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Abstract: Infrared images have been widely used in many research areas, such as target detection
and scene monitoring. Therefore, the copyright protection of infrared images is very important. In
order to accomplish the goal of image-copyright protection, a large number of image-steganography
algorithms have been studied in the last two decades. Most of the existing image-steganography
algorithms hide information based on the prediction error of pixels. Consequently, reducing the
prediction error of pixels is very important for steganography algorithms. In this paper, we pro-
pose a novel framework SSCNNP: a Convolutional Neural-Network Predictor (CNNP) based on
Smooth-Wavelet Transform (SWT) and Squeeze-Excitation (SE) attention for infrared image predic-
tion, which combines Convolutional Neural Network (CNN) with SWT. Firstly, the Super-Resolution
Convolutional Neural Network (SRCNN) and SWT are used for preprocessing half of the input
infrared image. Then, CNNP is applied to predict the other half of the infrared image. To improve
the prediction accuracy of CNNP, an attention mechanism is added to the proposed model. The
experimental results demonstrate that the proposed algorithm reduces the prediction error of the
pixels due to full utilization of the features around the pixel in both the spatial and the frequency
domain. Moreover, the proposed model does not require either expensive equipment or a large
amount of storage space during the training process. Experimental results show that the proposed
algorithm had good performances in terms of imperceptibility and watermarking capacity compared
with advanced steganography algorithms. The proposed algorithm improved the PSNR by 0.17 on
average with the same watermark capacity.

Keywords: infrared images; steganography; convolutional neural network; CNN-based predictor;
SWT; SRCNN; CNNP

1. Introduction

Recently, infrared images have been widely used in many real-time applications, such
as pedestrian segmentation [1], salient object detection [2], object fusion tracking [3], and
invisible clothing [4]. Compared with visible images, infrared images are also able to obtain
temperature information of scenes and human bodies. Furthermore, they provide good
visual effects in dark environments. Consequently, infrared images can provide new ideas
for visible scenes in many different research fields.

Therefore, many researchers have proposed several image-processing algorithms
based on infrared images. Most of these algorithms were based on fusing infrared images
with visible images. The infrared images usually have the disadvantages of low texture
details and more noise, which are the advantages of visible images. Thus, the idea of
fusing both visible and infrared images is required to reconstruct a synthesized image
containing prominent targets and abundant texture details. Many researchers have used
multi-scale transforms to extract and match the features for both images. For example,
Chen et al. [5] applied Laplace’s pyramid for infrared and visible images to obtain high-
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and low-frequency information, respectively. They applied regularization parameters and
hence adjusted the scale of the features to achieve the flexible fusion of the two images.
Yang et al. [6] used a sparse representation based on multi-scale decomposition to fuse out
a base layer. This layer improved the accuracy of image integration. Unlike the multi-scale
transform that was applied in [5,6], Li et al. [7] decomposed infrared images with visible
images based on Latent Low-Rank Representation (LatLRR). The above-mentioned algo-
rithms used traditional methods for infrared- and visible-images fusion. After Luo et al. [8]
obtained infrared images using a Fourier Transform Infrared Spectrometer, they analyzed
the changes in image details to grasp the evolution of specific microstructures.

Image-feature extraction has a very important position in all of the above algorithms.
Thus, Wang et al. [9] improved the accuracy of feature extraction based on the ensemble-
learning algorithm. Convolution Neural Networks (CNNs) are able to extract features of
images very intelligently. Compared with traditional algorithms, CNN has better results in
image-feature extraction. For example, Ao et al. [10] used CNN to extract images of patient-
specific organs for local treatment. Fu et al. [11] proposed the depth-estimation algorithm
for extracting simple and complex textures based on CNN. Wang et al. [12] investigated a
multispecies transferable algorithm to improve the prediction accuracy of the CNN model.
Zhang et al. [13] proposed a new classifier applied to an electroencephalogram for the
overfitting phenomenon of CNN-model features. Deng et al. [14] applied CNNs to the field
of natural-language processing to solve the challenge of non-action question and answer.
Liu et al. [15] found that the global perception capability of CNNs needs to be improved.
Therefore, they combined a Fast Fourier Transform with CNN to improve the performance
of the model. Moreover, CNN has derived more novel models in various research areas in
the last decade.

Furthermore, with the rapid development of machine learning and CNN, many neural-
network-based algorithms have been applied for fusing infrared images and visible images.
The Generative Adversarial Network (GAN) is widely used for infrared- and visible-image
fusion [16–18]. Ma et al. [16] proposed the FusionGAN model, which is capable of fusing
images with different resolutions. The FusionGAN generator first classified the features of
infrared images and then fused them with visible images. The discriminator ensured that
the fused images had more details of visible images. Additionally, a dual discriminator
was added to the GAN for multi-resolution image fusion and was successfully applied
for multi-modal medical images [17]. Ma et al. [18] presented the Generative Adversarial
Network with Multiclassification Constraints (GANMcC)-based fusion model to estimate
the distribution functions for both infrared and visible images. They introduced a spe-
cific content-loss function to constrain the generator. In addition to the classical GAN
models, new customized models for infrared-image fusion have been presented [19,20].
Zhang et al. [19] proposed a low-time-complexity image-fusion CNN based on the Pro-
portional Maintenance of Gradient and Intensity (PMGI) model. Their proposed model is
capable of being used for different image-fusion tasks such as fusing visible and infrared
images, fusing medical images, fusing multi-exposure images, and fusing multi-focus im-
ages [19]. Most of the existing deep-learning-based algorithms use convolution operation
to extract local features but have not combined the network’s multi-scale characteristics
and global dependencies, which may result in a disadvantage of target regions and texture
details for fusing two types of images. Consequently, Wang et al. [20] combined the multi-
scale transform with a self-encoder and applied an attention mechanism to fuse infrared
images more accurately with visible images. They employed dense skip connections in
both watermark embedding and watermark extraction to reuse the intermediate features of
several layers and scales for fusing images [20].

The copyright protection of infrared images has captured many researchers’ attention
recently. Image steganography is one of the commonly used algorithms to protect the
copyright of images. In the literature, many image-steganography algorithms have been
proposed to hide information based on pixel-prediction error. Li et al. [21] presented a
reversible data-hiding algorithm that combined both Pixel-Value Ordering (PVO) and
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Prediction-Error Expansion (PEE). The PVO algorithm performs pixel prediction based on
ordering pixels according to their values in an image block. However, their method failed
to provide sufficient embedding positions by applying only one bin as the inner region.
Ou et al. [22] extended the PVO method [21] and proposed PVO-k, where the maximum-
value and minimum-value pixels in a block are taken as a unit to hide the watermark and
were modified together to keep the PVO invariant. These PVO-based methods [21,22]
performed splendidly, especially for low embedding capacity. However, a smaller block
size should be applied to obtain a high embedding capacity, which causes more degrada-
tions in the quality of the watermarked image. Therefore, Wang et al. [23] improved the
performance of the PVO-based methods and proposed a reversible data-hiding method
based on dividing the cover image into a dynamic size of image blocks instead of applying
same-sized blocks. Weng et al. [24] discovered that most of the improved PVO-based algo-
rithms are applied to predict the pixels that occupy only a small fraction of the image block.
Thus, they proposed a Dynamic Improved PVO (DIPVO) algorithm based on graded local
complexity to dynamically hide information. Zhang et al. [25] proposed the Location-based
PVO (LPVO) algorithm to solve the problem of irregular prediction-error distribution of
PVO-based algorithms. The LPVO algorithm simultaneously considers the sequential
location of pixel values, which makes more pixels available for image steganography.

