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Abstract: Robotic handling of objects is not always a trivial assignment, even in teleoperation where,
in most cases, this might lead to stressful labor for operators. To reduce the task difficulty, supervised
motions could be performed in safe scenarios to reduce the workload in these non-critical steps by
using machine learning and computer vision techniques. This paper describes a novel grasping
strategy based on a groundbreaking geometrical analysis which extracts diametrically opposite
points taking into account surface smoothing (even those target objects that might conform highly
complex shapes) to guarantee the uniformity of the grasping. It uses a monocular camera, as we are
often facing space restrictions that generate the need to use laparoscopic cameras integrated in the
tools, to recognize and isolate targets from the background, estimating their spatial coordinates and
providing the best possible stable grasping points for both feature and featureless objects. It copes
with reflections and shadows produced by light sources (which require extra effort to extract their
geometrical properties) in unstructured facilities such as nuclear power plants or particle accelerators
on scientific equipment. Based on the experimental results, utilizing a specialized dataset improved
the detection of metallic objects in low-contrast environments, resulting in the successful application
of the algorithm with error rates in the scale of millimeters in the majority of repeatability and
accuracy tests.

Keywords: computer vision; telerobotics; grasping determination

1. Introduction

Particle acceleration complexes and nuclear plants require continuous maintenance
that ideally should be performed remotely due to the presence of radiation, magnetic fields,
or lack of oxygen. These health risks limit access to the personnel in charge of service
and maintenance activities in the target area. Remote operations become an obligation
when a catastrophe occurs, such as in Fukushima [1], where the dispatching of mobile
manipulators became a necessity (that generates additional efforts to ensure safety). This
requires expert operators for both the teleoperation of robots, as well as the target area, as
despite significant improvements, autonomous behavior of robots is difficult to achieve
due to the unstructured nature of the environment [2]. At best, where the task is highly
repetitive (e.g., obstacle avoidance, distance estimation), the operator might remain in
the control loop in a supervised manner with the aim of guaranteeing the security of the
performance, otherwise the operator must carry out the whole intervention manually by
deploying their skills and experience.

For many such interventions, one of the requirements is the use of a single camera,
with the aim of saving space, which is the biggest constraint in terms of hardware due to
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the nature of the facilities where the interventions must be performed. These cameras can
be used to estimate the distance to various objects of interest. Other sensors that can be
used for this, e.g., Time of Flight (ToF) sensors, do not always guarantee the success of the
measurements on materials that have reflective surfaces [3].

However, the main challenge to be faced is that of dealing with purely metallic targets,
devoid of any contrast between them and the surrounding environment. These were not
designed for the purpose of remote maintenance, and far less by robots through computer
vision techniques, so they have never been endowed with textures that might render them
easier to identify and manipulate.

This paper presents a novel system to estimate stable grasping points in metallic
targets with a lack of contrast between the object and its environment, regardless of the
complexity of its surface, since it searches for the surface flat enough to guarantee the
stability of such points. To this end, the problem is divided into three distinct sections:

• Object detection by means of a deep learning architecture specifically designed for
salient object detection.

• Determination of the proper stable grasping points by calculating the geometrical and
physical properties of the object contour.

• Spatial coordinates estimation for previously estimated grasping points using stereo
vision approximation with a monocular system, through the translation of the camera
across a specified baseline.

The combination of these three modules generates a robust system able to detect objects
in unstructured environments with a lack of features and determine their ideal grasping
points according to the available hardware (two-finger gripper) and their spatial position
both for an autonomous approach and for teleoperation guidance. The hardware limitations
are inherent in the nature of the interventions, where the dimensional boundaries often
make the target area too narrow to choose the ideal hardware. This restricts the possibilities
and compels researchers to seek a universal solution that can satisfy any requirement at
the risk of compromising both the degree of sensitivity and the level of dexterity when
executing the task. For these reasons, grippers such as the three-finger gripper one from
Kinova® (Kinova Robotics, Boisbriand, QC, Canada), or the angular gripper one from
Robotiq® (Levis, QC, Canada) have been discarded for this project.

2. State of the Art

Since the beginning, humans have built tools to help them perform tasks, which is
why manipulation, and grasping more specifically, is one of the larger fields of research in
robotics. Robotic manipulators can be considered as such helpful tools, either when they
are operated autonomously in industry [4] or via teleoperation as early as the mechanical
Master–Slave Manipulator Mk. 8 (MSM-8) [Central Research Laboratories, Red Wing, MN,
USA, 1945]. This project is focused on using robots as tools via teleoperation.

As can be seen in Figure 1, over the last 4 decades more than 90 computer vision
studies became the basis for robotic grasping research, which has rapidly evolved towards
the use of Artificial Intelligence (AI) during the last decade. These non-exhaustive numbers
have been found by analyzing trends in publications dealing with robotics, grasping, and
computer vision or Artificial Intelligence from IEEE Xplore and Scopus.

