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Abstract: As one of the most well-established biocompatible transition metal nitrides, titanium nitride
(TiN) has been widely applied for fiber waveguide coupling device applications. This study proposes
a TiN-modified fiber optic interferometer. Benefiting from the unique properties of TiN, including
ultrathin nanolayer, high refractive index, and broad-spectrum optical absorption, the refractive
index (RI) response of the interferometer is greatly enhanced, which is desired all the time in the field
of biosensing. The experimental results show that the deposited TiN nanoparticles (NPs) can enhance
the evanescent field excitation and modulate the effective RI difference of the interferometer, which
eventually results in the RI response enhancement. Besides, after incorporating the TiN with different
concentrations, the resonant wavelength and the RI responses of the interferometer are enhanced to
varying degrees. Benefitting from this advantage, the sensing performances, including sensitivity
and measurement range, can be flexibly adapted based on different detection requirements. Since RI
response can effectively reflect the detection ability of biosensors, the proposed TiN-sensitized fiber
optic interferometer can be potentially applied for high-sensitive biosensing applications.

Keywords: titanium nitride; fiber optic interferometer; refractive index enhancement

1. Introduction

In the past years, nanomaterials have attracted great interest due to their excellent
optical, electronic, and mechanical properties, and they bring breakthroughs to almost
all related fields, including optoelectronics, chemistry, and biology [1,2]. Among them,
transition metal nitrides have been widely reported due to their high electrical conductivity,
outstanding chemical stability, and excellent mechanical strength [3–5]. As one of the
most well-established biocompatible transition metal nitrides, TiN shows high stability
and hardness and excellent biocompatibility, and it has been discovered as a plasmonic
material with outstanding plasmonic performances [6,7]. More importantly, TiN exhibits
unique optical characteristics such as broad-spectrum optical absorption, high-efficiency
photothermal conversion, and large nonlinear optical response at communication bands,
etc. [8,9], and the introduction of TiN has brought new vitality to fiber optic device appli-
cations, including ultrafast photonics [10,11], high-speed optical transmission [12], and
temperature measurement [13].

Although tremendous efforts have been dedicated towards developing high-
performance TiN-integrated fiber optic devices, challenges still remain to achieve high-
performance sensing devices, particularly for biosensing applications. As is well known,
various biological actions (DNA binding, antigen−antibody binding, etc.) are usually
accompanied by RI variation, and RI response sensitivity is an important parameter that is
widely used to quantitatively characterize the detection ability of biosensors. However, the
RI variation during biological reaction processes is usually tiny, and the traditional fiber
optic biosensor is still difficult to meet the ultra-low detection limit biosensing application
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(e.g., lower than nMol or even pMol). Thus, fiber optic biosensors with an enhanced RI sen-
sitivity response are strongly desired all the time. Among them, fiber optic interferometer
and fiber optic surface plasmon resonance sensor are the two main candidates. As for the
fiber optic interferometer, the ambient RI can effectively modulate the interference phase,
and therefore we can realize the ambient RI detection by locating the resonant wavelength
of the interference spectrum. However, the RI sensitivity of the traditional fiber optic
interferometer is relatively low, and RI response enhancement is essential. The mainstream
methods for RI response enhancement are based on the modification of the fiber structure
itself, such as fiber tapering [14], side-polishing [15], and cladding etching [16]. However,
the fiber structure becomes fragile after modification, which limits the actual applications.
In addition, the RI response of the fiber sensor can also be enhanced by incorporating novel
functional materials. In recent years, emerging 2D materials such as graphene [17] and MX-
enes [18] have been reported, and they can effectively realize RI response enhancement of
the fiber optic biosensors owing to their abundance of surface functional groups. However,
until now, the TiN-based fiber optic RI sensing devices have been rarely reported, to the
best of our knowledge, and the corresponding RI response enhancement mechanism is still
unknown. Overcoming these doubts leads to the objectives of this study.