In this paper, the infrared image is firstly divided into two sets: Dot sets and Cross
sets. Secondly, we use the method of Super-Resolution based on deep CNN (SRCNN) [26]
to pre-process half of the original image. This step refers to the image-super-resolution
algorithm based on signal preprocessing proposed by Huang et al. [27]. Then, we apply
Smooth Wavelet Transform (SWT) to extract high- and low-frequency sub-bands of the
image. Thirdly, the CNN-based Predictor (CNNP) [28] is employed with a few attention-
network layers to improve the accuracy of the pixel prediction. Finally, to make the process
of the algorithm reversible, we proposed to train models that can recover the image and
extract information simultaneously. The main contributions of this paper are as follows:

1. Pixels in the same position have better prediction accuracy. Therefore, we employ
SRCNN for pre-processing the Cross set of the infrared image to predict the Dot set of
the original image, which reduces pixel-prediction errors.

2. We apply SWT for extracting image-frequency-domain features to improve the predic-
tion performance of the spatial CNN models. Furthermore, we employ the improved
CNNP model on the image and frequency-domain features. The features in the spatial
and frequency domains improve the accuracy of the training stage.

3. An attention mechanism is added to the CNNP model. This allows the extracted
features to be ranked according to their importance. The attention mechanism will
also speed up the model training and improve the performance of the testing stage of
the model.

The rest of this paper is organized as follows: Section 2 summarizes the related works,
including the basic idea behind the SRCNN model and the CNNP model. Section 3 presents
the proposed method in detail. The experimental results and performance analysis of the
proposed algorithm compared with other algorithms are shown in Section 4. Finally, the
conclusion and some future directions can be found in Section 5.

2. Related Works

Recently, CNN-based image-steganography algorithms have become a popular re-
search direction. Luo et al. [29] used DenseNet to extract high-level semantic features
of each block instead of low-level features and then hide information by using DCT.
Sharma et al. [30] combined steganography with cryptography, and they used CNN for
image steganography and image recovery. Similarly, Hu et al. [28] proposed a CNN-
based Predictor (CNNP). They applied the same structure of the CNN model for image
steganography and image recovery, but the training set was different. Hu et al. [31] im-
proved the structure of the model and introduced the concept of chunking to improve
the accuracy of pixel prediction. The CNN-based models presented by Hu et al. [28] and
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Hu et al. [31] were very small and the training process could be run on the CPU. Further-
more, Panchikkil et al. [32] applied Arnold-transform-based data hiding to improve the
performance of image recovery, where each block underwent some complex scrambling
processes based on the watermark information required for embedding in the selected
block. Their method has two segments: a watermark-embedding segment that hides confi-
dential information in the cover image, and a watermark-extraction segment that recovers
the original cover image and extracts the watermark information [32].

Overall, CNN-based algorithms have excellent performance in image steganography
in the spatial domain, but the combination with the traditional frequency-domain trans-
forms should not be neglected. The algorithms based on the spatial domain directly process
the pixels in the image, and the frequency domain is a variety of high- or low-frequency
sub-bands that are created by an image-transform algorithm. With this in mind this,
Liu et al. [33] combined U-Net with Haar Wavelet Transform (HWT). HWT was applied to
extract high- and low-frequency features of the image. Then, the U-Net was used to hide
information in the original image. In this paper, the model of Super-Resolution based on
deep CNN (SRCNN) [26] was applied to pre-process the infrared image and combine it
with its corresponding SWT sub-bands. Furthermore, we applied the CNNP model [28]
on the image and frequency-domain features. The features in the spatial and frequency
domains improved the accuracy of the training step and hence improved the prediction
accuracy of the proposed algorithm.

2.1. SRCNN Model

Dong et al. [26] presented the first machine-learning framework of SRCNN for single-
image Super Resolution (SR). In the pre-processing process, they applied bilateral interpola-
tion for upsampling the original image Ico to the desired size. Bilinear interpolation enables
fast and relatively accurate upsampling of images. The image at this Dot set is defined as
the interpolated image Ibi. The general structure of the SRCNN model is shown in Figure 1.
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SRCNN aims to recover an interpolated image Ibi from an image F(Ibi) that is mostly
similar to a high-definition (HD) image Isr. The algorithm should ensure that the output
result of F(Ibi): HD image Isr as close as possible to the interpolated image Ibi. The SRCNN
algorithm can be divided into three main steps: patch extraction, nonlinear mapping,
and image reconstruction. Intensive patch extraction is a very popular strategy for image
recovery. Moreover, feature extraction and representation of the patches in a reasonable
way plays a key role in the image-SR algorithm. Thus, the first layer of the SRCNN model
is represented in Equation (1) as follows:

F1(Ibi) = max(0, W1 ∗ Ibi + B1) (1)

where W1 is a filter for extracting features, B1 is a parameter for adjusting the bias, and ∗
represents the convolution operation. First, W1 extracts the features from the interpolated
image Ibi. Then, the ReLU activation function is applied to correct the extracted features.
Hence, plenty of features can be obtained in the patch-extraction step, whereas in the
nonlinear-mapping step, more features are further extracted and then classified. The
calculation process is shown in Equation (2) as follows:

F2(Ibi) = max(0, W2 ∗ F1(Ibi) + B2) (2)
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where W2 is a filter for extracting features, and B2 is a parameter for adjusting the bias. The-
oretically, more convolutional layers can be added in this step to improve the performance
of the model, but the complexity of the model and the training cost will also be increased. In
transform-based algorithms of the frequency domain, the predicted overlapping blocks of
SR pixels are usually averaged to generate a good image recovery. In order to improve the
image-prediction accuracy of the model, we need to increase the number of convolutional
layers to improve the perceptual field of the convolutional kernel. This reduces the error of
the model-output results and is also more beneficial for the subsequent information-hiding
step. Inspired by traditional algorithms, the SRCNN model incorporates a dialogue layer.
Equation (3) shows how this dialogue layer is computed.

F(Ibi) = W3 ∗ F2(Ibi) + B3 (3)

Let the parameters to be learned by the SRCNN model be: Θ = {W1, W2, W3, B1, B2, B3}.
Then, for the set of HD images Isr and the corresponding interpolated images Ibi, the loss
function is defined as the Mean-Square-Error (MSE) function as follows:

LSR = Average∑ ‖F(Ibi, Θ)− Isr‖2 (4)

The MSE loss function tends to result in high-quality images for the algorithm. The
SRCNN model is obtained when the value of the loss function meets the requirements of
the model training.