Traditional computer vision methods such as background removal [5], object contour
estimation using Histograms of Oriented Gradients (HOG) [6] within a scene, feature ex-
traction techniques including the Scale Invariant Feature Transform (SIFT) [7], or Speeded
Up Robust Feature (SURF) [8] have demonstrated limitations in treating complex scenes,
where poor contrast, lack of features, or variations in lighting challenge the algorithm’s
performance. On the other hand, the AI techniques used for object localization and clas-
sification encompass both Machine Learning (ML) and Deep Learning (DL) methods, in
which the former comprises of probabilistic approaches such as Bayesian classifiers [9],
k-Nearest Neighbor [10], Support Vector Machine [11], a mixture of some of these tech-
niques as shown in [12], or ontology-based techniques [13]. Deep learning (DL) approaches
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encompass various object detection techniques, including two-stage detectors including
R-CNN [14], Faster-RCNN [15], and Mask-RCNN [16], as well as one-stage detectors such
as YOLO [17], which is widely utilized for real-time object detection, SSD [18], and Reti-
naNet [19]. Additionally, semantic segmentation methods including DeepLab V3 [20] and
U-Net [21] are also part of DL techniques. However, it is important to note that DL methods
necessitate substantial quantities of labeled data for effective training.

Figure 1. Trend for “Robotics, Grasping, and Computer Vision or Artificial Intelligence” in the last
40 years.

Numerous methods have been deployed to determine the grasping point of objects,
making use of visual information from single cameras to locate such points, either by
edges [22] or image moments [23]. Physics-based grasping uses the physical properties of
both the object and the end-effector to estimate its proper grasping points [24,25]. The tech-
niques of using analytical models and geometric algorithms such as force–displacement [26],
grasping taxonomy [27], or prediction of forces on living objects [25], as well as a combina-
tion of multiple methods [28], perform well as long as the targets do not have a complex or
irregular geometry. Some methods have been recently developed, such as [29,30], which
make use of deep neural networks, or the combination of information from several sensors
for multi-modal grasping as in [31,32]. Although both solutions present a high level of
robustness and accuracy, they require a very large data set.

Reinforcement Learning (RL) brings a new strategy by letting an agent learn while
receiving rewards for fulfilling assignments, thus teaching it to perform a specific task [33,34].
This approach (apart from its accuracy) also has drawbacks, such as computational cost and
training time, which in both cases is very high.

Depth estimation is a well-known topic of research, where very diverse studies can be
found in a wide variety of projects including [35], which makes use of multi-camera arrays,
those where sensors like LiDAR are used [36,37], or those that opt for the use of time-of-
flight (TOF) devices [38,39]. The latter (the TOF-based projects) cannot be considered in our
study due to the reflection effect generated by the nature of the materials of the targets to
be manipulated as demonstrated in [3], mentioned in the introduction. The others present
restrictions upon the illumination and the range.

The estimation of spatial coordinates based on the use of stereoscopic vision [40] is a
widely used technique [41–43]. Algorithms can also be found that simulate it by using a
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single camera on a mobile platform [44], or by obtaining two slightly deviated images of a
same scene at different points in time [45].

The use of RGB-D devices such as Kinect [46] or RealSense cameras [47], which provide
not only color information but also depth information, bring another kind of solution
when estimating spatial coordinates. However, they carry with them other problems
such as the limitation of space (since they are devices of considerable dimensions), and
the shadows/occlusions that they generate themselves (see Section 3.3). Methods such
as [48,49] show the use of deep learning to infer depth from a single RGB image. Such
methods need a large number of samples and are computationally very expensive during
the training process.

In this paper, we propose a new solution for object detection and grasping deter-
mination in a challenging environment such as the CERN’s experimental facilities. For
this purpose, we suggest using salient object detection for target detection, as well as a
hybrid approach, combining image-based for physical features, and a novel geometrical
analysis algorithm for grasping strategies (see Figure 2). In addition, for depth estimation
and spatial coordinate determination, we propose to use an eye-in-hand system mounted
on the end-effector of a robotic arm that simulates stereoscopic vision by capturing two
frames from different positions by using the matrix of the robot, to balance the need for
high accuracy with the constraints of the environment and equipment.

Figure 2. Schematic of the modules that make up the system.

3. Materials and Methods

This chapter outlines the methods and equipment utilized in achieving the project’s
goal. Section 3.1 focuses on object detection, presenting techniques for improving contrast
to enable object detection in complex environments. Additionally, a novel technique
for semantic segmentation is introduced, which allows for the identification of the most
attractive object in the scene. This section also covers techniques for enhancing the accuracy
and reliability of the segmented object, along with feature-based tracing methods for
tracking the object during the positioning stage.

Moving on to Section 3.2, the contour-based grasping approach is explored as one of
the primary methods for determining grasping points. A geometric analysis is performed
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to calculate important features that aid in the determination of the grasping points. These
features, combined with mechanical conditions, define specific thresholds that are evaluated
at antipode points along the contour, ultimately identifying the two best grasping points.

Section 3.3 addresses the environmental complexities that affect the methods of depth
estimation during real interventions at CERN and the process of obtaining depth from a
monocular camera. Detailed explanations are provided for subprocesses such as image
calibration, disparity map calibration, and depth calibration.

Finally, Section 3.4 delves into the recreation of environmental conditions and equip-
ment used during testing, as well as the performance achieved.

3.1. Object Detection

Expert operators at CERN are faced with the challenge of handling delicate targets that
require much care and attention, which can take a significant amount of time to complete.
However, despite their expertise, there is always a risk of operator error or accidents that
could damage the equipment or delicate objects. Additionally, recognizing these objects
within a scene is complex due to the reflective properties of metallic materials and the
resulting confusion in the detection process. Considering the object’s surface and potential
shadows can improve the accuracy of object detection, which is important for ensuring the
safety and success of the intervention. Figure 3 illustrates the delicate targets that expert
operators at CERN must manipulate.

