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Abstract: Real-time condition monitoring and fault diagnosis of spindle bearings are critical to
the normal operation of the matching machine tool. In this work, considering the interference of
random factors, the uncertainty of the vibration performance maintaining reliability (VPMR) is
introduced for machine tool spindle bearings (MTSB). The maximum entropy method and Poisson
counting principle are combined to solve the variation probability, so as to accurately characterize
the degradation process of the optimal vibration performance state (OVPS) for MTSB. The dynamic
mean uncertainty calculated using the least-squares method by polynomial fitting, fused into the
grey bootstrap maximum entropy method, is utilized to evaluate the random fluctuation state of
OVPS. Then, the VPMR is calculated, which is used to dynamically evaluate the failure degree of
accuracy for MTSB. The results show that the maximum relative errors between the estimated true
value and the actual value of the VPMR are 6.55% and 9.91%, and appropriate remedial measures
should be taken before 6773 min and 5134 min for the MTSB in Case 1 and Case 2, respectively, so as
to avoid serious safety accidents that are caused by the failure of OVPS.

Keywords: machine tool spindle bearings; degradation probability; vibration performance maintaining
reliability; uncertainty; optimal performance state

1. Introduction

Precision, as one of the most important performance indicators of spindle bearings,
has a significant impact on the normal operation of machine tools. Super-precision spindle
bearings (SPSB) refer to spindle bearings with low vibration, a wide speed range, a high
rotational accuracy, low heating, high system rigidity, and low noise. SPSB works at the
OVPS, which is the basis for a machine tool to achieve optimal performance. The failure
of MTSB are not only due to fatigue. A variety of performance failures, such as stuck,
sintering, plastic deformation, crack, or fracture may occur before fatigue failure [1–3].
The probability distribution of these failure modes is unknown, and the characteristic
data of the spindle bearings are scarce. In particular, the non-linear dynamic contact and
collision between the parts inside the spindle bearings, the non-linear damage, viscous-
temperature and viscous-pressure characteristics of lubricating medium, and the accuracy
loss, all present uncertain and non-linear characteristics [4–7]. These uncertainties bring
new challenges to analyze the degradation trend of vibration performance. Therefore,
it is of great significance to evaluate the degradation process of vibration performance
dynamically before the MTSB fail.

When analyzing the degradation process of bearings, the mathematical statistical
methods generally assume that the amount of data are limited, and then extract character-
istic parameters of bearings [8–10]. Based on the vibration signal collected, Ye et al. [11]
used the maximum entropy method to calculate the PDF of bearings, which was regarded
as degradation characteristics. Then, the Bayesian method, the bootstrap method and the
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maximum entropy method were fused to evaluate the reliability of bearings in service. Its
performance degradation and reliability evaluation process are shown in Figure 1.

Sensors 2023, 23, x FOR PEER REVIEW 2 of 32 
 

 

used the maximum entropy method to calculate the PDF of bearings, which was regarded 
as degradation characteristics. Then, the Bayesian method, the bootstrap method and the 
maximum entropy method were fused to evaluate the reliability of bearings in service. Its 
performance degradation and reliability evaluation process are shown in Figure 1. 

 
Figure 1. Performance degradation and reliability evaluation process of rolling bearings. 

However, due to the differences of experimental data samples caused by random 
factors and interference factors in the experimental process, or the incompleteness of in-
formation of data samples, it is difficult to represent the entire distribution range of bear-
ing life accurately. For two sets of bearings with the same batch and model, the prediction 
results may also be different, that is, the generalization ability and stability of the model 
cannot be guaranteed. In order to reduce the impact of random and interfering factors on 
the analysis results, many experts and scholars at home and abroad preprocess the exper-
imental data. Huang et al. [12] fused empirical mode decomposition method and Hilbert 
transform method to analyze the time-frequency spectrum of signals, making up for the 
shortcomings of traditional statistical theory in analyzing nonlinear and non-stationary 
data. In order to avoid multiple spline curve fitting in the process of empirical mode de-
composition, Feldman [13] proposed a time-varying vibration decomposition method 
based on Hilbert transform. In order to not affect the accuracy of condition monitoring 
and fault diagnosis, Guo et al. [14] proposed a signal compression method based on inte-
grated empirical mode decomposition, which adaptively decomposes the vibration signal 
into signal components with different frequency bands. These preprocessing methods 
may reduce the influence of random and interference factors, while also filtering out some 
useful information, resulting in “distortion” of the analysis results, which in turn leads to 
the inability to evaluate the degradation process of bearings effectively. 

Figure 1. Performance degradation and reliability evaluation process of rolling bearings.

However, due to the differences of experimental data samples caused by random
factors and interference factors in the experimental process, or the incompleteness of
information of data samples, it is difficult to represent the entire distribution range of
bearing life accurately. For two sets of bearings with the same batch and model, the
prediction results may also be different, that is, the generalization ability and stability of
the model cannot be guaranteed. In order to reduce the impact of random and interfering
factors on the analysis results, many experts and scholars at home and abroad preprocess
the experimental data. Huang et al. [12] fused empirical mode decomposition method and
Hilbert transform method to analyze the time-frequency spectrum of signals, making up for
the shortcomings of traditional statistical theory in analyzing nonlinear and non-stationary
data. In order to avoid multiple spline curve fitting in the process of empirical mode
decomposition, Feldman [13] proposed a time-varying vibration decomposition method
based on Hilbert transform. In order to not affect the accuracy of condition monitoring and
fault diagnosis, Guo et al. [14] proposed a signal compression method based on integrated
empirical mode decomposition, which adaptively decomposes the vibration signal into
signal components with different frequency bands. These preprocessing methods may
reduce the influence of random and interference factors, while also filtering out some useful
information, resulting in “distortion” of the analysis results, which in turn leads to the
inability to evaluate the degradation process of bearings effectively.

Traditional machine learning and deep learning, as methods widely used in data
preprocessing, have their own advantages and disadvantages. In the field of traditional ma-
chine learning, SVM has a low error rate of generalization, a low computational overhead,
and it is easy to interpret its results [15,16]. However, SVM is too sensitive to parameters of
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kernel functions. The idea of KNN is simple, with no assumptions about data input, but
its disadvantage is that the computational complexity is high [17]. The logistic regression
method has low computational cost, and it is easy to understand and implement [18]. How-
ever, it is prone to underfitting and its classification accuracy is not high. The decision tree
is insensitive to missing intermediate values, and can handle irrelevant feature data [19]. It
is better than KNN in understanding the inherent meaning of the data. Its disadvantage is
that it is prone to overfitting and the construction process is time-consuming.

