camera video and extract the
location information using computer deep learning technology.

While both LiDAR-based and vision-based methods are capable of generating multi-
model all-traffic trajectory data, the principles of data generation and processing are
different. The differences will be elaborated upon in the subsequent section. The primary
objective of this paper is to compare the difference between these two methods, evaluating
the data quality by comparing the data output of both methods during the same period
and at the same intersection. This paper will provide a summary of the advantages and
disadvantages of LiDAR-based and vision-based trajectory data, which could be a reference
for agencies and researchers to use when considering which sensor to use.

This paper is structured as follows: Section 2 provides a literature review of diverse
types of trajectory data sources, introduces current applications on them, and explains the
working principle of LiDAR-based and vision-based trajectory data. Section 3 presents
a comparison of the data quality of two sources in terms of detection range, counting
accuracy in different lighting conditions for both vehicles and pedestrians, and speed
detection. Section 4 provides a conclusion, summarizes the contribution and limitations,
and also points out future works.

2. Literature Review
2.1. Different Types of Traffic Trajectory Data
2.1.1. Vision-Based Trajectory Data

Cameras have been utilized in the transportation field for many years. Initially, they
were used to taking photos and backup videos for traffic violation cases such as speeding.
To track road users, researchers in the early years would record the changing location of
the interested road users based on the frame-by-frame images from video cameras [7].
However, this method is time-consuming, and the data quality is prone to human errors
which cannot be predicted and avoided.

In modern times, with the advancement of computer vision technology, road users can
be automatically identified and tracked in videos using algorithms [8]. Through machine
learning algorithms, the background noise can be filtered out, traffic lanes can be identified,
and all the moving objects can be recognized and categorized, as shown in Figure 1.
Converting the moving objects in the video into trajectory data with spatial coordinates
poses a significant challenge, which involves generating depth information from the video.
The principles and detailed explanation are provided in Section 2.2. Nevertheless, the
accuracy of this advanced vision-based trajectory data is highly dependent on the quality
of the videos [9].
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Figure 1. Pedestrian crossing captured by computer vision [10].

Both detection accuracy and range have been questioned in extreme weather, poor
lighting, and low-resolution conditions [11].

2.1.2. Radar-Based Trajectory Data

Radar has been applied in the transportation field for speed measurement and vehicle
existence detection for decades due to its strong Doppler velocity sensitivity and resistance
to adverse weather conditions [12,13]. Since Radar provides relative distance information
between the detected target and the sensor, Radar is considered a potentially reliable
source of trajectory data. However, Radar suffers from its limited angular resolution,
causing confusion when multiple targets exist within its beamwidth [14]. This limitation
hinders the guarantee of high-quality trajectory data. To address this issue, researchers
have proposed Radar and camera fusion techniques to enhance target classification and
tracking [15,16]. It shows good progression, but two main challenges persist. Firstly,
performance in complex scenarios is often compromised, leading to missing objects and
interference from background noise due to imperfect algorithms, target occlusion, or
changes in the background. Secondly, the localization accuracy decreases as the distance
between the target and the sensor increases [17].

Currently, with remarkable advancements in sensing technology, advanced Radars,
such as Inverse Synthetic Aperture Radar (ISAR) [18,19], millimeter-wave linear frequency-
modulated continuous-wave (LFMCW) radar [20], and 79 GHz ultra-bandwidth radar [21],
have overcome the limitations of low resolution and demonstrated their viability for
traffic surveillance.