Figure 3. Real targets to be manipulated. (left) MEDICIS target out of the montrac (reach-ability test);
(right) socket to be replaced.

The following sections present a comprehensive approach to address the complexities
involved in object detection. The techniques covered include preprocessing and advanced
segmentation methods, as well as postprocessing techniques that can improve the accuracy
and reliability of object detection.

3.1.1. Preprocessing of the Image

Histogram equalization is the most common technique for improving the contrast
and balancing the brightness of a scene. Taking into account that the lack of contrast and
the unstructured working environment are constant premises where lighting control is
inaccessible, Adaptive Histogram Equalization (AHE) is presented as a better option than
Global Histogram Equalization (GHE) when there is a wide range of luminance values.
AHE performs piece-wise equalization of the image leading to a better constrast enhance-
ment. Despite the improvements, this solution brings an increase in noise and may lead to
over-amplification of contrast. To overcome these constraints, Contrast-Limited Adaptive
Histogram Equalization (CLAHE) [50] has been used instead, which is a variant of AHE in
terms of limiting the contrast amplification in order to reduce the noise amplification; see
Figure 4.
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Figure 4. Classical socket used before and after the preprocessing. (left) original picture; (right) after
applying CLAHE.

The application of this technique facilitates the success of the task of object detection
within a scene where the target and its environment share a featureless surface and a very
low level of contrast where traditional methods cannot, as well as making it possible to
deal with other cases such as partial occlusions or distinction between plain colors, which
present an additional challenge.

3.1.2. Segmentation of the Object and the Background

Robotic interventions at CERN take place in an unstructured environment, so it is
not always possible to predict the specific types of objects to be handled. To address this
challenge, this project utilizes deep learning salient object detection, a technique that is
better suited to the problem than other conventional segmentation techniques (Table 1).
The model used is U2-NET [51], which gives outstanding results compared to other salient
object detection methods in datasets such as ECSSD [52]. The model segments accurately
unknown objects of interest from the background within the uncertainty conditions. U2-
NET is a two-level nested U-structure designed for SOD and it is capable of obtaining more
contextual information in an image.

Table 1. Qualitative comparison of different segmentation methods after CLAHE application.

Segmentation Methods Limitations Evaluation

Thresholding
Prone to losing important object details and detecting

background as part of the object. Sensitive to
variations in brightness and shadows.

Not suitable

Region-Based
Complex to implement and may not be universally
applicable. Sensitive to variations in brightness and

shadows.
Not suitable

Edge/Boundary-Based
Requires high contrast between the object and

background, and may fail if contrast is not sufficient.
Sensitive to variations in brightness and shadows.

Not suitable

Neural Networks Produces excellent results for known objects, but not
appropriate for unknown targets Not suitable

Deep Learning (SOD)
Produces exceptional results when performed in a

region of interest, rather than the entire image. Does
not require prior knowledge of the object.

Suitable
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A dataset with relevant information, enabling the network to identify patterns that
help to obtain high accuracy during the inference process, has been created by focusing
only on metallic targets on surfaces of the same nature, taking images of real robotic
interventions carried out within the CERN’s facilities. The goal is to accurately depict
the desired concept in order to generate a higher acuity during pattern identification. In
particular, the network’s ability to handle the shadows and brights in metallic objects in
different lighting conditions was a key factor in its selection. In Figure 5, the labeling
process of the dataset can be seen.

Figure 5. Labeling process: (left) segmentation by the hand of the interest object. (right) Mask after
segmentation.

Then, by using data augmentation (see Table 2 with the specification/distribution
used), where the original dataset was increased 15 times, achieving a set of 6880 images, and
in order to prevent overfitting (that might influence the effectiveness of the trained model),
we have additionally used the DUTS-TR [53], which is a dataset used for benchmarking
the SOD algorithms.

Table 2. Transformations, probabilities, and limits used in the data augmentation.

N° Transformation Probabilities Limits

b Horizontal Flip 0.5 N.A.
c Vertical Flip 0.2 N.A.
d Scale 0.5 min = Size , max = Size × 1.2
e Rotate 0.5 min = 30, max = 30
f RGB shift 0.5 R = 25, G = 25, B = 25
g Blur 0.5 B = 1
h Brightness 0.5 min = B − 0.2, max = B + 0.2
i Contrast 0.5 min = C − 0.3, max = C + 0.3
j Saturation 0.5 min = S − 0.2, max = S + 0.2

Intersection over Union (IoU) image segmentation has been used to evaluate the
prediction accuracy of the model trained on our test dataset. Figure 6 shows the predicted
mask, which is compared with the ground truth. Red coloring represents true positives,
green coloring represents false positives, and blue coloring represents false negatives.
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Figure 6. Intersection over union representation.

How these parameters are calculated is shown below:

• True Positives (TP) (1), area overlapped of both the Ground Truth (GT) and Segmenta-
tion Masks (SM).

TP = GT ∧ SM (1)

• False Positives (FP) (2), the number of pixels predicted as part of the mask that does
not match with the ground truth.

FP = (GT ∨ SM)− GT (2)

• False Negative (FN) (3), part of the ground truth not predicted on the predicted mask.