Deep learning and traditional machine learning are similar in data preprocessing. The
core difference lies in the feature extraction process, where deep learning does not require
manual extraction and the extraction process is performed by a machine [20–23]. Although
deep learning can learn the features of patterns automatically and achieve high recognition
accuracy, the prerequisite is that amounts of data are provided. For a limited amount of
data, deep learning algorithms cannot estimate the laws of data without bias. The weight
parameters of CNN are less than those of DNN connected fully, which makes the training
speed of CNN model faster and is not prone to overfitting [24]. Meanwhile, CNN requires
less data to train. The disadvantage is that it requires large sample size and parameter
adjustment, and its physical meaning is also unclear. RNN cannot solve the problem of
long-term dependence, while LSTM implements temporal memory function and prevents
gradient disappearance. At the same time, LSTM can better handle the tasks of time series
than CNN. In addition, it also solves the long-term dependency problem [25–27]. However,
the model structure of LSTM is complex relatively, and its training process is more time-
consuming than CNN. The characteristics of RNNs determine that they cannot parallelize
data well. It is also difficult for LSTM to handle longer data sequences.

Vibration data collected through the experiment vary with time, which can be regarded
as a non-linear time series. From the beginning of service to the failure of accuracy, the
vibration performance varies continuously, forming multiple time series. The intrinsic
series refers to the time series with OPS. According to the time series of MTSB, the degrada-
tion process of accuracy is defined as a Poisson process, and the degradation probability
is taken as a parameter of the counting process [28]. Influenced by many factors, the
degradation process of bearings has the characteristics of non-linear dynamics [29,30]. For
each time series of accuracy, the degradation probability relative to the intrinsic series also
has the characteristics of non-linearity and diversity. This causes a dynamic change in
information. In particular, the degradation probability functions of accuracy vary with time
and environmental factors. In view of this, a polynomial is used to fit the parameters, and
the data samples of the degradation probability of OVPS are obtained for each time series.
Since it is difficult to obtain enough original information of degradation probability in a
short time, the grey bootstrap method is used to generate a large set of sample data [31].

Information fusion technology and the real-time update method can improve the
prediction accuracy, but most of the existing fusion methods focus on the fusion of homo-
geneous information collected by the sensors with same type. They rarely consider the
fusion of heterogeneous information, especially the fusion and prediction of event single
value data and waveform data monitored, which needs further in-depth study [32,33]. In
addition, the current real-time update methods basically take Bayesian method as the theo-
retical framework. They can only apply the observed data to update the priori probability
distribution, but cannot utilize other available information such as moments of parameters
or functions of moments.

On the basis of this, a dynamic evaluation model is established to study the perfor-
mance degradation process for MTSB. This model considers the interference of random
factors during the service process of MTSB. First, the vibration signal are processed into
segments to obtain the time series with OVPS based on rolling average method. The
maximum entropy method is used to calculate the PDF of intrinsic sequence. Based on
the Poisson counting principle, the variation probabilities of OVPS of each time series
are calculated. Considering the interference of random factors, the small data sample of
variation probability is obtained for each time series by polynomial fitting method. The
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grey bootstrap method (namely, GBM (1,1)) is applied to generate enough data samples
of variation probability, so as to obtain the estimated true value, estimated interval and
dynamic uncertainty of variation probability. The PMR and PMRR of OVPS of MTSB are
calculated according to Poisson process theory. Experimental verification is utilized to
verify that the proposed model can be used effectively to estimate the failure degree of
OVPS to monitor and analyze the performance degradation process of MTSB.

The flow diagram of proposed method is shown in Figure 2.
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2. Mathematical Models

Based on the maximum entropy method and the Poisson counting principle, the
variation probability of the OVPS is calculated for MTSB. The small data sample of variation
probability is obtained by polynomial fitting for each time series. The estimated true value
curve and the upper- and lower-bound curves of variation probability are obtained by
fusing the grey bootstrap method into the maximum entropy method. The VPMR is
calculated based on the Poisson process, which is used to dynamically evaluate the failure
degree of OVPS for MTSB.

2.1. Calculating Variation Probability of OVPS

During the service period of the spindle bearings, r time sequences are obtained
by periodic sampling vibration acceleration signals of spindle bearings. The time series
collected after initially wearing is considered to be the intrinsic sequence, which is marked
as the first time series and expressed by the vector X1 as

X1 = (x(1), x(2), . . . , x(k), . . . , x(N)). (1)

where x(k) is kth performance data in the intrinsic sequence; k is the order number of perfor-
mance data in intrinsic sequence, k = 1, 2, 3, . . . , N; N is the total number of performance
data in the intrinsic sequence.

With the change of time variable, vibration acceleration data are collected continuously,
and the nth time series vector Xn is obtained.

Xn = (xn(1), xn(2), . . . , xn(k), . . . , xn(N)). (2)

where xn(k) is the kth performance data of the nth time series; n is the order number of time
series, n = 1, 2, 3, . . . , r.

The maximum entropy method can make the optimal estimation for the unknown
probability distribution with minimal subjective bias. Lagrange multipliers are introduced
in the process of solving probability distributions, so the problem of solving probability
distribution is transformed into the problem of solving Lagrange multipliers. For the
convenience of description, the continuous variable x is used to express the discrete variable
x(k) in the intrinsic sequence.

According to the maximum entropy method, the probability density function should
meet the condition that the value of entropy function H(x) is the maximum.

H(x) = −
∫
S

f (x) ln f (x)dx (3)

where f (x) is the probability density function of continuous variable x; lnf (x) is the logarithm
of the probability density function f (x); S is the feasible domain of the performance random
variable x, S = [S1, S2]; S1 is the lower-bound value of the feasible domain, and S2 is the
upper-bound value of the feasible domain.

Then, the Lagrange multiplier method is used to solve this problem by adjusting
the probability density function f (x) to maximize the value of entropy function H(x) [11].
Assume H is the Lagrange function.

H = H(x) + (c0 + 1)[
∫
S

f (x)dx− 1] +
j

∑
i=1

ci[
∫
S

xi f (x)dx−mi] (4)

where i is the order number of origin moment, i = 1, 2, . . . , j, usually j = 5; mi is the ith order
origin moment, m0 = 1; xi is the coefficient of the function f (x); ci is the (i + 1)th Lagrange
multiplier and c0 is the first Lagrange multiplier, i = 1, 2, . . . , j.
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The probability density function f (x) of data samples can be expressed as

f (x) = exp(c0 +
j

∑
i=1

cixi) (5)

With

c0 = −ln(
∫
S

exp(
j

∑
i=1

cixi)dx) (6)

The other j Lagrange multipliers should satisfy that

1−

∫
S

xiexp(
j

∑
i=1

cixi)dx

mi
∫
S

exp(
j

∑
i=1

cixi)dx
= 0 (7)

To ensure the convergence of solution, the original data interval is mapped to interval
[−e, e] by the substitution of variable. The sample data are divided into ξ groups in the
incremental order, and the histogram can be drawn. At the same time, the values zµ and
frequency Γµ can be calculated, and u = 2, 3, . . . , ξ + 1. Then, the histogram is extended
into (ξ + 2) group and let Γ1 = Γξ +2.