2.1.3. LiDAR-Based Trajectory Data

Similar to Radar, LiDAR is a remote sensing technology for determining variable
distance by measuring the time difference between the laser being transmitted from the
transmitter and reflected back to the receiver. This technology finds extensive applications
across various fields. In the transportation domain, LiDAR is predominantly employed
as an onboard sensor for autonomous vehicles, owing to its favorable performance in
low-light conditions and long detection range. However, there has been a growing interest
in exploring the potential of LiDAR as a roadside sensor in recent years. Roadside LiDAR
systems utilize distance data to perform three-dimensional (3D) stereo modeling, generating
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dynamic point cloud 3D models over time, as depicted in Figure 2. Through processes such
as background filtering, clustering, and referencing, individual road users can be classified
and tracked effectively [22].
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2.1.4. Other Types of Trajectory Data

Recall trip data: The prototype of trajectory data is the recall trip data. Recall trip data
typically comprises basic trip details, such as the origin and destination locations, along
with their corresponding timestamps. Additional information, such as intermediate stop-by
locations and their timestamps, may also be included in more detailed datasets. In the early
stages, this type of data was commonly collected through telephone interviews or daily
travel diaries. However, it is important to acknowledge that driver-self-reported recall trip
data may be subject to accuracy limitations. This is because of the fact that drivers often
struggle to accurately recollect all the places they have visited and the exact times of arrival
at each location. Consequently, shorter trips, such as visits to the pharmacy or post office,
are more susceptible to being omitted.

Global Positioning System (GPS) data: Initially limited to military use, GPS has
been made available for civilian use since the 1980s. GPS originally appeared in the
transportation field in the late 1990s to be an alternative to recall trip data. The Federal
Highway Administration (FHWA) and the U.S. Department of Transportation (USDOT)
deployed GPS devices in some private cars in the Lexington area to compare with recall
data [23]. Presently, most smartphones and cars come equipped with built-in GPS modules,
inspiring engineers to develop more GPS-based trajectory data collection methods as a
replacement for dedicated GPS devices [24].

Smartphone-based trajectory data has gained popularity due to the utilization of
mobile signals and internet connectivity to enhance GPS positioning accuracy. Additionally,
this approach reduces costs and allows for the collection of data from non-vehicle road
users, such as pedestrians and bicyclists [25]. However, research indicates that smartphones
have a shorter warm-up time to provide the initial location but also have drawbacks such as
shorter battery life and lower positioning accuracy compared to dedicated GPS devices [26].

Another emerging source of GPS-based trajectory is provided by some connected-
vehicle (CV) original equipment manufacturers (OEMs). These connected vehicles are
equipped with built-in GPS devices that continuously update real-time information to the
OEMs’ data centers. As a result, OEMs can generate anonymized trajectory data, including
geolocation, timestamp, heading, speed, and acceleration/deceleration information [27].
This type of data has gained popularity as it covers a wide range of cities and can be readily
obtained from third-party commercial data providers. However, one limitation is that the
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penetration rate of connected vehicles remains relatively low, and the rates vary across
different areas and roads, requiring further investigation and analysis.

2.2. Trajectory Data Processing
2.2.1. LiDAR-Based Data Processing

Background filtering: Background filtering is a crucial initial step in the processing
of LiDAR data. Its purpose is to effectively remove irrelevant data points that do not
contribute to the research objectives, such as those reflected back from trees, buildings,
and the ground. Meanwhile, it aims to retain the necessary data points representing
objects of interest, such as cars, pedestrians, or wildlife. The challenge lies in accurately
distinguishing between the points that should be preserved and those that should be
filtered out within a dynamic point cloud output. Due to the slight LiDAR vibration and
the influence of wind, the points reflected by objects are not entirely static, which adds
complexity to the background filtering process. To address this challenge, a method named
3D density statistic filtering (3DDSF) has been used.

This method employs a process that involves overlapping the output of multiple
LiDAR frames and dividing the space into small cubes with a side length of 0.05 mm.
Each cube’s point count is recorded, and based on whether the number of points in a cube
exceeds a predefined threshold, it is classified as either background or non-background.
The threshold values are determined through machine learning, with different cubes having
different thresholds. The distance between the cube and the LiDAR is a crucial factor in
determining the threshold. Once all the cubes are defined, the points within the cubes
classified as background are filtered out, retaining only the points within the cubes defined
as “non-background”. This method achieves a remarkable accuracy of 99.2% [22].