FN = (GT ∨ SM)− SM (3)

Equation (4) evaluates the level of overlap between both masks (ground truth and
inferred) at the pixel level.

IoU =
TP

TP + FP + FN
(4)

After establishing the evaluation method, the training process was carried out using
the following configurations:

1. Original pre-trained model;
2. Model trained with DUTS-TR and own metallic objects dataset and data augmentation.

The modified model improves object detection in challenging metallic environments
by producing smoother edges and better-filled internal parts, as indicated in the qualitative
results (see Figure 7). It also excels at handling reflections, shadows, and low contrast,
leading to enhanced performance in generating the final object mask during postprocessing.

The analysis was concluded by calculating the intersection over union (IoU) for the
test images in both cases, which comprised 20% of the complete dataset. Subsequently, the
mean and standard deviation of the IoU were determined. The quantitative outcomes are
presented below.

Based on the results presented in Table 3, configuration 2, which involves training a
model with the DUTS-TR and own metallic objects datasets and applying data augmenta-
tion, has been selected for the remainder of the project. Model 2 outperformed the other
configuration by demonstrating a 59% improvement in performance and a 26% reduction
in data variance in inferring metallic objects.
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(a) Real image. (b) Ground truth. (c) Model 1. (d) Model 2.

(e) Real image (f) Ground truth. (g) Model 1. (h) Model 2.

Figure 7. Qualitative comparison between original pre-trained model (Model 1) and model trained
with DUTS-TR dataset and metallic objects dataset (Model 2).

Table 3. Quantitative comparison between the inference using the original and the re-trained model.

Training Mean Standard Deviation

1 0.511 0.245
2 0.814 0.182

3.1.3. Postprocessing of the Mask

With the aim of obtaining a reliable and accurate enough mask to facilitate the object
detection process, classical computer vision techniques have been used to mitigate the
small defects that may appear during the inference process, as listed below:

• Threshold of the inferred image, using Otsu method [54]: Thanks to both its simplicity
and its effectiveness in isolating an object of interest from its surroundings, Otsu auto-
matically finds the best threshold value by returning high-quality binarized images.

• Mask refinement: To finish refining the obtained masks, it is required to fill in the
incomplete parts of the area of the target, and erase those clusters of pixels not belonging
to the object of interest by sequentially applying the erosion and dilation techniques,
thus transforming the images by means of the techniques known as opening and closing.

Finally, a Gaussian filter was applied in order to blur the contours and edges of the
segmented target, thus softening the contrast between the environment and the object.

3.1.4. Tracking Object

To facilitate the operator’s task, and once the target is detected, the operator is given
the possibility to track it during the teleoperation process as an auxiliary functionality
(without interfering with the results obtained) of the algorithm. This derives from the work
in [55], after a thorough review of the current status (see Table 4) of the following tracking
algorithms implemented by OpenCV:

GOTURN [56] has not been taken into account due to the fact it is based on a CNN, so
the performance will be related to the dataset used for training the model, and this is not
the aim of the project.

For recovering the tracking once the tracker is not capable of retrieving by itself, we
decided to use SIFT since it is the algorithm that has shown the best results (among others
such as SURF, Oriented fast and Rotation Brief (ORB) [57], and Binary Robust Independent
Elementary Features (BRIEF) [58]) when dealing with metallic pieces on metallic backgrounds.
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Table 4. Qualitative tests observed using different trackers.

Tracking
Accuracy

Ability to
Retrieve
Tracking

Management
of Partial

Occlusions

Stop Tracking
When Object

Is Lost

Frames
per

Second

Boosting Good NO YES NO 40
MIL Good NO YES NO 25
KCF Good YES YES YES 90
TLD Bad NO NO NO 70

MedianFlow Good NO YES YES 1000
MOSSE Regular YES YES YES 1000
CSRT Good NO YES NO 35

3.2. Contour-Based Grasping

The target contour extraction is the main pillar of the grasping point determination
task, hence the accuracy of this step will determine the success of the whole task. Therefore,
after the mask is inferred, the contour of the target must be extracted therefrom. For this
matter, we have used an OpenCV method (cv.FindContours) which returns an array with
the contours of every single closed polygon. Since the mask is from a Region of Interest
(ROI), we just consider the largest one as the interest contour. In addition, the method has a
flag to choose the approximation, allowing one to choose the number of points stored per
contour. In this project two of four have been used:

• CHAIN_APPROX_NONE, maintains all the points of which a contour is composed,
i.e., the maximum absolute difference between two X and Y coordinates is 1.

• CHAIN_APPROX_SIMPLE, uses the compression of vertical, horizontal, and di-
agonal segments while maintaining their endpoints; a rectangular shape would be
represented by just four points.

Figure 8 shows the difference between two contours’ approximations from the same
target by using each of the methods. The first method, in spite of carrying a greater
computational load, will be critical in the result. Even so, its use considerably reduces the
number of points to be treated, greatly alleviating the processing time in cases of excessively
complex contours.