Let
ψ = ax + b (8)

where ψ is the variable to be transformed, ψ ∈ [−e, e]; a and b are the mapping parameters;
e has a value of 2.71828.

x =
ψ− b

a
(9)

The mapping parameters a and b can be calculated based on dx = dψ/a.

a =
2e

zξ+2 − z1
(10)

b = e− azξ+2 (11)

Therefore, the probability density function f (x) can be transformed into

f (x) = exp[c0 +
j

∑
i=1

ci(ax + b)i)] (12)

Set a significant level α, α ∈ [0, 1], so the confidence level P is given by

α = (1− P)× 100% (13)

The maximum entropy estimated interval is [XL, XU] for a given confidence level P,
and the lower-bound value XL should meet that XL = Xα/2.

And
1
2

α =
∫ XL

S1

f (x)dx (14)

The upper-bound value should meet that XU = X(1−α)/2. And

1
2

α =
∫ S2

XU

f (x)dx (15)
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So the maximum entropy estimated interval for continuous variable x can be given by

[XL, XU ] =
[

X α
2
, X1− α

2

]
(16)

According to Equation (16), the maximum entropy estimated interval [XL1, XU1] can
be calculated for the intrinsic time series, where XL1 is the lower-bound value and XU1 is the
upper-bound value of the maximum entropy estimated interval of the intrinsic time series.

Based on the Poisson counting principle, record the number Nn that performance
data of the nth time series is outside the estimated interval [XL1, XU1]. Then, the variation
frequency λn can be given as Equation (17) for the nth time series.

λn =
Nn

N
(17)

With
Nn = Nn1 + Nn2. (18)

where Nn1 is the number showing that performance data are less than XL1 for the nth time
series; Nn2 is the number showing that performance data are more than XU1 for the nth
time series; n is the sequence number of time series, n = 1, 2, 3, . . . , r.

2.2. Calculating Estimated Truth Value and Estimated Interval of Variation Probability

The least-squares method is used to fit the variation probability with different order
polynomials. The fitting effect depends on the correlation coefficient R2. The closer the
correlation coefficient R2 is to 1, the better the polynomial fitting effect. If the correlation
coefficient R2 is less than 0.8, the fitting effect is worse, so the polynomial will not be used
in the later analysis process.

The polynomial function Gq(λ) is given by

Gq(λ) = pq0λ0 + pq1λ1 + pq2λ2 . . . + pqγλγ + . . . + pqqλq; γ = 0, 1, 2, . . . , q; q = 1, 2, . . . , 6; (19)

where Gq(λ) is the qth order polynomial; q is the order number of polynomial function; pqγ

is the coefficient of the power function λγ.
According to the above polynomial function models, small data samples of variation

probability of OVPS are obtained for each time series.

Y(n) = (yn(1), yn(2), . . . , yn(6)) = (yn(u)); u = 1, 2, . . . , 6;n = 1, 2, . . . , r; (20)

where Y(n) is the data sample of variation probability of OVPS for the n time series; yn(u) is
the uth data in the variation probability data sample for the n time series.

Using the bootstrap method, B bootstrap re-sampling samples of size z, namely the
bootstrap re-sampling samples VBootstrap, can be obtained by an equiprobable sampling as

VBootstrap =
(
V1, V2, . . . , Vβ, . . . , VB

)
(21)

where Vβ is the βth bootstrap re-sampling sample, β = 1, 2, . . . , B; B is the times of the
bootstrap re-sampling, and also the number of bootstrap samples, with

Vβ =
[
vβ(Θ)

]
; Θ = 1, 2, . . . , z (22)

where vβ(Θ) is the Θth data in the βth bootstrap re-sampling sample.
According to the grey model GM (1,1) [34], suppose the first-order accumulated

generating operator (1-AGO) of Vβ is given by

Yβ =
[
yξβ(u)

]
=

Θ

∑
j=1

vξβ(j) (23)
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The grey generated model can be described as the differential equation as follows:

dyξβ(u)
du

+ c1yξβ(u) = c2 (24)

where u is the time variable, and c1 and c2 are the coefficients to be estimated.
Use the increment to replace the differential, viz.,

dyξβ(u)
du

=
∆yξβ(u)

∆u
= yξβ(u + 1)− yξβ(u) = vξβ(u + 1) (25)

where ∆u is equal to the unit interval, 1. Furthermore, assume the generated vector of the
mean series as follows

Zβ =
[
zβ(u)

]
=
[
0.5yξβ(u) + 0.5yξβ(u− 1)

]
(26)

The least-squares solution with the initial condition yξβ(1) = vξβ(1) is given by

ŷξβ(z + 1) =
(
vξβ(1)− c2/c1

)
e−c1z + c2/c1 (27)

where the coefficients c1 and c2 are as follows

(c1, c2)
T =

(
DTD

)−1
DT(Vβ

)T (28)

with
D =

(
−Zβ, I

)T (29)

I = (1, 1, . . . , 1) (30)

According to the inverse AGO [34], the βth generated data are expressed as

ν̂(z + 1) = ŷξβ(z + 1)− ŷξβ(z)− c (31)

Therefore, B generated data for the vibration performance can be obtained as

YB =
(
w1, w2, . . . , wβ, . . . , wB

)
=
(
ν̂1(z + 1), ν̂2(z + 1), . . . , ν̂β(z + 1), . . . , ν̂B(z + 1)

)
(32)

where wβ is the βth generated data.
The maximum entropy method is used to calculate the probability density function of

the generated sample YB. According to the probability density function, the true value and
upper- and lower-bound values are estimated for the data sample of variation probability
of each time series.

The probability density function of variation probability data sample can be calcu-
lated as

f (λn) = exp[c0n +
j

∑
i=1

cin(anλn + bn)
i)] (33)

The estimated true value of the variability probability is obtained as

λn0 =
∫
S

λn f (λn)dλn (34)

Set a significant level and let α ∈ (0, 1). The maximum entropy estimated interval is
given as

[λnL, λnU] = [λn α
2
, λn1− α

2
] (35)
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where λnL is the lower-bound value and λnU is the upper-bound value of the variation
probability data sample for the nth time series.

2.3. Evaluation of the Uncertainty of Variation Probability

The fluctuation range of variation probability can be expressed as

Uλn = λnU − λnL (36)

where Uλn is the estimated uncertainty of variation probability, namely, the instantaneous
uncertainty at the confidence level P.