The next step is object clustering. This step aims to classify each filtered point based on
its similarity. To achieve this, an improved version of the density-based spatial clustering
applications with noise (DBSCAN) method was employed, utilizing an adaptive minimum
number of points (MinPts) value. This approach offers the advantage of not requiring a
predefined number of objects (road users), which is particularly valuable in traffic analysis
where the exact number of road users cannot be determined in advance. The method
categorizes all points in the dataset into core points, border points, and noise while defining
two important parameters: the minimum number of points (MinPts) and the search radius
(ε). If the number of similar points within the search radius exceeds the minimum number
of points (MinPts), these points are considered part of the same object. Different objects
have a different minimum number of points (MinPts) values, with smaller values assigned
to objects farther away from the LiDAR.

The last step in the data processing pipeline is object tracking, which involves obtaining
the trajectory of the same object across different frames. The main challenge in this step is
determining whether the point cloud corresponds to the same object in different frames.
Our team has developed a prediction method based on Kalman filtering to address this
challenge. By analyzing the position and speed of the objects, we can predict where they
are likely to appear in the next frame and define a search area accordingly. Objects within
this prediction range in the subsequent frame are considered to be the same object. If the
search area in the second frame contains multiple objects, the one closest to the position of
the object in the previous frame is selected as the associated object. Once the associated
object is identified, its position and velocity measurements are updated and used to predict
the object’s location in the next frame. If no suitable candidate is found within a certain
number of frames within the prediction area of an object, the tracking process is terminated.

2.2.2. Vision-Based Data Processing

The principle of generating vision-based trajectories differs from the LiDAR-based
method. In the case of LiDAR, the raw data consists of point clouds captured over different
frames, with each point’s relative spatial location easily determined based on its direction
and distance information from the LiDAR origin. In contrast, the raw data in vision-based
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systems comprises video data, consisting of two-dimensional (2D) images that change over
time. Each image consists of multiple pixels, which provide color information. The main
challenge in this method lies in detecting objects and determining their spatial information
based on 2D video data.

Stereo cameras have emerged as a popular solution to address this challenge. By
utilizing multiple cameras, objects can be captured from different angles, allowing for the
estimation of object depth through triangulation. The following section will outline the
general procedure of how a stereo-camera tracking system operates.

The first step in the tracking system involves extracting road users from the video.
For vision-based object extraction, there are two major approaches: motion-based and
appearance-based. The motion-based method utilizes multiple frames and focuses on
changes in image color. It involves filtering the background and extracting the color
changes observed over different time frames. The limitation of this method is that this
method can only capture changes in the image and may mistakenly classify stationary
objects as part of the background, resulting in their removal. Additionally, this method
may not remove noise effectively. The appearance-based method has gained popularity. It
leverages artificial intelligence and machine learning techniques to directly identify objects
based on their unique visual features, such as shape, color, and texture. This method
is capable of detecting stationary objects and exhibits better resistance to noise. It also
facilitates the subsequent object-tracking process, which will be discussed in detail in the
object-tracking section. However, it should be noted that the appearance-based method
significantly increases computational complexity.

Once the same unique feature of an object is captured by two or more cameras, the
depth of the object can be estimated using triangulation calculation. Depth is the distance
between the image plane and the corresponding object, which is a critical parameter used
to determine the spatial location of the object. Figure 3 illustrates the configuration of a
simple stereo imaging system: a feature point P, which has a global three-dimensional
coordinate of (X, Y, Z), is projected onto two parallel camera planes, and the projection has a
local two-dimensional coordinate of (x1, y1) and (x2, y2), respectively. The local coordinates
can be automatically obtained by a transformation matrix, which is determined by the
specifications of the hardware (cameras). Once the relative distance between two cameras,
i.e., the distance between two optical centers, Oc1 and Oc2 is obtained, the relationship
between P, P1, and P2 can be addressed, then the global coordinate of P can be calculated
based on their triangle relationship and the transformation matrix.
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After detection and 3D mapping, the trajectory of the object, i.e., the location of the
object in every time frame, can be generated by tracking the object. The challenge of object
tracking is how to associate the same object in different frames. Similar to object detection,
AI-feature-based technology can be used to recognize the same object in different frames by
identifying the same unique appearance feature. Once the object is tracked, the trajectory
points can be obtained based on the spatial information generated from depth estimation.