Figure 8. Contour extraction methods. Top-image method 1: CHAIN_APPROX_NONE; bottom-
image method 2: CHAIN_APPROX_SIMPLE.
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3.2.1. Geometric Analysis

A set of mathematical quantities known as raw moments are usually used to calculate
features such as the centroid, size, or orientation of a target within an ROI. These quantities
can be calculated at the pixel level and represented as a set of numerical values, which are
used to determine the best possible grasping points, thanks to the information provided by
encoding the characteristics of the object listed below:

Mij = ∑
x

∑
y

xiyj I(x, y) (5)

• Area (A): based on Equation (5), where I(x,y) represents the intensity of a pixel in a
grayscale image, the area of a target can be calculated for a moment M00 (see Equation (6)):

A = M00 = ∑
x

∑
y

x0y0 I(x, y) (6)

• Gravity center: for the same moment (M00) location of the center of mass can be
calculated by using Equation (7).

Centroid{x̄, ȳ} =

{
M10

A
,

M01

A

}
=

{
M10

M00
,

M01

M00

}
(7)

• Central moments: unlike the raw moments, the central moments are invariant to the
translations (localization) of the target. To do this, it extracts the centroid from X and
Y (see Equation (8)).

µij = ∑
x

∑
y
(x− x̄)i(y− ȳ)j I(x, y) (8)

In addition, some interesting features such as inertia axis, orientation, and eccentricity
can be derived from the spatial moments by using the calculated central moments up
to the second order (see Equation (9))

µij =
Mij

M00
−
(

M10

M00

)i
∗
(

M01

M00

)j
(9)

• Inertia axis: the rotational axis with maximal or minimal inertia. They can be repre-
sented with an ellipse, which must fit perfectly the target’s contour, by calculating
their module as follows.

Imodmin =

(
4
π

)1/4
∗
(

inertia3
max

inertiamin

)1/8

(10)

Imodmax =

(
4
π

)1/4
∗
(

inertia3
min

inertiamax

)1/8

(11)

• Orientation: the object rotation along the Z-axis in the camera coordinates (see Equa-
tion (14)). Taking into account Figure 9, the rotation can be calculated using the minimum
inertia axis (see Equation (13)), which was estimated for the eigenvalues (see Equation (12)).

cov[I(x, y)] =
[

µ20 µ11
µ11 µ02

]
(12)

λ1 =
µ20 + µ02

2
−

√
4µ2

11 + (µ20 − µ02)
2

2
(13)

θ =
1
2

arctan
(

2µ11

µ20 − µ02

)
(14)
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• Roundness and Eccentricity: Although they are very similar, they are calculated differently
and have different uses. We focus on eccentricity, which is widely used for comparison,
as it is a very reliable reference point. It is calculated as shown in Equation (15).

ε =
(µ20 − µ02)

2 − 4µ2
11

(µ20 + µ02)2 (15)

Figure 9. Inertia axes are represented in the image and the ellipse that best fits the object contour.

Now that both contour and geometrical analysis have been completed, it is necessary
to consider the gripper geometry, which is depicted in Figure 10, with the aim of studying
the suitable mechanical properties-based grasping strategies to guarantee reliable stability
and slip-free grasping.

Figure 10. Characterization of the gripper geometry.
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3.2.2. Maximum Curvature or Surface Uniformity Threshold

The aim of this work is to provide in an analytical way two grasping points to allow
the operator either to execute the task in a teleoperated or guided way. For such an effect,
the quality of these points has to guarantee stability and reliability to avoid slippage. Since
the contour evaluated in the steps above is composed of a bundle of pixels, locating two
opposite points across the plane that guarantee the required parallelism of the gripper
becomes a non-trivial task.

Algorithm 1 has been developed to overcome this difficulty by extracting from the
object contour the diametrically opposite points of its surface that should come into contact
with the gripper (of radius r), where the adjacent area is sufficiently smooth to provide a
suitable grip.

Algorithm 1 Maximum curvature or surface uniformity threshold
Input: Tangents, Object Contour, Eccentricity

1: Calculates the points of the tangent line of 2 times the radius of the length of the gripper
with the grasping point in the center.

2: Calculates the percentage of the line that is touching the contour of the object.
3: if eccentricity is below a roundness threshold then
4: a low uniformity threshold is set.
5: else
6: a high uniformity threshold is set.
7: end if
8: if no points of the line are inside the contour then
9: if the percentage of the line is above the uniformity threshold then

10: Output: valid grasping point.
11: else
12: Output: invalid grasping point.
13: end if
14: else
15: Output: invalid grasping point.
16: end if

This algorithm allows for determining if the surface is flat enough to ensure a good
percentage of contact between the object with the parallel fingers of the robot’s gripper.
However, in cases where the object’s shape is highly complex, ensuring a high percentage
of surface contact may not be feasible. In such situations, it may be possible to modify
the maximum curvature or surface uniformity threshold. This threshold can be adjusted
by the operator as needed, taking into account the complexity of the object at hand and
leveraging the operator’s experience. In addition, it considers the chance of grasping both
round and low eccentricity objects, which present less uniformity and necessitate different
approach strategies.

3.2.3. Slip Threshold Defined by Gripper Material and Object

Based on Coulomb’s law of friction established in 1781, and the friction coefficient
shown in Table 5 for some of the most commonly used materials in metallic objects, we can
predict the forces needed for holding or translating an object to avoid slippage.

Nevertheless, focusing on the geometrical point of view, we can notice that the total
applied force generates an angle θ (see Equation (16), µ is the coefficient of static friction),
where the set of its resultant vectors will generate an angle with the normal which is known
as the friction cone, and its θ will be the friction coefficient.

θ = arctan(µ) (16)
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Then, it follows that the segment that intersects the two grasping points must be in-
cluded between friction cones derived from each point (see Figure 11) to grant a
stable grasp.