The number η is calculated for variation probability sample data more than the upper-
bound value λnU based on the Poisson counting process, and the reliability of evaluation
result is defined as

PR = (1− η/r)× 100% (37)

where PR is the reliability of the polynomials fitting effect using the least-squares method.
Define

Umean = (1/r)
r

∑
n=1

Uλn

∣∣PR=100% (38)

where Umean is the dynamic average uncertainty; |PR=100% stands for that the calculation
process is under the condition of PR = 100% [9].

2.4. Evaluation of PMR and PMRR

Any counting process can be described by the Poisson process [28] as

Q = exp(−θξ)
(θξ)e

e!
(39)

where ξ stands for the time variable with ξ = 1, 2, 3, . . . , and ξ ≥ 1; e is the number of
occurring failure events with e = 0, 1, 2, 3, . . . , namely, the serious variation in working
condition that may cause the OVPS failure; Q is the probability of failure events occurring
e times. Thus, the reliability R for events occurring can be obtained by the Poisson process.

When solving for the PMR of bearings working at the OVPS, let e = 0, viz., which
indicates that R is the probability before the OVPS fails. Let ξ = 1, which indicates that
R is the PMR of time series in current time. According to Equation (40), PMR can be
expressed as

R(λn) = exp(−λn) (40)

where R(λn) is a function of the variation probability λn.
The upper- and lower-bound values of variation probability are applied into the

reliability Equation (41), so the estimated true values R0 and upper- and lower-bound
intervals [RL, RU] are gained for performance maintaining reliability during the time
intervals corresponding to the performance time series. The range of variation probability
λn is [0, 1]. 0 represents the OVPS of bearings without any variation, which is an ideal
state and the reliability is 100% for bearing working at the OVPS. 1 represents that the
OVPS of rolling bearings fail completely and the performance state is very unreliable.
Therefore, if the value of λnL is less than 0, let λnL = 0 artificially in the process of solving
the performance maintaining reliability.

R0 = exp(−λn0), RL = exp(−λnU), RU = exp(−λnL) (41)

According to the concept of relative error in measurement theory, performance main-
taining relative reliability (PMRR) d(λn) of MTSB is obtained to characterize the failure
degree of OVPS [11].

d(λn) =
R(λn)− R(λ1)

R(λ1)
× 100% (42)
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where R(λ1) is the PMR for the intrinsic series of MTSB, R(λn) is the PMR for the nth time
series of MTSB; d(λn) is the PMRR for the nth time series of MTSB.

The basic classification principle of degree failure of OVPS for MTSB is as follows:

(1) If d(λn) is not less than 0%, which shows that the PMR during this period is not less
than PMR of OVPS, and it cannot deny that the performance has reached its optimal
state; otherwise, it can deny that the performance has achieved its optimal state.

(2) When d(λn) is less than 0%, if the absolute value of d(λn) is in (0%, 15%], this indicates
that the error between the evaluation value and the optimum value is very small. If
the absolute value of d(λn) is in (15%, 30%], this indicates that the error between the
evaluation value and the optimum value is gradually increasing. If the absolute value
of d(λn) is greater than 30%, this indicates that the error between the evaluation value
and the optimum value is very large.

Based on that, the degree failure of OVPS for MTSB is divided into S1, S2, S3, S4 for a
total of four levels:

S1: If d(λn) ≥ 0%, it indicates the performance states of MTSB reaches the optimum
and has almost no failure possibility.

S2: If d(λn) ∈ [−15%, 0%), it indicates the performance states of MTSB is normal, and
the degree failure of OVPS is very small.

S3: If d(λn) ∈ [−30%, −15%), it indicates the performance states of MTSB is gradually
becoming worse, and the degree failure of OVPS is gradually increasing.

S4: If d(λn) < −30%, it indicates the performance states of MTSB is worse, and the
degree failure of OVPS is very large.

The negative value of d(λn) indicates the performance states has attenuation, namely,
PMR currently is less than PMR during the optimum period, and the positive value
indicates no attenuation. The smaller d(λn) is, the worse the performance states of MTSB
is, and the larger the degree failure of OVPS is. Therefore, the time corresponding to
d(λn) = −30%, is the critical time where OVPS becomes poor. Taking corresponding
measures before the critical time can avoid serious safety accidents that are caused by the
failure of OVPS.

3. Experimental Verification
3.1. Case 1

This is a strength lifetime test on the machine tool spindle bearings, which is conducted
at a radial load of 4.58 kN, an axial load of 4.17 kN, and a motor speed 6000 r/min. The
vibration acceleration sensor has a measuring range of ±2000 g and a resolution of 0.0001 g.
The data-acquisition rate is 20 KHz. The test machine, the bearing used and the vibration
data in this case are exactly the same as those of Case 1 in Reference [11]. The vibration
signals are automatically collected by the computer control system, as shown in Figure 3.

As shown in Figure 3, based on the rolling average method, the performance degrada-
tion stages are divided as shown in Table 1.

From the OVPS of the bearing, there are 7321 vibration signals. Among them, the
473rd to 7472nd data points are divided into 10 segments at 700 data intervals. The 7473rd
to 7793rd data are separated into one segment, that is, the 11th segment.

It is worth noting that if the vibration data are divided into fewer segments, the specific
variation process of characteristic parameter cannot be obtained. If the vibration data are
divided into a large number of segments, it will cause large computational workload
and complex calculation process. At the same time, each segment of data contain less
information, which makes the calculation error of the probability density function larger.
Therefore, the vibration data are divided into ten segments usually in the analysis process.
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Table 1. Performance degradation stage divided.

Data Point Degradation Stage

1st to 472nd Initial wear stage
473rd to 2574th Optimal performance state
2575th to 6659th Normal wear stage
6660th to 7446th Degeneration stage
7447th to 7793rd Deterioration stage

3.1.1. Variation Probability of OVPS of MTSB

For the first time series, based on the Equations (1)–(12), the origin moments are
obtained as [m11, m21, m31, m41, m51] = [−0.5266, 1.2312,−1.4627, 3.5077,−5.2016]. Lagrange
multipliers are calculated as [c01, c11, c21, c31, c41, c51] = [−0.2975,−0.1981,−0.4370,−0.2928,
−0.0111, 0.0430]. Mapping parameter are gained as a1 = 2.2241; b1 =−8.0066. The estimated
truth function f 1(x) is calculated as shown in Figure 4.
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Figure 4. Probability density function of data samples of intrinsic series.

Assume that the significance level α is 0.01 and the confidence level is P = 99%, based
on the Equations (13)–(16), the maximum entropy estimated interval of the intrinsic series
is [2.4867, 4.5127] m·s−2.