2.2. CNNP Model

The CNNP model [28] is a CNN-based framework for image steganography. The
structure of the model is very simple and does not require the GPU server during the
model-training phase. Furthermore, it makes full use of the excellent extraction capability
of CNN for global features, which makes the watermark capacity exceed many traditional
image-steganography algorithms. The CNNP model firstly divides the images into two
groups equally, as shown in Figure 2, which are named the Cross collection and the Dot
collection. The algorithm then predicts the Dot collection ID by the Cross collection IC.
Next, the predicted Dot collection I′D is input into the CNNP model to predict the Cross
collection IC. Finally, they combine the predicted Cross collection I′C with the predicted
Dot collection I′D to obtain the full predicted image. The main structure of the CNNP
model is shown in Figure 3.
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The model consists of several convolutional blocks. Each convolutional block consists
of K×K convolutional layers, a LeakyReLU activation function, and 3 × 3 convolutional
layers. The algorithm applies a two-stage information-hiding approach. Firstly, the error
between the Dot collection ID and predicted Dot collection I′D needs to be calculated,
and then the appropriate prediction error (usually 0) is selected for image steganography.
The information-hiding process for the Cross-set images IC is the same as that for the Dot
collection ID. Furthermore, the algorithm flow of CNNP is reversible. In the flow of image
recovery, the CNNP model is applied first to recover the Cross collection IC, and then the
Cross collection IC is input into the model to recover the Dot collection ID.

3. Proposed Algorithm

The proposed method contains three main aspects: image steganography, image
recovery, and information extraction. For the information-hiding process, we firstly divide
the input infrared image into two sets: the Cross collection IC and the Dot collection ID,
as shown in Figure 2. Then, the watermarked Dot collection ID,W is used to predict the
Cross collection IC. The prediction process is performed by SRCNN and SWT for the
Cross collection IC and Dot collection ID, respectively. The CNNP model for predicting
infrared images is also incorporated into the attention layers to improve the accuracy of the
prediction. After the full predicted image IW is obtained, the watermarking information
is embedded into the infrared image. Furthermore, information-extraction and image-
recovery processes are then performed simultaneously. The watermarked Cross collection
IC,W is first applied to predict the Dot collection ID and the watermark is extracted based
on the prediction error. The process for recovering the Cross collection IC and extracting
the information is done in the same way.

3.1. Image Steganography

In image-steganography step, two CNN-based models are employed: the SRCNN
model and the CNNP model. Moreover, SWT is employed to extract the frequency-domain
features of the infrared image. The overall structure of the proposed steganography
algorithm is shown in Algorithm 1 and Figure 4a. Figure 4b indicates the process of
SSCNNP (SRCNN followed by CNNP based on the SE layer).

Algorithm 1: General flow of the algorithm

1: Image is divided into collections of Cross/Dot IC,co/ID,co.
2: SRCNN preprocesses the IC,co/ID,co.
3: SWT decomposes the result of SRCNN ID,sr/IC,sr.
4: SE-CNNP predicts the ID,co/IC,co.
5: Reversible hiding or extraction of information.
6: Steps 2~5 for the other half of the image.
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Figure 4. General flow diagram of the proposed image steganography. (a) The inputs of the SSCNNP
model are the Cross image IC and the watermarked Dot image ID,W . These two model outputs are
computed with the error of the Dot image ID and the Cross image IC. Finally, reversible embedding
is performed based on the error. Two types of watermarked images form the watermarked image IW .
(b) Low-frequency sub-bands are signals with lower frequencies and generally preserve the contours
of the image. The high-frequency signal is the signal with the high frequency and generally preserves
the noise and details of the image. (a) The proposed image-steganography flow steps; (b) the structure
of the proposed SSCNNP (SRCNN followed by CNNP) algorithm. ‘C’ means concatenating features
according to the third dimension.

Image steganography can be divided into four main steps: initial image prediction,
SWT decomposition, CNNP-based image prediction, and difference-histogram translation.
These segments are carefully described in the following subsections.

3.1.1. Initial Image Prediction

Inspired by the SRCNN model for image SR, the initial prediction stage of the image in
the proposed method aims to take up as few resources as possible to predict the information
of neighboring pixels accurately. Empirically, the CNN model is trained better for input
and output images with the same pixel positions. Therefore, if we apply the Cross/Dot
IC/ID collections to predict each other, the prediction error can be reduced. Therefore, the
original collections of Cross/Dot IC,co/ID,co are required to be accurately pre-processed
before predicting the images. Since the SRCNN model is applied for pre-processing, the
Dot/Cross-set images here are denoted by ID,sr/IC,sr, respectively. As shown in Figure 1,
the SRCNN model receives the original Cross/Dot-set image IC,co/ID,co and outputs the
SR collections of Dot/Cross ID,sr/IC,sr, respectively. Generally, a 9 × 9 convolutional layer
first transforms the original Cross/Dot images IC,co/ID,co into 64 feature maps. Then, the
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model can be applied to more nonlinear scenes by adding nonlinear factors using the ReLu
activation function. Finally, two 5× 5 convolutional layers are applied to extract the features
from the image and recover the image as a single-channel infrared image. Moreover, the
SRCNN model updates the learning parameters θsr to reduce the error between the SR
Dot/Cross images (ID,sr/IC,sr) and the original Dot/Cross images (ID,co/IC,co). Finally, the
classical MSE function is applied by the loss function Lsr as follows:

Lsr =

{
MSE(ID,co, ID,sr) = MSE(ID,co, SR(θsr, IC,co))
MSE(IC,co, IC,sr) = MSE(IC,co, SR(θsr, ID,co))

(5)

3.1.2. SWT Decomposition

CNN model-based algorithms usually extract features from images in the spatial
domain. In this paper, we propose to combine an infrared image with its four SWT low-
/high-frequency sub-bands inside a tensor and then feed that tensor into the CNNP model
for image prediction. In contrast to other wavelet transforms, SWT is a non-downsampling
transform, i.e., all sub-bands are equal in size to the original image [34]. Low-pass and high-
pass SWT filters keep all low- and high-frequency components the same size by padding
with 0 coefficients in the process of coefficient processing. Taking the SR Dot-set image ID,sr
as an example, the SWT decomposition can be shown as in the following Equations (6)–(9):

LL(i, j) = ∑
k,m

hkhm ID,sr(i + k, j + m) (6)

HL(i, j) = ∑
k,m

gkhm ID,sr(i + k, j + m) (7)

LH(i, j) = ∑
k,m

hkgm ID,sr(i + k, j + m) (8)

HH(i, j) = ∑
k,m

gkgm ID,sr(i + k, j + m) (9)

where LL is a low-frequency sub-band, and HL, LH, and HH are high-frequency sub-
bands generated by SWT decomposition. g and h are the filters of the SWT transform
for different sub-bands. In this paper, the images in the spatial domain and low-/high-
frequency features in the frequency domain were jointly used as inputs to the CNNP model
to improve the convergence speed and prediction accuracy of the model.