Table 5. Coefficient of friction for some metallic materials (fragment) [59].

Materials and Material Combinations Surface Conditions µ Static

Aluminum Aluminum Clean and Dry 1.05–1.35
Aluminum Aluminum Lubricated and Greasy 0.3

Aluminum–bronze Steel Clean and Dry 0.45
Aluminum Mild Steel Clean and Dry 0.61

Steel Steel Clean and Dry 0.5–0.8
Steel Steel Lubricated and Greasy 0.16

Wood Clean Metal Clean and Dry 0.2–0.6
Wood Wet Metals Clean and Dry 0.2
Silver Silver Clean and Dry 1.4
Silver Silver Lubricated and Greasy 0.55

Figure 11. Geometrical explanation of stable grasping points (P1 and P2 with their respective frictions
cones in red and blue) where f ts are the tangential forces, f ns are the normal forces, and θs are the
angles of the friction coefficients. Enhanced image from [28].

3.2.4. Parallelism between Grasping Points

The use of the tangents generated by each of the points determined in the previous
step allows us to study their parallelism. These tangents are obtained by subtracting the
initial (x1, y1) and final (x2, y2) coordinates of each tangent and thus produce a vector
representation (see Figure 12).

Figure 12. Representation of grasping tangent lines into vectors.

Then, performing the scalar product of both vectors will give us the angle (θ) they
form by applying the equation below:

θ = arccos
(

~p ·~q
|~p||~q|

)
(17)
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This θ will indicate the level of parallelism of the two points, where 0 will be
fully parallel.

3.2.5. Distance from a Point to a Line as a Threshold

An extra layer to guarantee both the effectiveness and stability of the grasping (see
Figure 13) will be by applying the well-known equation from a point to a line (18), where
our line is represented as the union between the grasping points P1 (x1,y1) and P2 (x2,y2),
and the point is the centroid of the target (xc,yc).

Distance(P1, P2, (xc, yc)) =
|(x2 − x1)(y1 − yc)− (x1 − xc)(y2 − y1)|√

(x2 − x1)2 + (y2 − y1)2
(18)

The threshold has to be tuned manually since the stability factor determined by the
Distance will be influenced by the type of targets to be handled. Again, the experience of
the operator makes a difference in the performance within the scope.

Figure 13. Representation of good (left) and bad (right) grasping in terms of the instability produced
if the grasping points are close or far from the object´s centroid.

3.3. Monocular Depth Acquisition

In certain situations, the use of endoscopic cameras is necessary due to space con-
straints (see Figure 14). However, these cameras often have limited imaging capabilities and
can produce low-quality images that are difficult to interpret. Additionally, there is a lack
of confidence in time-of-flight devices, which rely on the properties of the target material to
operate effectively. As a result, these devices may produce inaccurate or unreliable results
in certain scenarios.

Moreover, our tests have shown that the use of RGB-D cameras, such as RealSense
(Intel Corporation, Santa Clara, CA, USA), does not always provide sufficient confidence
for their use. One issue with these cameras is that their infrared (IR) light mesh and
stereo pair can fall into partial occlusions, which can cause the target object to be obscured
and disappear from the disparity map or depth map (see Figure 15). This can make it
challenging to obtain accurate measurements and understand the shape and structure of
the object being imaged.

To address these challenges, additional algorithms are often necessary to fix or fill the
IR shadow regions that result from partial occlusions. For example, in [60], an object is
assumed to have a similar color over the entire surface and a similar depth of adjacent pixels
to fill the unmeasured areas. This approach can be effective in certain cases, but it may not
always provide accurate results. To overcome the issue of shadow regions in monocular
cameras, we propose an adjustable baseline distance between the two pictures taken. This
provides a solution in certain ranges, allowing the user or operator, after calibration, to try
different distances and qualitatively judge which provides the best results.



Sensors 2023, 23, 5344 16 of 27

Figure 14. Small representation of some of the tools (used in real interventions) intended to be used
with endoscopic cameras mounted in (a) the middle of the fingers; (b) inside of inspection trolley;
(c) inside a coiled vacuum cleaner; (d) inside a driller and water drainer.

Figure 15. Graphical representation of our system against RGB-D cameras (first row RealSense D415,
second row RealSense D405): left image shows the 3D reconstruction, in green the ROI where the
target is actually located; center image shows the deep information; right image shows the contour
and grasping points estimated by our solution.

3.3.1. Stereo Vision with a Monocular Camera

Stereo vision using a monocular camera involves taking two pictures with a known
baseline, allowing for the creation of a disparity map that correlates pixel differences
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between stereo images with distance. This map is represented as a two-dimensional Float32
matrix, where lower values correspond to greater distances and higher values to closer
objects. To establish the relationship between matrix elements and actual depth, calibration
is divided into three parts.

3.3.2. Images for Calibration

Apart from the well-known calibration based on Zhang’s method [61] used for the
extraction of both the intrinsic and extrinsic parameters of the camera, it is necessary to
calibrate the disparity map and determine object distance accurately, plain objects such as
boxes should be photographed at various distances, typically in the range of 30–70 cm. The
selection of this range is influenced by the reach of the robotic arm and the appearance of
the object from the camera’s perspective. The baseline, or the difference between the two
pictures, must also be considered during calibration. For this study, baseline values of 2, 3,
and 4 cm were utilized. Sample calibration images are depicted in Figure 16.