2.3. Applications on Trajectory Data
2.3.1. Smart City

In general, trajectory data can be categorized into two types: macroscopic low-
frequency trajectory data and microscopic high-frequency trajectory data. These two kinds
of data serve different purposes and are sometimes used in combination. Macroscopic
trajectory data typically includes long trajectory data of a subset of the road users in a road
network, recording from the time when the driver starts the engine until the driver stops
the engine. Due to limitations in communication technology and data size, the frequency of
macro-trajectories is relatively low, with location information typically refreshed every few
seconds. This kind of data is of great help to the planning of the large road network. Based
on the trajectory of part of the total vehicles, the traffic flow and traffic volume of different
road sections in the road network can be estimated [28–30]. The travel time, average speed,
and route selection of vehicles passing through each road section provided by trajectory can
be used to access the real-time traffic state of each road section [31,32]. The OD information
provided by macro trajectory data can be used to analyze drivers’ travel patterns and
investigate time-dependent attractive areas [33]. In addition, macroscopic trajectory data is
also very helpful in traffic visualization. Since trajectory data has geolocation information,
it can be readily projected onto the map for a series of visualization purposes, such as
building an urban traffic congestion visualization system [34]. These visualizations can help
better display the traffic states of the road network and help researchers provide strategies
more effectively.

2.3.2. Traffic Safety

Before the introduction of trajectory data, historical crash data was the major data
source for traffic safety analysis. However, it had several limitations. Firstly, crashes may
not be fully reported; those under-reporting crashes significantly influence the result of the
analysis. Secondly, crashes occur randomly, and their frequency is relatively low. Collecting
sufficient crash data to build meaningful statistical models requires a significant amount of
time. To overcome these limitations, researchers have adopted a new approach to traffic
safety analysis: studying traffic conflicts, also known as near misses or near-crashes [35].
Traffic conflicts refer to events on the road that have the potential to result in actual crashes.
Unlike real crashes, traffic conflicts occur more frequently in real-world traffic, making
them easier to capture and saving time on data collection. However, unlike crashes, traffic
conflicts cannot be readily defined using a strict numerical equation. There are numerous
parameters used to define traffic conflicts, such as Time to Accident (TA), Time-to-Collision
(TTC), Post-encroachment Time (PET), and maximum deceleration (MaxD), among others.
These parameters rely on the spatial-temporal relationships between road users provided
by trajectory data. Researchers usually use various combinations of these parameters to set
thresholds to define different kinds of traffic conflicts. By analyzing conflicts, researchers
can gain better insights into drivers’ driving behavior [36], assess risk levels for roads
and intersections, and predict possible risks and high-risk locations. A lane-changing
risk index has been developed to evaluate the safety of lane-change events [37]. Another
trajectory-based lane change study indicated that during lane changing, the following cars
in the original lane and the target lane were the safest and riskiest vehicles, respectively [38].
In addition to the conflicts between vehicles, studies of pedestrian and bicycle safety were
also conducted. Zhou et al. used vision-based trajectory data to investigate the probability
of vehicle-pedestrian crashes [39]. Critical bus driving events extracted from GPS trajectory
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were utilized to be an alternative to surrogate safety measurement for bus stops [40].
Compared to the traditional historical crash data, the biggest advantage of conflict study
based on trajectory data is that it can be used for proactive safety analysis [41], not only for
reactive safety analysis. The causes of conflicts and crashes are considered to be the same [42],
so by identifying and studying traffic conflicts, high-risk areas prone to crashes could be
estimated [43]; in other words, the occurrence of crashes can be predicted [44–48]. Recent
studies have applied trajectory-based conflict detection to real-time traffic infrastructures
to warn drivers/pedestrians who are in risky situations [49].