3.1.3. CNNP-Based Image Prediction

In this paper, we employed a Squeeze-and-Excitation Network (SENet) [35] to improve
the accuracy of the CNNP model. Compared with many CNN-based models that modify
the spatial dimension to improve the image-prediction accuracy, SENet instead increases
the performance by modeling the relationship of feature channels. Usually, an SE layer
takes up few resources and largely improves the convergence speed and performance of the
model. In this paper, we modified the CNNP model by applying the SE layer to improve
the prediction accuracy of the CNNP model. The structure of the modified CNNP model is
shown in Figure 5.

The input tensor consists of an infrared image and four frequency components of
SWT (LL, HL, LH, LL). The SWT sub-bands need to be modified according to the type
of infrared image. For example, if the infrared image is the SR collection of Dot ID,sr, the
Cross-set position of all SWT sub-bands should be set to 0. Consequently, the coefficient
of the Dot-set position has to be changed to 0 if the infrared image is the SR collection of
Cross IC,sr. We first extracted the features of the input tensor by applying 3 × 3, 5 × 5, and
7 × 7 convolutional blocks. Each convolution block consisted of two K × K convolution
layers and a LeakyReLU activation function, as shown in Figure 5b. The LeakyReLU
function is an improved version of the classical ReLu activation function, and it has a
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small slope output for negative inputs. Since the derivative is essentially non-zero, the
number of silent neurons is reduced substantially, which allows for gradient-based learning.
The LeakyReLU function can solve the problem in which the neurons do not learn if the
ReLu function has negative values. However, the training time is increased dramatically.
Therefore, we summed up the extracted features and recorded the importance of each
feature layer by the SE layer. The SE layer quantifies the importance of the features and
visualizes it on the features. Finally, we predicted the final infrared image by using two
3 × 3 convolutional blocks to prevent the CNNP model from gradient disappearance or
explosion. One of the convolution blocks was referenced in the form of a residual block,
which was connected to the SE layer. By using the SR Dot/Cross (ID,sr/IC,sr) collections as
inputs to the model for training, the loss function LCP could be defined as in Equation (10)
as follows:

LCP =

{
MSE

(
ID,co, ID,pre

)
= MSE

(
ID,co, CNNP

(
θcp, ID,sr

))
MSE

(
IC,co, IC,pre

)
= MSE

(
IC,co, CNNP

(
θcp, IC,sr

)) (10)

where θcp is the parameter of the CNNP model. Similar to Section 3.1.1, the CNNP model
also uses the MSE function as a loss function. When the loss function LCP is at a very low
value for a long time, it means that the parameters of the model have reached the best case.
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3.1.4. Histogram Shifting

Each digital image has its own histogram, including infrared images. The histogram
visualizes the number of pixels in the image for each pixel value. Due to its small com-
putational cost and its translation, scaling, and rotation invariance, the image histogram
is widely applied in many fields of digital-image processing. In image steganography,
histogram shifting is one of the classical reversible information-hiding algorithms [36–38].
In this paper, we propose using the histogram-shifting algorithm for reversible image
steganography based on the CNNP model to predict the complete final image. Different
from traditional histogram-shifting-based algorithms, we selected the prediction error of
infrared images to count the histogram. Figure 6a shows a histogram of the prediction error
for an infrared image. This image was randomly selected from the test set.

From Figure 6a, we can see that the proposed SSCNNP model had a good prediction
accuracy, where the peaks of the prediction-error histogram were very high at the position
0. This means that we do not need to remember the peak points of the histogram, as in
the traditional histogram-shifting algorithm. The peak point of the histogram must be
located at level 0 because the prediction error of the algorithm concentrates at 0. The
information-hiding algorithm is slightly different depending on the location of the nearest
zero point to the peak. For example, in Figure 6a, the zero value on the right side of the
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histogram was closest to the peak point (the pixel value between the two points was the
lowest), so the equation for the proposed image steganography is shown in Equation (11)
as follows:

Pw(i) =


Pco(i), if Pco(i) = 0, w(j) = 0
Pco(i) + 1, if Pco(i) = 0, w(j) = 1
Pco(i) + 1, if Pco(i) > 0

(11)

where Pco and Pw are the original and watermarked prediction errors, respectively. The
prediction error is the difference between the pixel predicted by the model and the original
pixel. The pixel prediction error is inversely proportional to the capacity of information
hiding. i is the index of the pixel. w is the watermarking information to be hidden, and j is
watermark’s index. Conversely, if the nearest zero point is located to the left of the peak,
the proposed image steganography can be determined as in Equation (12) as follows:

Pw(i) =


Pco(i), if Pco(i) = 0, w(j) = 0
Pco(i)− 1, if Pco(i) = 0, w(j) = 1
Pco(i)− 1, if Pco(i) < 0

(12)
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Figure 6. Prediction-error histogram. The coordinate of the horizontal axis is the image prediction
error. The coordinate of the vertical axis is the number of pixels corresponding to the prediction error.
(a) The more pixels in the original image that have a prediction error of 0, the better the performance
of the algorithm. (b) The watermarked image assigns pixels with an original error of 0 to positions
with prediction errors of 0 and 1. (a) Original infrared image; (b) watermarked infrared image.

Briefly, the algorithm strives to minimize the number of pixels that are changed
with an equal number of watermarks. Furthermore, the positions of these zeros remain
unremembered. For example, in Figure 6b, since the nearest zero point was located to the
right of the peak, the watermark-containing histogram had more pixels to the right of 0.
Therefore, the direction of the histogram translation could be selected as the right side.

3.2. Image Recovery and Information Extraction

Image recovery and information extraction are performed simultaneously. Further-
more, the information-extraction process is similar to the steps of hiding information. The
SRCNN initially predicts the infrared image. Moreover, low-/high-frequency sub-bands
of SWT decomposition are fed into the improved CNNP model along with the infrared
image itself. For information extraction, the proposed method first uses the watermarked
collection of Dot ID,W to predict the collection of Cross IC. The result obtained from the
prediction and the watermarked collection of Cross IC,W calculates the prediction error to
extract the information. While the information is extracted, the collection of Cross IC is also
recovered. The flow structure of the proposed image recovery and information extraction
is shown in Figure 7.
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3.2.1. SRCNN and SWT Pre-Processing

Firstly, SRCNN is applied to pre-process the watermarked collection of Dot/Cross
(ID,W/IC,W). The output of the model is recorded as the watermarked collection of SR
Cross/Dot (IC,srw/ID,srw, respectively). Secondly, SWT decomposes the watermarked
collections of SR Cross/Dot IC,srw/ID,srw, and hence one low-frequency sub-band (LL) and
three high-frequency sub-bands (HL, LH, and HH) are obtained. The SWT sub-bands
together with the watermarked collections of SR Cross/Dot IC,srw/ID,srw are fed into the
CNNP model to improve the convergence speed and prediction performance of the model.