(a) 35 cm (b) 40 cm. (c) 45 cm. (d) 50 cm.

(e) 55 cm (f) 60 cm. (g) 65 cm. (h) 70 cm.

Figure 16. Calibration images taken at different distances from 35 to 70 cm with a baseline of 3 cm.

3.3.3. Disparity Map Calibration

Disparity estimation algorithms can be local or global. Local methods evaluate each
pixel independently while global methods consider the whole image, but are more compu-
tationally intensive. A hybrid approach, semi-global matching, combines both methods.
However, it still requires significant computation time. The Semi-Global Block Matching
(SGBM) algorithm addresses this issue by computing disparity using a smaller block of
pixels. SGBM uses block-based cost matching that is smoothed using path-wise data from
multiple directions [62]. Rectified left and right stereo images serve as input for SGBM. The
rectification process aligns the vertical coordinates of corresponding pixels in both images
so that epipolar lines are parallel to the horizontal axis [63].

The SGBM matcher can produce inaccurate disparity maps due to texture-less areas,
occlusions, and depth discontinuities. To solve these problems, a filtering technique is
applied to align the edges and propagate disparity values from low-confidence regions.
For this, we already have a left matcher (SGBM matcher) and we create a right matcher
by passing the stereo images from right to left. Then, both matchers are used to compute
disparity maps, which are then passed to the filter with the source left view. This improves
accuracy by reducing errors (see Figure 17).

The quality of the resulting disparity map is reliant on the matching accuracy. Higher
resolution cameras can capture more detailed information, enabling more accurate match-
ing between corresponding images. As a result, lower resolution cameras may not capture
sufficient scene details, leading to incorrect or noisy matching and lower overall quality in
the resulting disparity map. This project utilized a camera resolution of 640x480 to capture
the scene and calculate its depth through disparity maps.
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(a) (b) (c)

Figure 17. The overall process of disparity. (a) Left image; (b) right image; (c) disparity map.

3.3.4. Depth Calibration Based on Intensity

The disparity map alone does not provide depth information, so images from
Section 3.3.2 are used to relate pixel values to distance. The distance is measured us-
ing a laser meter and the relation between distance and the pixel value is determined
using the “curve fit” method from SciPy library [64], which fits the data to a predefined
function. Tests were conducted with baselines of 2, 3, and 4 cm (see Figure 18), with only
one parameter (number of disparities) being changed in each test. It was observed that this
parameter changes linearly, increasing by 32 for every 1 cm of change in baseline, resulting
in values of 64, 96, and 128 for baselines of 2, 3, and 4 cm, respectively. Therefore, it is
feasible to compute all the values within that range for this parameter.

(a) Tests with a baseline of 2 cm. (b) Tests with a baseline of 3 cm.

(c) Tests with a baseline of 4 cm. (d) Comparison of tests at different baselines.

Figure 18. Calibration curve of normalized disparity against depth for different baselines.

3.4. Test Setup and Performance

In this study, the implementation of the algorithm was divided into two parts: the
training of the neural network architecture and the application for grasping points calcula-
tion. The training of the neural network architecture required a high computational cost,
which made it impossible to be performed on a typical computer. Hence, the training was
executed on a CERN server with a processor Intel(R) Xeon(R) Silver 4216 CPU @ 2.10 GHz
(Intel Corporation, Santa Clara, CA, USA), a GPU NVIDIA Tesla V100S 32 MB (Nvidia
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Corporation, Santa Clara, CA, USA), and 32 GB RAM, which resulted in a more efficient
and rapid completion of the training process, taking approximately 150 h.

To further evaluate the algorithm’s performance, the application for grasping points
calculation was tested on a laptop with a processor Intel(R) Core(TM) i5-9300H CPU @
2.40 GHz, a GPU Nvidia Geforce GTX 1650 4 MB, and 12 GB RAM. This allowed for a
better understanding of the algorithm’s behavior when integrated into a portable device, a
crucial aspect of its practical applications. Additionally, a series of tests were conducted
to measure the performance of the algorithm with various combinations of features. The
results of these tests, summarized in a Table 6, indicated that the object segmentation
component of the algorithm consumed the majority of the execution time due to its intensive
computational requirements.

Table 6. Performance achieved in every module of the algorithm.

Module Time (ms)

Tracking 20
Preprocessing 1

Object Segmentation 80
Geometrical Analysis 5

Grasping Determination 30
Image Capture 10

Depth Calculation 5

The performance of our algorithm was evaluated by simulating real-world conditions
using a specialized test bench. The bench consisted of a metallic surface with objects that
created shadows and reflections, adding difficulty to the detection. This testing method
ensured accurate results for evaluating the effectiveness and reliability of the algorithm.
The test bench and conditions are depicted in Figure 19.

Figure 19. Test bench used for testing the algorithm.

The selection of equipment and devices was a crucial factor in the project as they were
required to execute the algorithm. The devices were procured from CERN laboratory and
their features are described in Table 7. The robotic arm and camera used were designed to
function independently.
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Table 7. Description of the devices used during the tests.