2.3.3. Environmental Impacts

Fuel consumption and greenhouse gas (GHG) emissions have become prominent
issues of concern in recent years, prompting researchers to focus on finding ways to reduce
vehicular traffic emissions. Vehicle exhaust emissions are a significant contributor to overall
air pollution and greenhouse gas emissions, accounting for 45% of total air pollutants
in the United States, according to the National Research Council (1995) [50]. Accurately
estimating vehicle emissions during trips and understanding the factors that influence
emission levels are crucial for effective gas mitigation strategies. However, estimating
emissions accurately is challenging due to the variability in driving behavior and its impact
on emissions [51]. The advent of trajectory data has significantly advanced research in
this field. High-frequency trajectory data, providing instantaneous speed and acceleration
information, serve as critical parameters for estimating vehicle fuel consumption and
emissions [52].

There are lots of studies about the estimation of emission based on different types of
trajectory data: Zhou et al. [53] proposed an estimation approach to combine a simplified
MOVES model [54] with a mesoscopic simulation model. Kraschl-Hirschmann et al. [55]
conducted a method using microscopic-simulated trajectory data. Martin et al. [56] applied
a fuel consumption model to the NGSIM trajectory dataset to investigate the impact of
traffic jams on fuel consumption and emissions. Chen et al. [57] estimated fuel consumption
and emission based on reconstructed vehicle trajectories. There are also studies based on
GPS data [58], floating car data [59], and mobile sensing data [60].

In terms of fuel optimization, Alsabaan et al. [61] proposed a method to optimize fuel
cost and emission based on V2V communications. Wang et al. [62] developed a nonlinear
model predictive control (MPC) method to reduce additional emissions due to human
factors, i.e., inaccurate driver perception of space and/or time interval via longitudinal
control of intelligent vehicles in a congested platoon. L.L. Lemos [63] conducted another
intersection-level control to minimize vehicular air pollution.

In addition, Wu et al. [64] conducted a traffic experiment to get vehicle trajectories and
each vehicle’s fuel rate by using 360-degree cameras and onboard diagnostic (OBD-II) scanners.
This dataset contains accurate vehicle location information and fuel rate at each timestamp,
which can be used to improve fuel consumption models and investigate engine emissions.

3. Comparison of Trajectory Output

Regardless of what methods/technologies LiDAR and cameras use to process the raw
data, their outputs are the same: the trajectories of road users with a certain frequency.
This section compares the two trajectory outputs in terms of general location accuracy,
volume counting accuracy, detection range, and speed. Both LiDAR-based and vision-
based trajectory data in this study have a frequency of 10 Hz. The data collection took
place at the intersection of Pyramid Way and Los Altos Pkwy in Sparks, NV, between
12:00 a.m. 23 December to 12:00 a.m. 24 December. Four GoPRO HERO8 cameras were
placed at each corner to ensure coverage of all four legs of the intersection. A Velodyne
VLP32 LiDAR sensor was installed at the northeast corner. The installation locations for
the LiDAR sensor and cameras are depicted in Figure 4. It should be noted that because
the separate right-turn lanes are not covered by the cameras, right-turn vehicles are not
included in this study.
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3.1. Trajectory General Location Accuracy

Figure 5 displays two sets of 30 min data, one from 12:00 a.m. to 12:30 p.m. on
23 December (left) and from 4:00 a.m. to 4:30 a.m. on 24 December (right); the pink points
represent the trajectory output from LiDAR, and the green points represent the trajectory
output from the camera. Upon initial observation, it can be noted that both LiDAR and
camera trajectories align well with the lanes. However, it is evident that the detection range
of the vision-based trajectory is shorter compared to that of LiDAR, both in the daytime
and nighttime conditions. A more detailed analysis of the detection range will be provided
and discussed later in this article.
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3.2. Vehicle Volume Count Accuracy