3.2.2. CNNP Recovery and Extraction

Firstly, the watermarked collections of SR Cross/Dot (IC,srw/ID,srw) are fed into the
improved CNNP model. The addition of the SE layer in the embedding stage allows the
CNNP model to obtain a more accurate predicted collection of Cross/Dot (IC,pre/ID,pre).
Secondly, the prediction-error difference between the predicted collections of Cross/Dot
(IC,pre/ID,pre) and the watermarked collections of Cross/Dot (IC,W/ID,W) is calculated.
Equation (13) and Equation (14) are the equations for image recovery and watermark
extraction when the pixel-prediction error≥ 0 and≤ 0, respectively. Based on the difference-
histogram translation mentioned in Section 3.1.4, the formulas for extracting information
in both cases are defined as follows:

Pco(i) = Pw(i), w(j) = 0, if Pw(i) = 0
Pco(i) = Pw(i)− 1, w(j) = 1, if Pw(i) = 1
Pco(i) = Pw(i)− 1, if Pw(i) > 1

(13)


Pco(i) = Pw(i), w(j) = 0, if Pw(i) = 0
Pco(i) = Pw(i) + 1, w(j) = 1, if Pw(i) = −1
Pco(i) = Pw(i) + 1, if Pw(i) < −1

(14)

Next, the same process is applied to predict the collection of Dot ID by using the
watermarked collection of Cross IC,W . While the watermark information is extracted from
the watermarked collection of Dot ID,W , the collection of Cross IC is also recovered. Finally,
the algorithm can obtain both the extracted watermark information w and the original
infrared image I.

4. Experimental Results
4.1. Experimental Configuration

We conducted our experiments on 113 infrared images from wind turbines from
Zhejiang Shangfeng Group Co., Ltd., Shaoxing, Zhejiang, China. The size of each infrared
image was 256 × 256. The dataset was partitioned into 90 images in the training set and
23 images in the testing set. They were all infrared images captured from all angles in
normal or faulty conditions. The shape of the wind turbine differed greatly from angle to
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angle, resulting in some variation in the images of the dataset. This effectively alleviated
the problem of model overfitting. If researchers would like to obtain this dataset, please
contact Zhejiang Shangfeng Group Co., Ltd. Additionally, to demonstrate the generality of
the proposed algorithm on infrared images, a substation-power-equipment dataset was
purchased online and used for the experiments. The substation-power-equipment dataset
contained 100 infrared images, from which 80 infrared images were selected as a training
set and 20 infrared images as a testing set. Figure 8 shows four infrared images from
the substation-power-equipment dataset. The proposed algorithm was trained on Dell
OptiPlex 7070, with an Intel(R) Core(TM) i7-9700 CPU. The SRCNN and SSCNNP models
used are very simple, so the CPU was sufficient to train and test the models. The codes
were implemented in Matlab 2019a and Pycharm 2020.1.2.
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Figure 8. Four infrared images from the testing set of the substation-power-equipment dataset.
(a–d) are four types of substation-power-equipment.

4.2. Prediction Accuracy

To evaluate the prediction-accuracy performance of the proposed algorithm, we used
the mean absolute value, variance, and MSE of the image-prediction errors for the pro-
posed SSCNNP model, the CNNP model, and three state-of-the-art algorithms: BIP [39],
MEDP [40], and GAP [41]. Table 1 shows that the proposed SSCNNP had a good predic-
tion accuracy compared with CNNP, BIP [39], MEDP [40], and GAP [41]. For the three
evaluation indicators shown in Table 1 below, the lower the values, the more accurate the
prediction was.

Table 1. Mean, variance, and MSE prediction errors in the testing set. Boldface indicates best performance.

Predictor SSCNNP CNNP [28] BIP [39] MEDP [40] GAP [41]

Mean 2.05 2.72 4.19 5.24 6.59
Variance 28.64 37.15 62.48 103.19 136.42

MSE 36.91 59.37 93.60 148.43 207.32

As we can see from Table 1, the absolute value of the mean prediction error of the
proposed SSCNNP model was only 2.04, which was lower than that of the CNNP model
(2.72), BIP (4.19), MEDP (5.24), and GAP (6.59). Moreover, the variance of the proposed
SSCNNP model was only 28.64, which was lower than that of CNNP model (37.15), BIP
(62.48), MEDP (103.19), and GAP (136.42). For MSE, the proposed SSCNNP model achieved
36.91, which was lower than the CNNP model (59.37), BIP (93.60), MEDP (148.43), and
GAP (207.32). Table 1 indicates that the proposed SSCNNP model outperformed the others
on image-prediction accuracy.

Figure 9 shows the prediction errors of the proposed SSCNNP, CNNP, BIP [39],
MEDP [40], and GAP [41] for the four infrared images shown in Figure 8. The higher
the vertical coordinate of the model in the figure at the position where the prediction error
was 0, then the better the model was. For better visualization, only the prediction errors
within the range [–10, 10] are shown. From Figure 9, it was found that the prediction
error histogram of the proposed SSCNNP model outperformed the other methods. In
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particular, the proposed SSCNNP model had more pixels with accurate predictions for
the prediction error in the range [–1, 1]. The BIP, MEDP, and GAP algorithms use a single
convolution-kernel feature extraction and pixel prediction. Furthermore, the CNNP model
applies three convolution kernels, 3 × 3, 5 × 5, and 7 × 7, at the same time to extract the
features more comprehensively. However, the proposed SSCNNP model applies SRCNN
to unify the positions of the predicted carrier pixels with the pixels to be predicted. More-
over, SWT also facilitates the training of the model by extracting low- and high-frequency
sub-bands of the image. Additionally, the SE layer improves the training accuracy of the
CNNP model. Therefore, the experimental results shown in Figure 9 demonstrate that
the proposed SSCNNP model had better prediction performance compared with the other
algorithms. This provided a good basis for the subsequent reversible steganography.
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4.3. Information-Hiding Performance

In this section, we introduce a performance analysis of the proposed SSCNNP com-
pared with CNNP, LPVO [42], IPPVO [25], and BLTM [43] for information hiding with
different watermark capacities on the two test datasets, as listed in Tables 2 and 3.

The IPPVO algorithm adaptively selects the size of the convolution kernel according
to the texture complexity of the current pixel block. The LPVO algorithm can quickly
and accurately select multiple histograms for panning to hide information. The IPPVO
and LPVO are commonly related to the proposed algorithm, so it can be applied for
comparison. Figure 10a–d show the PSNR values of the four infrared images shown in
Figure 8 with various watermarking capacities on the wind-turbine dataset. The higher
the PSNR value, the closer the watermarked image Iw was to the original image I, i.e.,
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the better the imperceptibility of the image-steganography algorithm. The watermarking
capacity goes from 2000 bits to 30,000 bits and increases by 2000 bits at a time.