In this study, we propose a TiN-incorporated fiber optic interferometer, and its RI
response sensitivity is enhanced owing to the unique properties of TiN, including ultrathin
nanolayer, high refractive index, and broad-spectrum optical absorption, etc. Firstly, the
transmission spectra of the interferometer before/after TiN deposition are compared to
analyze the effect of TiN deposition on the modulation of optical properties of the interfer-
ometer. The main parameters of the spectrum, including free spectrum range (FSR) and
fringe contrast ratio, etc., are discussed, respectively. Next, the effect of different TiN concen-
trations on the RI response enhancement of the fiber device is discussed. The experimental
results show that the resonant wavelength of the interferometer dip can be effectively
modulated by incorporating TiN, which eventually results in the RI response enhancement.
Besides, the experimental results also demonstrate that the enhanced RI response can be dy-
namically adjusted by incorporating TiN with different concentrations, signifying that the
sensing performances (sensitivity, measurement range) of the TiN-incorporated fiber optic
interferometer can be flexibly adapted according to the different detection requirements,
showing a unique advantage when compared with the traditional fiber optic biosensors.
We believe that the presented study can promote the development of TiN-based biosensing
technology, particularly for low-concentration detection applications.

2. Materials and Methods
2.1. TiN Characterizations

In this work, uniformly dispersed TiN NPs were fabricated via a hydrothermal process,
followed by a high-temperature treatment in ammonia gas flow. The specific TiN prepara-
tion can be found in Supporting Information Section S1. After dispersing the as-synthesized
TiN NPs into isopropanol, a series of characterizations were conducted, as indicated in
Figure 1. Figure 1a represents the cubic structure of TiN, and Figure 1b shows the optical
absorption behavior of TiN solution. Since the optical absorption behavior becomes more
significant as concentration increases, herein, a relatively low concentration, i.e., 20 µg/mL
is selected to make the result believable. It demonstrates that the TiN NPs own excellent
linear optical absorption within a broad-spectrum range of 600–2000 nm. In terms of
morphology, monodispersed TiN NPs are successfully synthesized with a size of around
20 nm, as can be observed in the SEM (scanning electron microscopy) (Figure 1c) and TEM
(transmission electron microscope) (Figure 1d) images. To check the composition of the
as-synthesized NPs, EDX (energy-dispersive X-ray spectroscopy) and ICP-MS (inductively
coupled plasma-mass spectrometry) were further performed, and the results are listed in
Figure 1e. Ti and N elements are well-distributed across the material skeleton, and the 1:1
molar ratio proves that the chemical composition is TiN.
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Figure 1. Material characterizations of the TiN sample. (a) Face−centered cubic structure. (b) Optical
absorption behavior. (c) SEM image. (d) TEM image. (e) EDX mapping of the as−synthesized
TiN NPs.

2.2. Fabrication of Fiber Optic Interferometer

In this study, a fiber optic interferometer was fabricated, and the interferometer struc-
ture is shown in Figure 2. The sensor consists of lead-in Single-Mode-Fiber
(SMF, 9/125 µm)—lead-in No-Core-Fiber (NCF, 125 µm)—Thin-No-Core-Fiber (TNCF,
62.5 µm)—lead-out No-Core-Fiber (NCF, 125 µm)—lead-out Single-Mode-Fiber (SMF,
9/125 µm). Among them, both TNCF and NCF are made of pure silica with air as cladding
instead of traditional core/cladding multimode structure, the special waveguide structure
allows for the sufficient excitation of evanescent wave around the fiber surface, and the
related introductions of NCF can be found in our previous works [19]. The TNCF (length:
233 µm) is spliced between lead-in NCF and lead-out NCF with a lateral offset of 31.2 µm,
and the fusion splicing parameters are set as follows: arc power ~180 bits, arc duration
~200 ms. In addition, the lead-in NCF and lead-out NCF (length: 1 mm) are spliced with
lead-in SMF and lead-out SMF, respectively, and the fusion splicing parameters are set
as follows: arc power ~ 308 bits, arc duration ~800 ms. They operate as the light beam
expander/focus, respectively, to improve the waveguide coupling efficiency between the
two connected fibers. Otherwise, the interference performance will obviously deteriorate
when the lateral-offset distance slightly deviates from the optimal value, which further in-
creases the fabrication complexity of the device [20]. Finally, it should be explained that the
TNCF is cleaved under microscope during the fabrication process, and its splicing length
is accurately controlled to the micron level. The TNCF length is designed as only several
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hundred microns to ensure that the light power in both the sensing arm and reference arm
are approximately equal, which ensures a high fringe contrast.
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The proposed fiber optic sensor operates as a Mach-Zehnder interferometer. When
the light transmits through the interface between the lead-in NCF and TNCF, part of the
light continues to transmit along the TNCF, forming the reference arm; the rest of the
light transmits through the air cavity around TNCF, forming the measurement arm. Two
parts of light recouple into the lead-out SMF, and interference occurs. Besides, when the
interferometer is used for the aqueous solution test, the air cavity will be replaced by the
liquid solution. Under this condition, the solution fills the air cavity, which operates as
both light transmission channel and sensing channel. The dip wavelength of the proposed
interferometer can be expressed as:

λ = 2∆nL/(2m + 1) (1)

where ∆n is the effective RI difference between the measurement and reference arms, L is
the length of TNCF, and m is the interference order. Besides, FSR describes the wavelength
gap between two adjacent interference dips. FSR has a close relationship with the effective
RI difference ∆n, and it is defined as:

FSR = λ2/∆nL (2)

The proposed fiber optic interferometer exhibits two main advantages. Firstly, the
dimensions of the sensing arm/reference arm are at the micrometer level, and the compact
structure facilitates future integration applications. Secondly, the RI difference of the
interferometer is directly determined by the TNCF and the tested aqueous solution, and a
tiny RI change of the tested solution can significantly modulate the effective RI difference
of the interferometer, which eventually results in a high RI response.

2.3. Fabrication of the TiN-Incorporated Fiber Optic Interferometer

In this study, the exfoliated TiN NPs were dispersed in isopropyl alcohol, and they
were transferred onto the fiber surface via the optical deposition method. Additionally,
Figure 2 shows the comparison of surface morphology of the fiber optic sensor by optical mi-
croscope. The bare fiber optic shows a smooth surface, while the obvious non-transparent
deposit can be clearly observed after TiN incorporation. In the following analyses, to
evaluate the effect of TiN deposition on the transmission spectrum of the fiber optic inter-
ferometer, the TiN sample with concentrations of 2.50 mg/mL was prepared. Besides, to
evaluate the effect of different TiN concentrations on the RI response enhancement of the
interferometer, the TiN samples with different concentrations of 2.50 mg/mL, 1.66 mg/mL,
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and 1.25 mg/mL were prepared. They were dropped onto the three identical interferome-
ters, respectively, which were finally converted into TiN overlayers after volatilization.

2.4. Measurement System

To evaluate the effect of TiN deposition on the RI response enhancement of the fiber
optic interferometer, an experimental setup was built up, as indicated in Figure 2. During
the test, the two ends of the TiN-incorporated interferometer were connected with the
broad-bandwidth SLED light source (Fiberlake Co., Ltd., Shenzhen, China, WBB400008SFA)
and the optical spectrum analyzer (OSA, Yokogawa Co., Ltd., Tokyo, Japan, AQ6370D).
When the system works, the OSA resolution is set as 0.1 nm, and the incident light launched
from the SLED transmits into the interferometer. The excited evanescent wave interacts
with the deposited TiN, and it generates a strong light–TiN interaction. As a result, the
optical properties of the fiber are modulated, which modifies the transmission spectrum of
the interferometric light. Finally, the transmission spectra were experimentally acquired for
the discussions.