Based on the Equations (17) and (18), the numbers are calculated, respectively, that
the 11 data samples fall outside the maximum entropy estimated interval [XL1, XU1] of
intrinsic time series. According to the Poisson counting principle, the variation frequencies
[λ1, λ2, λ3, λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11] are as shown in Figure 5.
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Figure 5. Variation probability curve.

As shown in Figure 5, the performance variation probability is non-linear and
uncertain–relative to the intrinsic time series. Before the corresponding time interval
of the third time series, the variation probability of the MTSB vibration performance is
almost zero. Between the corresponding time interval of the third time series and the fifth
time series, the variation probability has an increased trend. Between the corresponding
time interval of the fifth time series and the eighth time series, the variation probability has
a decreasing trend. Between the corresponding time interval of the eighth time series and
the eleventh time series, the variation probability has a rapidly increasing trend.

3.1.2. Estimated Truth Value and Estimated Interval of Variation Probability of MTSB

The least-squares method is used to fit the variation probability with second-, third-,
fourth-, fifth- and sixth-order polynomials. Based on the Equation (19), the fitting results
are shown in Tables 2 and 3, and Figure 6.

Table 2. Fitting using least-square method.

Order Number q of
Polynomials Expressions of Polynomials Correlation

Coefficient R2

Second order G2(λn) = 0.0155λn
2 − 0.1162λn + 0.2065 0.7863

Third order G3(λn) = 0.0048λn
3 − 0.0712λn

2 + 0.3181λn − 0.3193 0.9390
Fourth order G4(λn) = 0.0009λn

4 − 0.0162λn
3 + 0.0958λn

2 − 0.1751λn + 0.0900 0.9725
Fifth order G5(λn) = −0.0002λn

5 + 0.0076λn
4 − 0.0900λn

3 + 0.4533λn
2 − 0.9059λn + 0.5576 0.9860

Sixth order G6(λn) = −0.00008λn
6 + 0.0027λn

5 − 0.0335λn
4 + 0.1897λn

3 − 0.4996λn
2 + 0.5821λn − 0.2323 0.9955

Table 3. Fitting results of polynomials.

Sequence Number of
Time Series

Variation Probability

Third-Order
Polynomial

Fourth-Order
Polynomial

Fifth-Order
Polynomial

Sixth-Order
Polynomial

1 −0.0676 −0.00457 0.0224 0.0090
2 0.0707 0.0078 −0.0462 −0.0033
3 0.1243 0.0615 0.0524 0.0266
4 0.1222 0.1120 0.1477 0.1161
5 0.0933 0.1358 0.1712 0.1833
6 0.0665 0.1303 0.1293 0.1682
7 0.0706 0.1138 0.0764 0.0932
8 0.1346 0.1259 0.0879 0.0664
9 0.2873 0.2268 0.2331 0.2247

10 0.5577 0.4980 0.5486 0.6187
11 0.9746 1.0418 1.0108 1.0379
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The closer the correlation coefficient R2 is to 1, the better the polynomial fitting. As
shown in Table 4, the correlation coefficient R2 for the second-order polynomial is less than
0.8. This shows that the fitting is worse than other higher-order polynomials. Therefore,
the second-order polynomial is not used in further analysis.

Table 4. Estimated uncertainties Uλn of fitting effect using polynomials.

Sequence Number
of Time Series n

Estimated
Uncertainties Uλn

Sequence Number
of Time Series n

Estimated
Uncertainties Uλn

1 0.2010 7 0.1016
2 0.2361 8 0.1537
3 0.2088 9 0.1478
4 0.0878 10 0.2538
5 0.1935 11 0.1491
6 0.2194

Figure 6 shows that the fitted variation probability is almost identical with the ac-
tual variation probability for the fourth, tenth and eleventh time series. The fitting was
performed using the least-square method by the third-order polynomial. With fittings
using the least-square method by the fourth-order polynomial, the fitted variation prob-
ability values are basically identical with the actual values for the second, fourth, sixth,
seventh and ninth time series. The fitted variation probability values are almost identical
with the actual variation probability values for the third, sixth, ninth and eleventh time
series when fitting was performed using the least-square method by the fifth-order poly-
nomial. When fitting was performed using the least-square method by the sixth-order
polynomial, the fitted variation probability values are basically identical with the actual
values for the first, third, fourth, fifth, seventh, eighth and ninth time series. In short, the
above four polynomials have their own advantages in fitting. Therefore, relevant informa-
tion should be fully fused to effectively monitor the evolution process of rolling bearing
vibration performance.

3.1.3. The Uncertainty of Variation Probability of MTSB

The variation probability of the first time series is taken as an example here. According
to the grey bootstrap method, the number of bootstrap re-sampling is taken to be B = 20,000,
and confidence level is taken to be P = 95%. Based on the Equations (20)–(32), the grey
bootstrap sample YBootstrap is obtained by sampling the sample data of fitting the variation
probability values using the above four polynomials, as shown in Figure 7.
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Figure 7. Sample data generated using grey bootstrap method.

Based on the maximum entropy method, the origin moments are obtained as [m11,
m21, m31, m41, m51] = [0.3813, 1.7553, 0.7854, 5.5473, 2.5368] for the grey bootstrap sample
of variation probability. Lagrange multipliers are calculated as [c01, c11, c21, c31, c41, c51] =
[1.3756, 0.8973, 0.3771, −0.3693, −0.0993, 0.0395] for the grey bootstrap sample of variation
probability. Mapping parameter are gained as a1 = 23.3049; b1 = 0.5263.

The probability density function of the grey bootstrap sample YBootstrap is shown in
Figure 8.
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Figure 8. Maximum entropy probability density function of grey bootstrap samples.

Assume that the confidence level α = 0.05 and the confidence level P = 95%. Based on
the Equations (33)–(35), the estimated truth value and the estimated interval are obtained
as λ10 = 0.0057 and [λ1L, λ1U] = [−0.1299, 0.0711] for the grey bootstrap sample of variation
probability of the first time series.

The grey bootstrap maximum entropy method is used to obtain the weighted average
values, upper- and lower-bound values for the 11 time series under the condition that the
confidence level is 0.05, as shown in Figure 9.
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Figure 9. Estimated results of degradation probability of OVPS of MTSB.

Figure 9 shows that the values of variation probability calculated using the method
in the Reference [34] (The second method) are larger than those calculated using this
method. The variation probability has reached 1 for the 10th time series using the second
method, which is less in line with the actual degradation process of OVPS of MTSB.
Because the interference of random factors during the service process of MTSB was not
taken into account.