PSNR = 10× log10
M× N × 2552[

∑M
i=1 ∑N

j=1(I − Iw)
2
]
/(M× N)

(15)

In Equation (15), M and N are the length and width of the original image I, respectively,
and in this paper M = N = 256. The higher the PSNR value, the closer the watermarked
image was to the original image I.
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son. Figure 10a–d show the PSNR values of the four infrared images shown in Figure 8 
with various watermarking capacities on the wind-turbine dataset. The higher the PSNR 
value, the closer the watermarked image wI  was to the original image I , i.e., the better 
the imperceptibility of the image-steganography algorithm. The watermarking capacity 
goes from 2000 bits to 30,000 bits and increases by 2000 bits at a time. 
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Table 2. Comparison of PSNR values (dB) for the watermarking capacities of 10,000 bits and
20,000 bits on the wind-turbine dataset. Boldface indicates best performance.

Image

10,000 bits 20,000 bits

BLTM
[43]

IPPVO
[25]

LPVO
[42]

CNNP
[28] Proposed BLTM

[43]
IPPVO

[25]
LPVO

[42]
CNNP

[28] Proposed

Image (a) 60.17 59.93 60.29 60.42 60.68 55.76 55.97 55.66 55.94 56.02
Image (b) 58.27 58.72 58.26 58.53 58.62 55.24 55.23 55.33 55.39 55.48
Image (c) 58.51 58.46 58.51 58.58 58.67 55.38 55.31 55.40 55.42 55.47
Image (d) 58.59 58.56 58.66 59.05 59.14 55.10 55.13 55.12 55.27 55.47

Average (dB) 58.88 58.91 58.93 59.14 59.27 55.37 55.41 55.37 55.50 55.61
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Table 3. Comparison of PSNR values (dB) for the watermarking capacities of 5000 bits and 10,000 bits
on the substation-power-equipment dataset. Boldface indicates best performance.

Image

5000 bits 10,000 bits

BLTM
[43]

IPPVO
[25]

LPVO
[42]

CNNP
[28] Proposed BLTM

[43]
IPPVO

[25]
LPVO

[42]
CNNP

[28] Proposed

image (a) 62.15 62.10 62.19 62.69 62.93 59.05 59.04 59.08 59.47 59.73
image (b) 56.39 56.27 56.60 57.04 57.26 53.83 53.94 54.36 54.84 55.09
image (c) 56.79 56.93 57.01 57.33 57.58 53.47 53.35 53.60 53.92 54.18
image (d) 62.03 62.04 62.27 62.38 62.54 58.63 59.07 59.14 59.31 59.44

Average(dB) 59.34 59.34 59.52 59.86 60.08 56.24 56.35 56.55 56.89 57.11

4.3.1. Performance on Wind-Turbine Dataset

The experimental results shown in Figure 10 demonstrate that the watermarked
images with the proposed algorithm had higher PSNR values than those of the wind-
turbine dataset. Table 2 shows the PSNR values of the proposed algorithm compared with
CCNP [28], LPVO [42], IPPVO [25], and BLTM baiyu@hdu.edu.cn 43] when the watermark-
ing capacity was 10,000 bits and 20,000 bits. When the watermark capacity was 10,000 bits,
the average PSNR value of the proposed SSCNNP-based image steganography algorithm
was 59.27 dB, which was better than that of the BLTM (58.88 dB), IPPVO (58.91 dB), LPVO
(58.93 dB), and CNNP (59.14 dB) based on image-steganography algorithms. Furthermore,
when the watermarking capacity was increased to 20,000 bits, the average PSNR value for
our algorithm was still higher. The better imperceptibility of the proposed SSCNNP model
could be directly observed by averaging the PSNR values of four images.

4.3.2. Performance on Substation-Power-Equipment Dataset

The substation-power-equipment dataset had many different types of infrared images.
These different kinds of infrared images may have had different characteristics. Therefore,
we demonstrated the performance of the proposed algorithm for the infrared images in the
substation-power-equipment dataset through comparison experiments. The comparison
experiments use the four infrared images of substation power equipment shown in Figure 8.
The variation of the PSNR values of the algorithm with different watermarking capacities
is shown in Figure 11. The experimental results demonstrate that the proposed SSCNNP
model had the highest PSNR values for all watermarking capacities. This also proves that
the proposed algorithm had good imperceptibility compared to the other state-of-the-art
algorithms. Because the watermark capacity of individual images was less than 20,000,
Table 3 shows the PSNR values of the four algorithms when the watermarking capacity
was 5000 bits and 10,000 bits.

When the watermark capacity was 5000 bits, the average PSNR value of the pro-
posed algorithm was 60.08 dB, which was higher than the BLTM (59.34 dB), IPPVO
(59.34 dB), LPVO (59.52 dB), and CNNP (59.86 dB) image-stenography algorithms. The
image-steganography algorithm based on the proposed SSCNNP model still had the high-
est average PSNR value when the watermarking capacity was 10,000 bits. Overall, the
experimental results demonstrate that the proposed algorithm had better performance in
terms of imperceptibility compared with the state-of-the-art algorithms.
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5. Conclusions

In this paper, a novel steganography algorithm for infrared images is proposed based
on the SRCNN and CNNP models. The pre-processing model is the SRCNN model, which
is able to predict image pixels more accurately. Furthermore, the proposed model combines
the frequency domain of SWT with the spatial domain of the CNNP model to reduce the
prediction error. Experiments show that the proposed SSCNNP model had better prediction
performance for both classical-prediction-based algorithms and novel-CNNP-based models.
Therefore, the imperceptibility and watermark capacity were also improved for infrared
images. Moreover, the SRCNN and CNNP models are both lightweight CNN models, and
they can be combined with each other in a harmonious way. In future work, we will try to
introduce more lightweight CNN models and wavelet transform in the frequency domain
to reduce the requirements of hardware equipment and improve the performance of the
algorithm at the same time. Moreover, the experimental images should be more abundant
and closer to real-time images to ensure the practicality of the algorithm.

However, the infrared applied in this paper was only for the device, so in the future
we hope to extend the study to a larger range of infrared images. In addition to image
steganography, robust image-watermarking algorithms are also well worth exploring.

Author Contributions: Conceptualization, J.L. and L.L.; data curation, N.C.; software, Y.B.; formal
analysis, Y.B. and S.Z.; supervision, N.C.; writing—original draft, Y.B. and L.L.; writing—review
and editing, S.Z., J.L. and N.C. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (grant
No. 62172132).

Institutional Review Board Statement: This study did not require ethical approval.