3. Results
3.1. Optical Property Modulation of the Fiber Optic Interferometer by Adding the TiN Layer

Firstly, the interferometer was immersed in pure water (RI value: 1.3347), and the
transmission spectra of the interferometer before/after TiN deposition were experimen-
tally acquired for comparison, as indicated in Figure 3. For the conventional fiber optic
interferometer without TiN deposition, two FSRs were recorded as 68.7 nm and 77.4 nm,
respectively, and the average FSR in the whole spectrum range was determined to be
73.05 nm. After TiN NPs were deposited, the corresponding FSRs were recorded as 79.6 nm
and 88.8 nm, and the average FSR was determined to be 84.2 nm. According to Equation (2),
the variation of FSR signifies that the effective RI difference of the interferometer has been
modulated due to the TiN deposition. Assuming L = 233 µm, λ = 1400 nm, the effective
RI difference ∆n can be calculated. For the bare interferometer without TiN deposition,
∆n was estimated as 0.1152, while this value decreases to 0.0999 after TiN is deposited,
i.e., the effective RI modulation of the interferometer is determined to be 0.0153 due to the
TiN deposition. We should explain that both effective RI modulation and FSR variation
can be used to evaluate the transfer effect and actual deposition amount of TiN. A larger
variation of RI modulation or FSR signifies that more TiN NPs are successfully deposited
onto the fiber surface, which has a greater impact on the interferometer’s performances.
In addition, by locating the specific resonant wavelengths of the interferometer dips, we
can calculate the corresponding interference orders, and the results are also indicated in
Figure 3. Obviously, the whole spectrum shows a significant blue-shift of dip wavelength
due to TiN deposition.
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Following this, the mechanism of TiN−induced effective RI modulation was briefly
discussed. The process mainly involves the interaction between TNCF, TiN, and analyte
solution. After TiN NPs were deposited, the TiN and the analyte solution can be considered
as a hybrid sensing layer, and the introduction of TiN modulates the overall effective RI of
the hybrid sensing layer. Specifically speaking, the effective RI of the hybrid sensing layer
can be expressed as neff = fanalyte × nanalyte + fTiN × nTiN, where fanalyte and fTiN are the volume
fraction of analyte solution and TiN, respectively, and nanalyte, nTiN are their corresponding
effective RIs. Obviously, when TiN with high RI is deposited, the volume fraction of the
TiN increases correspondingly, and it leads to a high effective RI of the hybrid sensing layer.
On the other hand, the effective mode RI of TNCF is considered to be a constant. As a
result, the effective RI difference of interferometric light ∆n decreases and FSR becomes
larger, which confirms the results in the previous paragraph.

Next, the other parameters, including insertion loss, fringe contrast ratio, and figure of
merit, are discussed. Firstly, the insertion loss becomes higher after TiN NPs are deposited,
and it increases from 19.42 dB to 28.82 dB. This result can be explained by the deposited
TiN NPs absorbing an extra part of the evanescent wave energy, which increases the
transmission loss. Secondly, the fringe contrast ratio is also modified after TiN deposition,
and it decreases from 26.91 dB to 12.26 dB. This result can also be explained by the light
absorption caused by the deposited TiN NPs, which adjusts the optical power ratio between
the sensing arm and reference arm of the interferometer, resulting in the modulation of the
fringe contrast ratio. Finally, the figure of merit (FOM) is determined by the full width at
half maxima (FWHM) of the spectrum. In Figure 3, the FOMs show varying degrees of
deterioration due to the FSR enlargement. Despite that, the spectrum after TiN deposition
still exhibits enough high resolution for resonant wavelength location.