The volume counts are not generated automatically but can be obtained by counting the
different object IDs in each lane. To facilitate this process, detection zones are set up in the
ArcGIS (ver. 10.0) [65], as illustrated in Figure 6. The number of unique objects within each
detection zone can be automatically counted using the built-in function of ArcGIS, enabling
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the determination of the volume for each movement. The obtained volume counts are then
compared with the ground truth volume data, which is manually collected by our team.
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The results of volume count accuracy for each movement are presented in Figure 7.
Each column represents the percentage of accuracy achieved by the sensor for the corre-
sponding movement, including northbound through (NBT), northbound left turn (NBL),
southbound through (SBT), southbound left turn (SBL), eastbound through (EBT), east-
bound left turn (EBL), westbound through (WBT), and westbound left turn (WBL). The
numbers within each bracket indicate the actual number of vehicles for each movement
manually counted.
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Figure 7. Volume count accuracy for daytime volume (24 December 2020, 12:00 p.m.–12:30 p.m.).

During the daytime peak time from 12:00 p.m. to 12:30 p.m. on 24 December, both the
vision-based and LiDAR-based outputs demonstrated good performance, with an accuracy
rate of over 96% for all movements. Overall, LiDAR achieved slightly better accuracy than
computer vision, except for the eastbound left turn, northbound through, and northbound
left turn movements, where cameras exhibited better accuracy.
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For the nighttime period from 3:00 a.m. to 3:30 a.m. on 24 December, the accuracy of
both LiDAR and cameras was evaluated by comparing the results with manually counted
volume data. The LiDAR-based system achieved 100% accuracy for all movements. The
camera-based system also performed well, reaching 100% accuracy for all movements
except for the southbound through movement. For the southbound through movement,
the camera’s accuracy rate was 81.5%, as the cameras were able to capture 22 out of the
27 vehicles.

3.3. Detection Range

The detection range of the two different sensors, LiDAR and cameras, was evaluated
by setting four detection zones for each movement. Each zone was 50 ft long, with the
front edge of the first zone aligned with the stop bar. The detection range was assessed by
comparing the percentage difference of vehicles detected in each zone.

Figure 8 illustrates the detection rate of LiDAR for different movements at varying
distances from the stop bar. LiDAR achieves a 100% detection rate for vehicles within a
distance of 0 to 50 ft from the stop bar. However, as the distance increases, the detection
rates of the northbound and eastbound movements, which are farther from the installation
position of LiDAR on the northeast side of the intersection, show a more significant decline.
For the eastbound movement, the detection rate drops to 53% between 50 ft and 100 ft from
the stop bar, further decreasing to 11% between 100 ft and 150 ft. Similarly, the detection
range of the northbound movement decreases from 88% between 50 ft and 100 ft to 14%
between 100 ft and 150 ft from the stop bar. When the detection range extends from 150 ft to
200 ft from the stop bar, both the northbound and eastbound movements exhibit a detection
rate of only 2%. In contrast, the southbound and westbound movements maintain good
detection rates of 84% and 96%, respectively.
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Figure 8. LiDAR-based vehicle detection rate for each bound (23 December 2020, 12:00 p.m.–12:30 p.m.).

As shown in Figure 9, LiDAR performed similarly during the night as the day:
two bounds closer to the LiDAR installation location (northeast side of the intersection)
show better performance, the westbound maintains a detection rate of 100% in four zones,
and the southbound maintains detection rate of 100% in the first three zones (0 to 150 ft)
and decreases to 79% in the fourth zone (150 to 200 ft). The performance of northbound
and eastbound is slightly better than that in the daytime. The detection rate of eastbound
is 100% in 0 to 150 ft to the stop bar, but it is 0% in the area of 150 to 200 ft to the stop bar.
The northbound detection rate dropped from 100% to 42% at 100–150 ft to the stop bar and
continued dropping to 17% at 150–200 ft to the stop bar.
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Figure 9. LiDAR-based vehicle detection rate for each bound (24 December 2020, 3:00 a.m.–3:30 a.m.).