Sensors 2023, 23, 5360 17 of 18

Informed Consent Statement: This study did not involve humans.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank all the anonymous reviewers for their helpful
comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. John, V.; Boyali, A.; Thompson, S.; Mita, S. BVTNet: Multi-label Multi-class Fusion of Visible and Thermal Camera for Free Space

and Pedestrian segmentation. In Pattern Recognition. ICPR International Workshops and Challenges, Virtual Event, 10–15 January 2021;
Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 277–288. [CrossRef]

2. Zhang, Q.; Huang, N.; Yao, L.; Zhang, D.; Shan, C.; Han, J. RGB-T Salient Object Detection via Fusing Multi-Level CNN Features.
IEEE Trans. Image Process. 2020, 29, 3321–3335. [CrossRef] [PubMed]

3. Zhang, X.; Ye, P.; Leung, H.; Gong, K.; Xiao, G. Object fusion tracking based on visible and infrared images: A comprehensive
review. Inf. Fusion 2020, 63, 166–187. [CrossRef]

4. Zhu, X.; Hu, Z.; Huang, S.; Li, J.; Hu, X. Infrared Invisible Clothing: Hiding from Infrared Detectors at Multiple Angles in
Real World. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA,
18–24 June 2022; pp. 13317–13326. [CrossRef]

5. Chen, J.; Li, X.; Luo, L.; Mei, X.; Ma, J. Infrared and visible image fusion based on target-enhanced multiscale transform
decomposition. Inf. Sci. 2020, 508, 64–78. [CrossRef]

6. Yang, Y.; Zhang, Y.; Huang, S.; Zuo, Y.; Sun, J. Infrared and Visible Image Fusion Using Visual Saliency Sparse Representation and
Detail Injection Model. IEEE Trans. Instrum. Meas. 2021, 70, 5001715. [CrossRef]

7. Li, H.; Wu, X.-J.; Kittler, J. MDLatLRR: A Novel Decomposition Method for Infrared and Visible Image Fusion. IEEE Trans. Image
Process. 2020, 29, 4733–4746. [CrossRef]

8. Luo, H.; Lou, Y.; He, K.; Jiang, Z. Coupling in-situ synchrotron X-ray radiography and FT-IR spectroscopy reveal thermally-
induced subsurface microstructure evolution of solid propellants. Combust. Flame 2023, 249, 112609. [CrossRef]

9. Wang, S.; Hu, X.; Sun, J.; Liu, J. Hyperspectral anomaly detection using ensemble and robust collaborative representation. Inf. Sci.
2023, 624, 748–760. [CrossRef]

10. Ao, J.; Shao, X.; Liu, Z.; Liu, Q.; Xia, J.; Shi, Y.; Qi, L.; Pan, J.; Ji, M. Stimulated Raman Scattering Microscopy Enables Gleason
Scoring of Prostate Core Needle Biopsy by a Convolutional Neural Network. Cancer Res. 2023, 83, 641–651. [CrossRef]

11. Fu, C.; Yuan, H.; Xu, H.; Zhang, H.; Shen, L. TMSO-Net: Texture adaptive multi-scale observation for light field image depth
estimation. J. Vis. Commun. Image Represent. 2023, 90, 103731. [CrossRef]

12. Wang, H.; Cui, Z.; Liu, R.; Fang, L.; Sha, Y. A Multi-type Transferable Method for Missing Link Prediction in Heterogeneous
Social Networks. IEEE Trans. Knowl. Data Eng. 2023, 1–13, early access, Jan. [CrossRef]

13. Zhang, X.; Huang, D.; Li, H.; Zhang, Y.; Xia, Y.; Liu, J. Self-training maximum classifier discrepancy for EEG emotion recognition.
CAAI Trans. Intell. Technol. 2023. early view. [CrossRef]

14. Deng, Y.; Zhang, W.; Xu, W.; Shen, Y.; Lam, W. Nonfactoid Question Answering as Query-Focused Summarization with
Graph-Enhanced Multihop Inference. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–15. [CrossRef] [PubMed]

15. Liu, H.; Xu, Y.; Chen, F. Sketch2Photo: Synthesizing photo-realistic images from sketches via global contexts. Eng. Appl. Artif.
Intell. 2023, 117, 105608. [CrossRef]

16. Ma, J.; Yu, W.; Liang, P.; Li, C.; Jiang, J. FusionGAN: A generative adversarial network for infrared and visible image fusion. Inf.
Fusion 2019, 48, 11–26. [CrossRef]

17. Ma, J.; Xu, H.; Jiang, J.; Mei, X.; Zhang, X.P. DDcGAN: A Dual-discriminator Conditional Generative Adversarial Network for
Multi-resolution Image Fusion. IEEE Trans. Image Process. 2020, 29, 4980–4995. [CrossRef]

18. Ma, J.; Zhang, H.; Shao, Z.; Liang, P.; Xu, H. GANMcC: A Generative Adversarial Network with Multiclassification Constraints
for Infrared and Visible Image Fusion. IEEE Trans. Instrum. Meas. 2021, 70, 1–14. [CrossRef]

19. Zhang, H.; Xu, H.; Xiao, Y.; Guo, X.; Ma, J. Rethinking the Image Fusion: A Fast Unified Image Fusion Network based on
Proportional Maintenance of Gradient and Intensity. Proc. Conf. AAAI Artif. Intell. 2020, 34, 12797–12804. [CrossRef]

20. Wang, Z.; Wang, J.; Wu, Y.; Xu, J.; Zhang, X. UNFusion: A Unified Multi-Scale Densely Connected Network for Infrared and
Visible Image Fusion. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 3360–3374. [CrossRef]

21. Li, X.; Li, J.; Li, B.; Yang, B. High-fidelity Reversible Data Hiding Scheme Based on Pixel-value-ordering and Prediction-error
Expansion. Signal Process. 2013, 93, 198–205. [CrossRef]

22. Ou, B.; Li, X.; Zhao, Y.; Ni, R. Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal
Process. Image Commun. 2014, 29, 760–772. [CrossRef]

23. Wang, X.; Ding, J.; Pei, Q. A novel reversible image data hiding scheme based on pixel value ordering and dynamic pixel block
partition. Inf. Sci. 2015, 310, 16–35. [CrossRef]