3.2. RI Response Enhancement of the Fiber Optic Interferometer by Adding the TiN Layer

In the following part, we evaluate the effect of different TiN concentrations on the RI
response of the interferometer. Herein, two different RI solutions (1.3347 and 1.3352) were
prepared to evaluate the RI-induced wavelength shifts of the interferometers. Figure 4a–e
show the experimentally acquired wavelength shift results. From Figure 4a,b, we can see
that the wavelength shift becomes larger after TiN is deposited, which signifies an enhanced
RI response. Theoretically speaking, the RI response enhancement is mainly impacted by
two factors. Firstly, the ultra-thin, ultra-smooth TiN layer with nanometer size provides
space for light penetration, and the surface evanescent wave can penetrate both TiN layer
and analyte solution. As a result, the TiN layer provides additional light absorption, which
is beneficial to enhance the evanescent wave–TiN interaction and eventually improves
the excitation efficiency of the surface evanescent wave. In addition, a previous study
reported that the RI sensitivity of the fiber optic interferometer is proportional to the change
in propagation constants and the evanescent field [17]. Therefore, the RI response can
be enhanced owing to the larger excitation of surface evanescent wave. Secondly, the
deposited TiN layer can also effectively modulate the RI distribution between the two
contacted mediums (TNCF and RI solution). The RI-induced wavelength shift can be
calculated via S = ∆λ/∆nanalyte, where ∆nanalyte represents the RI increment of the analyte
solution, i.e., 1.3352 − 1.3347 = 0.0005, and it is a constant. However, ∆λ in this study
represents the wavelength shifts caused by the hybrid sensing layers instead of the single
sensing layer. As discussed previously, the introduction of TiN with high RI can effectively
increase the overall effective RI of the hybrid sensing layer, which eventually leads to a
larger wavelength shift when compared with that caused by the single sensing layer. Thus,
an enhanced RI-induced wavelength shift S can be obtained owing to the TiN deposition.
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(a) 0 mg/mL. (b) 1.25 mg/mL. (c) 1.66 mg/mL. (d) 2.5 mg/mL. (e) Wavelength shift summary of
different interference dips.

In addition, from Figure 4b–d, we can also observe a clear trend—that a larger TiN
concentration leads to a more significant wavelength shift. The specific wavelength shift
values of different interference dips are summarized in Figure 4e. The average wavelength
shifts were determined to be 5.5 nm, 9.4 nm, 11.2 nm, and 13.2 nm for different TiN
concentrations of 0, 1.25, 1.66, and 2.5 mg/mL, and several conclusions can be summarized.
Firstly, the wavelength shifts of the three interference dips are enhanced, which confirms
that deposited TiN NPs exhibit good optical absorption properties within a wide near-
infrared spectrum range. Secondly, a larger TiN concentration means a larger probability of
effective deposition of TiN onto the fiber surface. As a result, the volume fraction of TiN
NPs increases, which leads to a rise in overall effective RI of the hybrid sensing layer and a
smaller effective RI difference ∆n of the interferometer. Finally, according to Equation (1), a
more significant RI-induced wavelength shift can be observed.

However, we should also note that the average wavelength shifts in Figure 4e are not
strictly proportional to the TiN concentration. Besides, the distribution of wavelength shifts
between different interference dips shows a degree of randomness. This can be mainly
explained by the deposition method and optical absorption property of the TiN. In this
study, the optical deposition method is used, and it is quite difficult to accurately control
the deposition uniformity even though the solution concentration is fixed. Meanwhile, the
optical absorption coefficient of the deposited TiN NPs is not a constant in a broad spectral
range of communication band, and it slightly varies from different wavelength regions.
The above two reasons lead to the randomness of wavelength shifts between different
interference dips. Furthermore, although Figure 4e demonstrates an enhanced RI response
with an increasing TiN concentration, the increments of average wavelength shifts tend to
be smaller, which signifies that the RI response enhancement effect will not continuously
improve by increasing TiN concentration. This phenomenon can be mainly explained by
the evanescent field of the interferometer. As discussed in the last paragraph, when TiN
starts to deposit onto the fiber surface, the ultrathin nanolayer can improve the evanescent
wave excitation, which eventually leads to the RI response enhancement. However, when
the TiN nanolayer becomes thicker, it gradually exceeds the effective penetration depth
of the evanescent wave. As a result, the evanescent field excitation tends to be stable, and
the RI response enhancement effect becomes less significant. It is difficult to precisely
determine the specific value of effective penetration depth due to the lack of reported data
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for the optical constant of TiN with nanometer size, and the general value is believed to be
around several tens to hundreds of nanometers.