Image Model Description

C270 HD Webcam

• Max Resolution: 720 p/30 fps
• Camera megapixel: 0.9
• Focus type: fixed focus
• Lens type: plastic
• Built-in mic: Mono
• Mic range: Up to 1 m
• Diagonal field of view

(dFoV): 55°

PRBT 6

• Payload: 6 kg load
• Operating range: 741 mm
• Degrees of freedom: 6 axes
• Repetition accuracy position:

0.2 mm
• Weight: 19 kg
• Supply: 24 VDC

DW03050-XJ

• Index of protection: IP54
• Range: 50 m
• Precision: +/−1.5 mm

4. Results

In this chapter, we present the results of two tests that were conducted to evaluate the
effectiveness and reliability of the algorithm in performing its intended task. The primary
objectives of these tests were to determine the success rate of the algorithm and to assess the
level of error in its output. Through a detailed analysis of the results obtained from these
tests, we gained a deeper understanding of the algorithm’s performance and its ability to
deliver accurate and reliable results in the specific application it was designed for.

4.1. Repeatability of Grasping Points from Different Joint Configurations

We conducted two tests to evaluate the repeatability of the algorithm. The object of
interest was placed in a specific position on the test bench and a robotic arm equipped
with a camera mounted on the end-effector was used to run the algorithm at different
joint configurations. The purpose of these tests was to observe variations in the x, y, and
z coordinates in the robot frame to determine the algorithm’s accuracy and consistency.
Figure 20 shows the two tests and illustrates the object segmented with a white border
and the grasping points marked with red dots. The exact location of the grasping points
may vary slightly due to the calculation being based on the object’s contour, potentially
impacting the final results of the tests.

Figure 21 shows larger dispersion in the x-axis (1 cm deviation) than in the y-axis and
z-axis (measured in mm), suggesting possible outliers or other variables. Mean and median
values of the scatter points are close to each other, indicating a symmetrical distribution.
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Figure 20. Determination of the grasping points of an element from various perspectives to assess
the repeatability of the algorithm.

Figure 21. Results for spatial conditions after two tests in different joint configurations.

4.2. Algorithm Distance Measurement Compared with a Tested Laser Meter as Benchmark

We conducted three tests to assess the accuracy of the algorithm. The robotic arm
was equipped with a camera and laser meter, and three objects were placed in specific
positions. The absolute difference between the mean distances calculated by the laser meter
and algorithm were measured to determine accuracy. Figure 22 shows the three different
tests conducted under varying environmental conditions.

The box plot in Figure 23 clearly illustrates the accuracy achieved in each test and
the distribution of the scatter data. The results indicate that the objects for which the
algorithm was specifically designed yielded promising results, with an error of less than
1 cm. Among these objects, the socket exhibited the minimum difference error, while the
maximum difference error was observed in the case of the black box, approaching 1.3 cm.
Moreover, the surface of the object being detected appears to have a significant impact on
the algorithm’s performance. In this study, the socket, which has the least shiny surface
among all the objects, produced the best results. Additionally, the means and median
values for all tests are close to each other and less than 0.6 cm, indicating a symmetrical
distribution of data with a high level of precision.
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Figure 22. Three different tests were performed to obtain the accuracy of the algorithm.

Figure 23. Difference obtained between the distance obtained by the benchmark and the algorithm.

5. Discussion
Future Work

This work not only shows the complexity to front metallic targets over metallic envi-
ronments, but also the challenge of dealing with primarily unfamiliar objects. For these
matters, the application of techniques such as few-shot learning [65,66] or one-shot learn-
ing [67] may be useful due to their ability to handle limited data and unseen classes. These
solutions would allow for removal of the feature extractor algorithms from the equation for
tracking recovery, in addition to enhancing the trained model for this work as tests and
interventions are being carried out.

Furthermore, Self-supervised Learning [68,69], which uses unsupervised methods to
learn features from data, may be useful to enhance the model too, creating a more and
more robust solution according to the results shown on this project.
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Although the system is fully operational and integrated into the CERNTAURO Frame-
work [70], it eventually must be integrated into the CERN Robotic Graphical User Interface
(GUI) [71] to be used in real scenarios, since it has been already used during preparation
tests for interventions, showing its high level of accuracy and reliability.

Further work on sensor fusion for grasping determination beyond vision is planned,
by using the benefits of already available sensors in the robot and end-effector tools, such
as force–torque and tactile sensors [72].
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Abbreviations
The following abbreviations are used in this manuscript:

ToF Time of Flifht
MSM-8 Master-Slave Manipulator Mk. 8
AI Artificial Intelligence
HOG Histograms of Oriented Gradients
SIFT Scale Invariant Feature Transform
SURF Speed-Up Robust Features
ML Machine Learning
DL Deep Learning
CNN Convolutional Neural Networks
R-CNN Region Based Convolutional Neural Networks
RL Reinforcement Learning
RGB Read Green Blue
RGB-D Read Green Blue Depth
CERN European Organization for Nuclear Research
CDF Cumulative Distribution Function
AHE Adaptive Histogram Equalization
GHE Global Histogram Equalization
CLAHE Contrast-Limited Adaptive Histogram Equalization
SOD Salient Object Detection
IoU Intersection over Union
TP True positives
GT Ground Truth
SM Segmentation Masks
FP False Positives
FN False Negative
ORB Oriented fast and Rotation Brief
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BRIEF Binary Robust Independent Elementary Features
ROI Region of Interest
IR InfraRed
2D 2 Dimensions
3D 3 Dimensions
SGBM Semi-Global Block Matching
GUI Graphical User Interface
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