24. Weng, S.; Shi, Y.; Hong, W.; Yao, Y. Dynamic improved pixel value ordering reversible data hiding. Inf. Sci. 2019, 489, 136–154.
[CrossRef]

https://doi.org/10.1007/978-3-030-68780-9
https://doi.org/10.1109/TIP.2019.2959253
https://www.ncbi.nlm.nih.gov/pubmed/31869791
https://doi.org/10.1016/j.inffus.2020.05.002
https://doi.org/10.48550/arXiv.2205.05909
https://doi.org/10.1016/j.ins.2019.08.066
https://doi.org/10.1109/TIM.2020.3011766
https://doi.org/10.1109/TIP.2020.2975984
https://doi.org/10.1016/j.combustflame.2022.112609
https://doi.org/10.1016/j.ins.2022.12.096
https://doi.org/10.1158/0008-5472.CAN-22-2146
https://doi.org/10.1016/j.jvcir.2022.103731
https://doi.org/10.1109/TKDE.2022.3233481
https://doi.org/10.1049/cit2.12174
https://doi.org/10.1109/TNNLS.2023.3258413
https://www.ncbi.nlm.nih.gov/pubmed/37030801
https://doi.org/10.1016/j.engappai.2022.105608
https://doi.org/10.1016/j.inffus.2018.09.004
https://doi.org/10.1109/TIP.2020.2977573
https://doi.org/10.1109/TIM.2020.3038013
https://doi.org/10.1609/aaai.v34i07.6975
https://doi.org/10.1109/TCSVT.2021.3109895
https://doi.org/10.1016/j.sigpro.2012.07.025
https://doi.org/10.1016/j.image.2014.05.003
https://doi.org/10.1016/j.ins.2015.03.022
https://doi.org/10.1016/j.ins.2019.03.032


Sensors 2023, 23, 5360 18 of 18

25. Zhang, T.; Li, X.; Qi, W.; Guo, Z. Location-based PVO and Adaptive Pairwise Modification for Efficient Reversible Data Hiding.
IEEE Trans. Inf. Forensics Secur. 2020, 15, 2306–2319. [CrossRef]

26. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal.
Mach. Intell. 2016, 38, 295–307. [CrossRef]

27. Huang, H.; Qiu, P.; Panezai, S.; Hao, S.; Zhang, D.; Yang, Y.; Ma, Y.; Gao, H.; Gao, L.; Zhang, Z.; et al. Continuous-wave terahertz
high-resolution imaging via synthetic hologram extrapolation method using pyroelectric detector. Opt. Laser Technol. 2019,
120, 105683. [CrossRef]

28. Hu, R.; Xiang, S. CNN Prediction Based Reversible Data Hiding. IEEE Signal Process. Lett. 2021, 28, 464–468. [CrossRef]
29. Luo, Y.; Qin, J.; Xiang, X.; Tan, Y.; Liu, Q.; Xiang, L. Coverless real-time image information hiding based on image block matching

and dense convolutional network. J. Real-Time Image Process. 2019, 17, 125–135. [CrossRef]
30. Sharma, K.; Aggarwal, A.; Singhania, T.; Gupta, D.; Khanna, A. Hiding Data in Images Using Cryptography and Deep Neural

Network. J. Artif. Intell. Syst. 2019, 1, 143–162. [CrossRef]
31. Hu, R.; Xiang, S. Reversible Data Hiding By Using CNN Prediction and Adaptive Embedding. IEEE Trans. Pattern Anal. Mach.

Intell. 2021, 44, 10196–10208. [CrossRef]
32. Panchikkil, S.; Manikandan, V.M.; Zhang, Y.D. A Convolutional Neural Network Model Based Reversible Data Hiding Scheme in

Encrypted Images with Block-wise Arnold Transform. Optik 2022, 250, 168137. [CrossRef]
33. Liu, L.; Meng, L.; Peng, Y.; Wang, X. A data hiding scheme based on U-Net and wavelet transform. Knowl.-Based Syst. 2021, 223,

107022. [CrossRef]
34. Pourhadi, A.; Mahdavi-Nasab, H. A robust digital image watermarking scheme based on bat algorithm optimization and SURF

detector in SWT domain. Multimed. Tools Appl. 2020, 79, 21653–21677. [CrossRef]
35. Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018. [CrossRef]
36. Zhang, Z.; Li, F.; Zuo, X.; Meng, Q.; Jin, S. Reversible image watermarking algorithm based on reverse histogram translation.

Multimed. Tools Appl. 2022, 82, 11005–11019. [CrossRef]
37. Li, Y.; Wang, J.; Jia, H. A Robust and Reversible Watermarking Algorithm for a Relational Database Based on Continuous Columns

in Histogram. Mathematics 2020, 8, 1994. [CrossRef]
38. Ye, H.; Huang, S.; Su, K. Research on Reversible Information Hiding Algorithm in Encrypted Domain Based on Histogram

Translation. In Proceedings of the IEEE 9th Joint International Information Technology and Artificial Intelligence Conference,
Chongqing, China, 11–13 December 2020. [CrossRef]

39. Sachnev, V.; Kim, H.J.; Nam, J.; Suresh, S.; Shi, Y.Q. Reversible Watermarking Algorithm Using Sorting and Prediction. IEEE Trans.
Circuits Syst. Video Technol. 2009, 19, 989–999. [CrossRef]

40. Thodi, D.M.; Rodriguez, J.J. Expansion Embedding Techniques for Reversible Watermarking. IEEE Trans. Image Process. 2007, 16,
721–730. [CrossRef]

41. Coltuc, D. Improved Embedding for Prediction-Based Reversible Watermarking. IEEE Trans. Inf. Forensics Secur. 2011, 6, 873–882.
[CrossRef]

42. Wu, H.; Li, X.; Zhao, Y.; Ni, R. Improved PPVO-based high-fidelity reversible data hiding. Signal Process. 2020, 167, 107264.
[CrossRef]

43. Prasad, S.; Pal, A.K.; Mukherjee, S. An RGB Color Image Steganography Scheme by Binary Lower Triangular Matrix. IEEE Trans.
Intell. Transp. Syst. 2023, 1–9. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIFS.2019.2963766
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1016/j.optlastec.2019.105683
https://doi.org/10.1109/LSP.2021.3059202
https://doi.org/10.1007/s11554-019-00917-3
https://doi.org/10.33969/AIS.2019.11009
https://doi.org/10.1109/TPAMI.2021.3131250
https://doi.org/10.1016/j.ijleo.2021.168137
https://doi.org/10.1016/j.knosys.2021.107022
https://doi.org/10.1007/s11042-020-08960-0
https://doi.org/10.1016/j.patcog.2021.108159
https://doi.org/10.1007/s11042-022-13770-7
https://doi.org/10.3390/math8111994
https://doi.org/10.1109/itaic49862.2020.9339002
https://doi.org/10.1109/TCSVT.2009.2020257
https://doi.org/10.1109/TIP.2006.891046
https://doi.org/10.1109/TIFS.2011.2145372
https://doi.org/10.1016/j.sigpro.2019.107264
https://doi.org/10.1109/TITS.2023.3264467

	Introduction 
	Related Works 
	SRCNN Model 
	CNNP Model 

	Proposed Algorithm 
	Image Steganography 
	Initial Image Prediction 
	SWT Decomposition 
	CNNP-Based Image Prediction 
	Histogram Shifting 

	Image Recovery and Information Extraction 
	SRCNN and SWT Pre-Processing 
	CNNP Recovery and Extraction 


	Experimental Results 
	Experimental Configuration 
	Prediction Accuracy 
	Information-Hiding Performance 
	Performance on Wind-Turbine Dataset 
	Performance on Substation-Power-Equipment Dataset 


	Conclusions 
	References