In the following part, the TiN-incorporated interferometer with a concentration of
2.5 mg/mL was selected, and dip B Figure 4 was taken as an example to evaluate the
specific RI response sensitivity. The different RI solutions (1.3347~1.3355 with an increment
of approximately 0.00016) were prepared for the RI sensitivity test, and the results are
shown in Figure 5. The increase in the ambient RI leads to the decrease in the effective
RI difference of the interferometer. As a result, it shows the blue-shift of resonant wave-
length according to Equation (1). The RI response sensitivity of the bare interferometer is
12,347 nm/RIU, while it improves to 24,688 nm/RIU for the TiN-incorporated interferome-
ter, which is approximately twice that of the bare interferometer. This result confirms that
the RI response sensitivity can be effectively improved by incorporating TiN nanolayer.
The enhanced RI sensitivity significantly improved over the previously reported fiber
optic RI interferometers/nanomaterial-coated fiber optic RI sensors, and Table 1 shows the
performance comparison.
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Figure 5. RI response sensitivity enhancement of the TiN−incorporated interferometer (a) transmission
spectra of the TiN−incorporated interferometer (b) transmission spectra of the bare interferometer.

Table 1. Comparison of the sensing performances with the state-of-art fiber optic RI
interferometers/nanomaterial-coated fiber optic RI sensors.

Sensor Type/Year Sensitivity (nm/RIU) Range (RIU) Reference

Side-polished MZ
interferometer/2021 213.479 1.33269–1.39716 [21]

Air gap-based MZ
interferometer/2022 226.8 1.43–1.45 [22]

FP interferometer
+ Al2O3 nanofilm/2015 6008 1.3371–1.3474 [23]

NCF + Ag
+ graphene/2018 3936.8 1.3330–1.3737 [24]

SPR + MXene/2020 2180.2 1.3343–1.3658 [18]
Presented work 24,688 1.3347–1.3355

Finally, the application scope of the proposed TiN-incorporated fiber sensor is briefly
discussed. From the results in Figures 3–5, we found that the deposited TiN NPs can
flexibly modulate the resonant wavelength of interference dip and FSR. Benefitting from
this advantage, the proposed fiber device can be potentially applied for tunable optical
filtering. Besides, for the conventional fiber optic interferometer, its RI measurement range
is determined by the ratio between FSR and dip RI sensitivity. Once the device dimension
is determined, its performance parameters, including RI sensitivity and measurement
range, are all fixed. This study proposes an alternative solution to overcome this limit,
i.e., by incorporating TiN with different concentrations, the RI response sensitivity can be
enhanced to varying degrees. In future studies, by specializing in TNCF length and the



Sensors 2023, 23, 5280 9 of 10

incorporated TiN concentration, we can fabricate a standardized sensing device, while the
device performances such as sensitivity or measurement range can be flexibly adjusted
according to different application requirements. This can largely extend the application
scope of the sensing device. However, the TiN modification also leads to varying degrees
of deterioration of spectrum parameters such as insertion loss, fringe contrast ratio, and
FOM, and therefore optimized structure design and material deposition methods should
be further evaluated. In addition, the long-term stability of the sensor is important to meet
good sensing requirements, and a metrological study is necessary. These will lead to further
investigations in the future.

4. Conclusions

In summary, taking advantage of the unique properties of TiN, including ultrathin
nanolayer, high refractive index, and broad-spectrum optical absorption, a RI sensitivity
enhanced-fiber optic interferometer is proposed. The experimental results demonstrate that
the resonant wavelength of the fiber optic interferometer is effectively modulated as TiN
deposits. This result confirms the effective RI modulation of the fiber interferometer due to
the introduction of TiN. Benefitting from this advantage, the proposed interferometer can
potentially be used for tunable optical filtering applications. Besides, the deposited TiN NPs
were verified to realize the RI response enhancement owing to the effective RI modulation
and stronger evanescent field excitation. With the increasing deposited TiN concentration,
the RI responses of the TiN-based interferometer show varying degrees of enhancement,
signifying that the performance parameters such as sensitivity and measurement range of
the sensing device can be flexibly adjusted according to the actual requirements without
modifying the sensor structure. This work is expected to greatly benefit the researchers in
the field of high-performance fiber optic biosensors based on functional nanomaterials.
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