Based on the Poisson counting process, the total number is calculated as η = 0 for
variation probability sample data falling outside the upper-bound value λnU. That is, the
reliability of the evaluation results is PR = 100%, which satisfies PR > P.

The estimated uncertainties are calculated for the variation probability of rolling
bearing vibration performance, as shown in Table 4.

Based on the Equations (36)–(38), the dynamic average Umean is calculated for the
variation probability of time series as Umean = 1.7515/11 = 0.1775.

3.1.4. PMR and PMRR of MTSB

According to the calculated results of variation probability, the estimated true val-
ues R0 and upper- and lower-bound intervals [RL, RU] are found as R0 = exp(−λn0),
RL = exp(−λnU), RU = exp(−λnL). The range of variation probability λ is [0, 1]. Here,
0 represents the OVPS of bearings without any variation, which is an ideal state with the
reliability of bearing performance at 100%. On the other hand, 1 represents that the OVPS
of spindle bearings fail completely and the performance is very unreliable. Therefore, if the
value of λL is less than 0, let λL = 0 (artificially) in the process of solving the performance
maintaining reliability. Based on the Equations (39)–(41), the dynamic evaluation results of
the VPMR are shown in Figure 10.

As shown in Figure 10, the values of PMR remain unchanged before the time point
corresponding to the third time series. During the period corresponding to the third time
series to the fifth time series, the values of PMR have a decreasing trend. The value of
PMR reaches the minimum, that is, 81.17442% for the fifth time series. The values of PMR
have an increasing trend during the period corresponding to the fifth time series to the
eighth time series. The values of PMR have a rapidly decreasing trend during the period
corresponding to the eighth time series to the eleventh time series. Figure 10 shows that
the values of PMR calculated using the second method are smaller than those calculated
using this method.
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Figure 10. Dynamic evaluation results of PMR.

The estimated true value curve coincides with the actual value curve for the PMR of
spindle bearings, but the estimated true value curve is smoother. Moreover, the upper- and
lower-bound curves envelope the actual value curves fully for the PMR, which verifies the
rationality of the evaluation model again.

In order to visualize the difference between the estimated true value and the actual
value of the PMR, the error bars of PMR are calculated, as shown in Figure 11.
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Figure 11. Error bars of PMR.

As can be seen from Figure 11, the maximum error appears in the eighth time series,
but is only 6.55%, and the errors were lower than 1.00% for the first, fourth, sixth, ninth, and
tenth time series, which shows that the analysis results of the proposed method have good
consistency. By analyzing the vibration data in Figure 3, it can be seen that the vibration
performance has a sudden change or a large fluctuation during the period corresponding to
these time series. Therefore, it is difficult to accurately estimate the values of PMR during
the corresponding period.

According to Equation (42), the dynamic evaluation results of the PMRR are shown in
Figure 12.
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Figure 12 shows that the actual value of PMRR, d(λ1), d(λ3) ≥ 0%, which shows
that the performance states of MTSB reaches the optimum and has almost no failure
possibility at the corresponding stage; d(λ2), d(λ7), d(λ8) ∈ [−15%, 0%), which shows that
the performance states of MTSB is normal, and the degree failure of OVPS is very small;
d(λ4), d(λ5), d(λ6), d(λ9) ∈ [−30%, −15%), which shows that the performance states of
MTSB is gradually becoming worse, and the degree failure of OVPS is gradually increasing;
d(λ10), d(λ11) < −30%, which shows that the performance states of MTSB is worse, and
the degree failure of OVPS is very large. Thus, taking appropriate remedial measures are
necessary steps before 6773 min, which can avoid serious safety accidents that are caused
by the failure of OVPS.

Figure 12 also shows that the values of PMRR calculated using the second method are
smaller than those calculated using this method. The values of PMRR, d(λ7), d(λ8), d(λ9),
d(λ10), d(λ11) < −30%, which shows that the degree failure of OVPS is very large after the
corresponding time period of the 7th time series. However, this is less in line with the
actual degradation process of OVPS of MTSB. Because the interference of random factors
during the service process of MTSB was not taken into account.

3.2. Case 2

The test machine and the bearing used in this case are exactly the same as those of
Case 1. The vibration data are shown in Figure 13 by changing the test conditions of the
motor to a speed of 4000 r/min, an axial load of 4.17 kN, and a radial load of 4.58 kN.
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From the OVPS of the bearing, there are 5883 vibration signals. Among them, the
334th to 5933rd data points are divided into seven segments at 800 data intervals. The
5934th to 6216th data are separated into one segment, that is, the 8th segment.

3.2.1. Variation Probability of OVPS of MTSB (Case 2)

For the first time series, based on the Equations (1)–(12), the origin moments are
obtained as [m11, m21, m31, m41, m51] = [0.0768, 0.9388, 0.1046, 2.2771, 0.3843]. Lagrange
multipliers are calculated as [c01, c11, c21, c31, c41, c51] = [0.5329, 0.3193, −0.3891, −0.1865,
−0.0271, 0.0252]. Mapping parameter are gained as a1 = 4.4481 and b1 = −9.1186.

Assume that the significance level α is 0.05 and the confidence level is P = 95%, based
on the Equations (13)–(16), the maximum entropy estimated interval of the intrinsic series
is [1.5435, 2.5871] m·s−2.

The probability density estimated truth function f 1(x) is calculated as shown in
Figure 14.
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Figure 14. Probability density function of data samples of intrinsic series (Case 2).

Based on the Equations (17) and (18), the numbers are calculated, respectively, that
the 8 data samples fall outside the maximum entropy estimated interval of intrinsic time
series. According to the Poisson counting principle, the variation frequencies [λ1, λ2, λ3,
λ4, λ5, λ6, λ7, λ8, λ9, λ10, λ11] = [0, 0.0136, 0.0738, 0.2450, 0.4563, 0.4370, 0.4213, 0.9963, 1],
as shown in Figure 15.
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As shown in Figure 15, the performance variation probability is non-linear and
uncertain–relative to the intrinsic time series. Before the corresponding time interval
of the second time series, the variation probability of the bearings’ vibration performance is
almost zero. Between the corresponding time interval of the second time series and the fifth
time series, the variation probability has an increased trend. Between the corresponding
time interval of the fifth time series and the sixth time series, the variation probability has a
decreasing trend. Between the corresponding time interval of the sixth time series and the
seventh time series, the variation probability has a rapidly increasing trend.

3.2.2. Estimated Truth Value and Estimated Interval of Variation Probability of MTSB (Case 2)

The least-squares method is used to fit the variation probability with first-, second-,
third-, fourth-, fifth- and sixth-order polynomials. Based on the Equation (19), the fitting
results are shown in Tables 5 and 6, and Figure 16.
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Table 5. Fitting using least-square method (Case 2).