Figure 10 shows the detection rate of cameras from 23 December 2020, 12:00 p.m. to
12:30 p.m. It can be observed that even within the area of 0 to 50 ft from the stop bar, there
are instances where some vehicles cannot be detected by cameras. This suggests that a
portion of vehicles can only be detected after they have entered the intersection. As the
distance to the stop bar increases beyond 50 ft, the detection rates for all four movements
sharply decline. Very few vehicles can be detected when they are over 100 ft away from the
stop bar.
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Figure 10. Vision-based vehicle detection rate for each bound (23 December 2020, 12:00 p.m.–12:30 p.m.).

The performance of the vision-based trajectory detection rate at night is worse than
that in the daytime. As shown in Figure 11, for westbound, only 20% of the vehicles
(1 vehicle out of 5) can be detected before reaching the stop bar. The detection rates of both
eastbound and westbound are 0 when the detection range is 50 ft or longer to the stop bar,
and that of northbound and eastbound is only 8% and 7%, respectively.
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Figure 11. Vision-based vehicle detection rate for each bound (24 December 2020, 3:00 a.m.–3:30 a.m.).

3.4. Pedestrian Detection

Pedestrian detection is crucial for traffic safety analysis. In this study, data from a 4 h
daytime period and a 4 h nighttime period were selected to compare the performance of
the two sensors in detecting pedestrians. Figure 12 illustrates the trajectories of pedestrian
crossings from 23 December 2020, 12:00 p.m. to 4:00 p.m. By comparing the results with
manually counted values, it is evident that both LiDAR and computer vision accurately
captured all pedestrian activities. LiDAR was able to detect pedestrians before they entered
the intersection, whereas the camera-based trajectories showed shorter lengths. Some
pedestrians were only captured after they had already entered the crosswalk, as depicted
in Figure 12.
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During the nighttime period from 24 December 2020, 12:00 a.m. to 4:00 a.m., there were
four pedestrian crossings recorded. Among them, all four pedestrians were successfully
captured by the LiDAR sensor. However, none of these pedestrian crossings were captured
by the camera sensor.

3.5. Speed

The speed information can be calculated by calculating the distance difference over
time difference. Figure 13 shows the trajectories of one southbound left-turn vehicle
captured from both LiDAR and Video. Based on the trajectory data, the speed of the sample
vehicle in each frame is calculated, which is shown in Figure 14. Since the offset of the
location information can significantly affect the result of calculated speed, the speed is
smoothed by the MA (Moving Average) method to get closer to the real value. The raw
speed and smoothed speed information are shown in Figure 15.
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Figure 13. (a) Same vehicle trajectories captured by LiDAR; (b) same vehicle trajectories captured by
computer vision.
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Figure 14. The speed of the sample vehicle calculated based on trajectory location.
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Figure 15. Smoothed speed of the sample vehicle.

From the raw data, it can be observed that the magnitudes of speeds calculated by
the two sensors are similar. LiDAR exhibits greater fluctuation in speed, but it provides a
longer trajectory length compared to computer vision. The trajectory captured by LiDAR
encompasses the entire process of the vehicle, including deceleration towards the intersec-
tion, stopping at the intersection, and subsequent acceleration out of the intersection. This
comprehensive trajectory information is crucial for intersection-level analysis.

For pedestrian detection, since the size of the pedestrian is much smaller than that of
vehicles, the point reflected from pedestrians that LiDAR detects will also be significantly
reduced, thereby reducing the potential distance offsets caused by the fluctuation of the
reference point chosen on the object. This results in more accurate pedestrian speed
detection by LiDAR compared to vehicle speed detection. As shown in Figure 16, LiDAR
shows very good speed detection of pedestrians. On the contrary, the camera does not
perform well in speed detection of pedestrians; the detected pedestrian speed is significantly
higher than the normal walking speed of pedestrians (around 3–4 mph). Moreover, due to
the short detection range of the camera, the camera can only capture the data of pedestrians
walking on the crosswalk. As shown in Figure 17, the camera fails to capture pedestrians
entering the island or accurately measure their waiting time before crossing.
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Figure 17. (a) Sample pedestrian trajectories captured by camera; (b) sample pedestrian trajectories
captured by LiDAR.

Although the comparison of data indicates the superiority of current LiDAR-based
trajectories, data quality is not the sole criterion when selecting a data source. Other
factors, such as data storage, installation and maintenance accessibility, and cost, also
need to be taken into account. Considering the data quality analysis and other relevant
factors, Table 1 offers a general recommendation for researchers to consult when deciding
which type to utilize. Cells marked with a single black dot signify that the respective data
source exhibits good performance in that aspect; thus, the author suggests its use based on
such considerations.

Table 1. Summary of LiDAR-based and vision-based trajectory data collection and data quality.

Aspect LiDAR-Based Vision-Based Comments

Hardware Cost • Cameras are currently much cheaper than LiDAR

Maintenance Cost •
Video Camera is relatively easier to install and maintain

than LiDAR; once a LiDAR is broken, it must be sent
back to the manufacturer.

Software (data processing) Cost The data processing costs for LiDAR and cameras are
similar; both are expensive.

Data storage • Video needs much more storage space for the same time
period than LiDAR data.

Detection Range • LiDAR shows a longer detection range.

Daytime Vehicle Volume • • Both sensors show good daytime vehicle
counting capability.

Nighttime Vehicle Volume • Cameras may miss some vehicles at night.

Daytime Pedestrian Volume • • Both sensors show good daytime pedestrian
counting performance.

Nighttime Pedestrian Volume • The camera barely recognizes pedestrians in
poor-lighting conditions.

Vehicle Speed • • Both sensors generate decent vehicle speed information.

Pedestrian Speed • LiDAR shows brilliant speed detection for relatively
small objects, such as pedestrians/bicyclists.
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4. Conclusions

In conclusion, this study first outlines the significance of trajectory data within the
transportation industry, then presents a comprehensive overview of the various sources
and applications of trajectory data. This paper compares the leading LiDAR-based and
computer vision-based multi-model all-traffic trajectory data generated on the market
in terms of detection range, trajectory length, volume counting, and speed in different
lighting conditions.

The detection range of LiDAR and cameras was evaluated by dividing each movement
into four detection zones, with each zone spanning a length of 50 ft. LiDAR exhibited a
higher detection rate within the range of 0 to 50 ft from the stop bar compared to cameras.
As the distance increased, the detection rates for northbound and eastbound movements
significantly declined for both LiDAR and cameras. However, LiDAR maintained better
overall detection rates, especially for southbound and westbound movements. During the
nighttime, LiDAR maintained good detection rates for most movements, while cameras
struggled to detect vehicles beyond 50 ft from the stop bar.

The comparison of volume counting performance reveals that the LiDAR system excels
in maintaining consistent 96%+ accuracy regardless of lighting conditions, including both
daylight hours and nighttime. It demonstrates reliable vehicle and pedestrian detection
capabilities in various lighting conditions. In contrast, the vision-based system performs
well during the daytime but encounters challenges in accurately detecting pedestrians at
night. It failed to detect all four pedestrians during the nighttime period.

Both the LiDAR and camera systems demonstrate acceptable accuracy in measuring
vehicle speeds. After applying smoothing techniques to the data, both systems provide
reliable speed measurements. However, it is worth noting that the vision-based trajectory
data for pedestrian speeds exhibit significant fluctuations, which may require further
analysis and refinement.

To summarize, the LiDAR system offers advantages in terms of detection range and
resilience to lighting conditions, making it a favorable choice for applications requiring
precise and consistent trajectory data. The camera system can also provide valuable data,
especially for vehicle speed measurements, with the understanding of its limitations in
pedestrian detection. Researchers and practitioners should consider these factors when
selecting the most appropriate sensor for their specific needs.

This paper’s analysis is limited to the data output of a single intersection with low
pedestrian traffic. To further understand the comparison between LiDAR-based and vision-
based multi-model all-traffic trajectory data, more comprehensive studies are necessary,
including those involving urban intersections with high pedestrian traffic. The camera may
prove to be more accurate and efficient in these situations due to its improved pedestrian
recognition capabilities.
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