Order Number q of
Polynomials Expressions of Polynomials Correlation

Coefficient R2

First order G1(λn) = 0.1567λn − 0.3046 0.8905
Second order G2(λn) = 0.0180λn

2 − 0.0050λn − 0.0350 0.9373
Third order G3(λn) = −0.0025λn

3 + 0.0513λn
2 − 0.1323λn + 0.0873 0.9404

Fourth order G4(λn) = −0.0012λn
4 + 0.0197λn

3 − 0.0829λn
2 + 0.1757λn − 0.1222 0.9428

Fifth order G5(λn) = −0.0021λn
5 + 0.0458λn

4 − 0.3704λn
3 + 1.3750λn

2 − 2.1970λn + 1.1590 0.9596
Sixth order G6(λn) = −0.0021λn

6 + 0.0561λn
5 − 0.5690λn

4 + 2.8454λn
3 − 7.2531λn

2 + 8.8018λn − 3.8808 0.9910

Table 6. Fitting results of polynomials (Case 2).

Sequence Number n of
Time Series
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First-Order
Polynomial

Second-Order
Polynomial

Third-Order
Polynomial

Fourth-Order
Polynomial

Fifth-Order
Polynomial

Sixth-Order
Polynomial

1 −0.1479 −0.0220 0.0039 −0.0109 0.0103 −0.0017
2 0.0088 0.0269 0.0083 0.0359 −0.0324 0.0263
3 0.1655 0.1118 0.0857 0.0922 0.1433 0.0391
4 0.3222 0.2326 0.2213 0.2024 0.2475 0.3113
5 0.4789 0.3893 0.4003 0.3812 0.3365 0.4069
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7 0.7923 0.8107 0.8290 0.8556 0.9230 1.0136
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The closer the correlation coefficient R2 is to 1, the better the polynomial fitting. As
shown in Table 5, the correlation coefficients R2 for all polynomials are more than 0.8.
Therefore, the first-order, second-order, third-order, fourth-order, fifth-order, and sixth-
order polynomials will be used in further analysis.

Figure 16 shows that the fitted variation probability is almost identical with the actual
variation probability for the second and fifth time series. The fitting was performed using
the least-square method by the first-order polynomial. With fittings using the least-square
method by the second-order polynomial, the fitted variation probability value is basically
identical with the actual value for the fourth time series. The fitted variation probability
values are almost identical with the actual variation probability values for the first, second
and third time series when fitting was performed using the least-square method by the
third-order polynomial. When fitting was performed using the least-square method by the
fourth-order polynomial, the fitted variation probability value is basically identical with
the actual value for the third time series. With fittings using the least-square method by
the fifth-order polynomial, the fitted variation probability values are basically identical
with the actual values for the fourth, seventh and eighth time series. The fitted variation
probability values are almost identical with the actual variation probability values for the
first, fifth, sixth, seventh and eighth time series when fitting was performed using the
least-square method by the sixth-order polynomial. In short, the above six polynomials
have their own advantages in fitting. Therefore, relevant information should be fully fused
to effectively monitor the evolution process of rolling bearing vibration performance.

3.2.3. Uncertainty of Variation Probability of MTSB (Case 2)

The variation probability of the first time series is taken as an example here. According
to the grey bootstrap method, the number of bootstrap re-sampling is taken to be B = 20,000,
and confidence level is taken to be P = 95%. Based on the Equations (20)–(32), the grey
bootstrap sample YBootstrap is obtained by sampling the sample data of fitting the variation
probability values using the above six polynomials, as shown in Figure 17.
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Figure 17. Sample data using grey bootstrap method (Case 2).

Based on the maximum entropy method, the origin moments are obtained as [m11, m21,
m31, m41, m51] = [0.7513, 1.1631, 1.2737, 2.3929, 3.1825] for the grey bootstrap sample of
variation probability. Lagrange multipliers are calculated as [c01, c11, c21, c31, c41, c51] =
[0.9174, 1.8886, 0.6202, −0.8485, −0.2844, 0.1335] for the grey bootstrap sample of variation
probability. Mapping parameter are gained as a1 = 15.7153; b1 = 1.0616.

The probability density function of the grey bootstrap sample YBootstrap is shown in
Figure 18.
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Figure 18. Maximum entropy probability density function of grey bootstrap samples (Case 2).

Assume that the confidence level α = 0.05 and the confidence level P = 95%. Based on
the Equations (33)–(35), the estimated truth value and the estimated interval are obtained as
λ10 = −0.0197 and [λ1L, λ1U] = [−0.1534, 0.0536] for the grey bootstrap sample of variation
probability of the first time series.

The grey bootstrap maximum entropy method is used to obtain the weighted average
values, upper- and lower-bound values for the 8 time series under the condition that the
confidence level is 0.05, as shown in Figure 19.
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Figure 19. Estimated results of degradation probability of OVPS of MTSB (Case 2).

Figure 19 shows that the values of variation probability calculated using the method
in the Reference [34] (The second method) are larger than those calculated using this
method. The variation probability has reached 1 for the 7th time series using the second
method, which is less in line with the actual degradation process of OVPS of MTSB.
Because the interference of random factors during the service process of MTSB was not
taken into account.

Based on the Poisson counting process, the total number is calculated as η = 0 for
variation probability sample data falling outside the estimated upper-bound curve λnU.
That is, the reliability of the evaluation results is PR = 100%, which satisfies PR > P.

The estimated uncertainty is calculated for the variation probability of rolling bearing
vibration performance, as shown in Table 7.
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Table 7. Estimated uncertainties Uλn of fitting effect using polynomials (Case 2).

Sequence Number n
of Time Series

Estimated
Uncertainties Uλn

Sequence Number n
of Time Series

Estimated
Uncertainties Uλn

1 0.2071 5 0.1751
2 0.1058 6 0.1950
3 0.1605 7 0.2890
4 0.1734 8 0.3041

Based on the Equations (36)–(38), the dynamic average Umean is calculated for the
variation probability of time series as Umean = 1.4030/8 = 0.1169.

3.2.4. PMR and PMRR of MTSB (Case 2)

According to the calculated results of variation probability, the estimated true val-
ues R0 and upper- and lower-bound intervals [RL, RU] are found as R0 = exp(−λn0),
RL = exp(−λnU), RU = exp(−λnL). The range of variation probability λ is [0, 1]. Here,
0 represents the OVPS of bearings without any variation, which is an ideal state with the
reliability of bearing performance at 100%. On the other hand, 1 represents that the OVPS
of spindle bearings fail completely and the performance is very unreliable. Therefore, if the
value of λL is less than 0, let λL = 0 (artificially) in the process of solving the performance
maintaining reliability. Based on the Equations (39)–(41), the dynamic evaluation results of
the VPMR are shown in Figure 20.
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Figure 20. Dynamic evaluation results of PMR (Case 2).

As shown in Figure 20, the values of VPMR remain unchanged before the time point
corresponding to the second time series. During the period corresponding to the second
time series to the fifth time series, the values of VPMR have a decreasing trend. The value
of VPMR reaches the minimum, that is, 63.36544% for the fifth time series. The values of
VPMR have an increasing trend during the period corresponding to the fifth time series to
the sixth time series. The values of VPMR have a rapidly decreasing trend during the period
corresponding to the sixth time series to the seventh time series. Figure 20 shows that the
values of PMR calculated using the second method are smaller than those calculated using
this method.

The estimated true value curve coincides with the actual value curve for the VPMR of
spindle bearings, but the estimated true value curve is smoother. Moreover, the upper- and
lower-bound curves envelope the actual value curves fully for the VPMR, which verifies
the rationality of the evaluation model again.

In order to visualize the difference between the estimated true value and the actual
value of the VPMR, the error bars of PMR are calculated, as shown in Figure 21.
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Figure 21. Error bars of PMR (Case 2).

As can be seen from Figure 21, the maximum error appears in the sixth time series,
but is only 9.91%, and the errors were lower than 0.05% for the first, second, fourth and
eighth time series, which shows that the analysis results of the proposed method have good
consistency. By analyzing the vibration data in Figure 13, it can be seen that the vibration
performance has a sudden change or a large fluctuation during the period corresponding
to these time series. Therefore, it is difficult to accurately estimate the values of VPMR
during the corresponding period.

According to Equation (42), the dynamic evaluation results of the PMRR are shown in
Figure 22.
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Figure 22 shows that the actual value of PMRR, d(λ1) ≥ 0%, which shows that
the performance states of MTSB reaches the optimum and has almost no failure pos-
sibility at the corresponding stage; d(λ2), d(λ3) ∈ [−15%, 0%), which shows that the
performance states of MTSB is normal, and the degree failure of OVPS is very small;
d(λ4), d(λ5), d(λ6) ∈ [−30%, −15%), which shows that the performance states of MTSB
is gradually becoming worse, and the degree failure of OVPS is gradually increasing;
d(λ7), d(λ8) < −30%, which shows that the performance states of MTSB is worse, and the
degree failure of OVPS is very large. Thus, taking appropriate remedial measures are
necessary steps before 5134 min, which can avoid serious safety accidents that are caused
by the failure of OVPS.
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Figure 22 also shows that the values of PMRR calculated using the second method
are smaller than those calculated using this method. The values of PMRR, d(λ4), d(λ5),
d(λ6), d(λ7), d(λ8) < −30%, which shows that the degree failure of OVPS is very large
after the corresponding time period of the 4th time series. However, this is less in line
with the actual degradation process of OVPS of MTSB. Because the interference of random
factors during the service process of machine tool spindle bearings (MTSB) was not taken
into account.

In summary, the model realizes on-line monitoring of the degradation process of OVPS,
which can give timely feedback so as to take preventive and remedial measures before
the failure of OVPS for MTSB. Compared to the method in the Reference [8], the vibration
threshold does not need to be set manually. Compared to other AI prediction methods, it
does not require training on vibration signals, and the adjustment process of parameter
is also omitted. In addition, there is no requirement for the length of time series. It is
worth noting that, if there is an amount of missing data in the process of signal acquisition,
the evaluation results of this approach may be inaccurate, and it cannot diagnose which
component of bearings the fault occurred on.

4. Conclusions

By means of the Poisson process theory and taking variation probability as a time vari-
able, the proposed model can effectively realize the dynamic evaluation for the degradation
process of the OVPS for MTSB. This provides a technical and theoretical basis for on-line
health detection and fault diagnosis of spindle bearings.

• The variation probability, obtained using the maximum entropy method and the
Poisson counting principle, can accurately describe the degradation information and
evolution process of the OVPS of MTSB.

• Considering the interference of random factors, the least-squares method by polyno-
mial fitting, fused into the grey bootstrap maximum entropy method, can be used to
calculate the dynamic mean uncertainty, so as to evaluate the random fluctuation state
of OVPS.

• The results show the maximum relative errors between the estimated true value and
the actual value of the PMR are 6.55% and 9.91% for the MTSB in the two studied
cases: Case 1 and Case 2, respectively. Appropriate remedial measures should be
taken before 6773min and 5134 min for the MTSB in the two studied cases: Case 1 and
Case 2, respectively, which can avoid serious safety accidents caused by the failure of
OVPS.
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Nomenclature

x(k) kth performance data in the intrinsic sequence.
k order number of performance data in intrinsic sequence.
N total number of performance data in the intrinsic sequence.
xn(k) kth performance data of the nth time series.
n order number of time series.
f (x) probability density function of continuous variable x.
lnf (x) logarithm of the probability density function f (x).
S feasible domain of the performance random variable x.
S1 lower-bound value of the feasible domain.
S2 upper-bound value of the feasible domain.
i order number of origin moment.
mi ith order origin moment.
xi coefficient of the function f (x).
ci (i + 1)th Lagrange multiplier.
a; b mapping parameters.
α significant level.
P confidence level.
Nn1 Number showing that performance data are less than XL1 for the nth time series.
Nn2 Number showing that performance data are more than XU1 for the nth time series.
Gq(λ) qth order polynomial.
q order number of polynomial function.
pqγ coefficient of the power function λγ.
Y(n) data sample of variation probability of OVPS for the n time series.
yn(u) uth data in the variation probability data sample for the n time series.
Vβ βth bootstrap re-sampling sample.
B times of the bootstrap re-sampling.
vβ(Θ) Θth data in the βth bootstrap re-sampling sample.
u time variable.
c1; c2 coefficients to be estimated.
λnL; λnU lower-bound value and upper-bound value of the variation probability data sample

sample for the nth time series.
Uλn estimated uncertainty of variation probability.
PR reliability of the polynomials fitting effect using least-squares method.
Umean dynamic average uncertainty.
|PR = 100% calculation process is under the condition of PR = 100%.
e number of occurring failure events.
Q probability of failure events occurring e times.
R(λn) function of the variation probability λn.
R(θ1) PMR for the intrinsic series of MTSB.
R(θn) PMR for the nth time series of MTSB.
d(θn) PMRR for the nth time series of MTSB.
MTSB machine tool spindle bearings.
VPMR vibration performance maintaining reliability.
OPS optimal performance state.
ULBC upper- and lower-bound curves.
SPSB Super-precision spindle bearings.
PMR Performance maintaining reliability.
PMRR performance maintaining relative reliability.
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