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Abstract: Human respiratory information is being used as an important source of biometric infor-
mation that can enable the analysis of health status in the healthcare domain. The analysis of the
frequency or duration of a specific respiration pattern and the classification of respiration patterns in
the corresponding section for a certain period of time are important for the utilization of respiratory
information in various ways. Existing methods require window slide processing to classify sections
for each respiration pattern from the breathing data for a certain time period. In this case, when
multiple respiration patterns exist within one window, the recognition rate can be lowered. To solve
this problem, a 1D Siamese neural network (SNN)-based human respiration pattern detection model
and a merge-and-split algorithm for the classification of multiple respiration patterns in each region
for all respiration sections are proposed in this study. When calculating the accuracy based on
intersection over union (IOU) for the respiration range classification result for each pattern, the
accuracy was found to be improved by approximately 19.3% compared with the existing deep neural
network (DNN) and 12.4% compared with a 1D convolutional neural network (CNN). The accuracy
of detection based on the simple respiration pattern was approximately 14.5% higher than that of the
DNN and 5.3% higher than that of the 1D CNN.

Keywords: one-dimensional (1D) CNN; 1D SNN; respiration patterns; MASRP; mmWave sensor

1. Introduction

Respiratory information of humans is being utilized not only for disease diagnosis,
but also in various fields related to health, such as healthcare. Several studies are being
conducted, including management of bronchiectasis, diagnosis of sleep apnea, analysis
of respiration movements, and research on COVID-19’s respiratory symptoms. These
studies aim to improve diagnosis, treatment, and management methods in the medical
field through the collection, analysis, and interpretation of breathing data [1–4]. To obtain
meaningful respiratory information, recognition and analysis of the respiration patterns
from the breathing signal data collected through the measuring device are necessary [5].
Traditionally, a belt-type measuring device with a sensor attached is used to collect breath-
ing signals. However, in this study, breathing data were collected using a non-contact
mmWave sensor. Non-contact respiration measurement has the advantage of providing
accurate breathing data while increasing patient convenience and safety, and it is used in
various medical and research fields [6–10].

The mmWave-sensor-based non-contact method may have lower accuracy than tra-
ditional contact-type sensors when noise is inserted due to the existence of an obstacle
between the sensor and the body, a change in posture, or the influence of the surrounding
environment. On the other hand, the contact sensor-based method attaches the sensor to the
body, so it can cause insomnia or sleep disorders, which can cause errors in the acquisition
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of breathing data. Therefore, to address this problem, studies on artificial-intelligence-based
pattern recognition techniques—such as deep neural networks (DNNs) and 1D convolu-
tional neural networks (CNNs)—have been conducted to classify respiration patterns using
deep learning methods for breathing data acquired from non-contact sensors [11–13].

Previous pattern recognition studies for sleep apnea and other respiration patterns
have used data with a fixed input size [14,15]. Recently, various types of information on
respiration have been used in the field of healthcare and health examination. Therefore,
not only the detection of simple respiration patterns, but also recognition and classifi-
cation techniques for various respiration patterns—such as the continuous range of the
homogeneous respiration pattern, or the ratio of specific respiration patterns in the entire
respiration—are required.

In particular, a sliding window method should be used to detect respiration patterns
learned from the breathing data measured for a long time period via conventional methods.
Interference between different respiration patterns, increased analysis complexity, and
signal ambiguity can decrease the accuracy of recognition in respiration translation systems,
particularly when multiple patterns are present in one window [16,17]. In other words, one
specific respiration pattern must be found within the range of the search unit (one window),
but if several respiration patterns exist within the range, it may be misrecognized as another
respiration pattern and reduce the overall recognition rate. Furthermore, human respiration
patterns are categorized based on the features of respiration cycles and are displayed in
various forms, making it difficult to define them with simple threshold values. Even if it is
the same respiration pattern, each person may have slightly different respiration patterns.

To solve this problem, this paper proposes a 1D Siamese neural network (SNN) model
that can detect specific respiration patterns by comparing the similarity between the input
respiration pattern and the basic respiration pattern, along with a novel algorithm that
merges consecutive isomorphic pattern ranges and divides other consecutive pattern ranges
when there are multiple respiration patterns in the detection target area.

The SNN model is one of the few-shot learning methods that can learn from only a
small amount of data and exhibits the advantage of being able to measure the similarity
of classes that are not participants in learning [18,19]. To apply this to respiration pattern
recognition, the existing SNN structure is used, and all layers for 2D data processing are
composed of 1D data processing layers. In the proposed method, the input size of the 1D
SNN model is divided into four types (600, 300, 200, and 100) to improve the recognition
rate when multiple breathing patterns exist within the search range. This serves to merge
or separate the front and rear ranges by applying MASRP while reducing the search range
when multiple breathing patterns exist within the search range.

The proposed method improved the classification accuracy of respiration patterns that
did not participate in learning. Furthermore, even when changes in respiration patterns
within a continuous breathing period were observed, accurate detection of the range was
feasible through the application of the proposed merge-and-split for respiration pattern
(MASRP) algorithm. The proposed method exhibits substantial accuracy improvement in
range classification and respiration pattern detection, as per the experimental observations.

2. Related Research
2.1. Breathing Signal

As shown in Figure 1, the breathing signal rises during inhalation and descends during
exhalation. The amplitude of the breathing signal is determined by the depth of the breath.
Furthermore, the period of the signal increases with the duration of the breath [20].

These breathing signals appear in various forms depending on the type of breath, and
in the medical field they are divided into eupnea, bradypnea, tachypnea, and apnea, based
on the number of breaths per minute [21]. The results measured by the mmWave sensor for
four respiration patterns and one movement state are shown in Figure 2.
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2.2.1. Deep Neural Network (DNN) 

A deep neural network (DNN) refers to a neural network composed of two or more 
hidden layers based on the concept of a multilayer perceptron (MLP). Each layer of the 
DNN is composed of a defined number of neurons (or nodes), and all neurons are fully 
connected to one another [22–25]. DNN learning is a process of updating the weights be-
tween connected neurons and is performed by minimizing the value of the loss function 
through gradient descent [26]. In the case of an image, the input size is in the form of h × 
w; however, the input size for the 1D signal is configured in the form of 1 × w. 

2.2.2. One-Dimensional (1D) Convolutional Neural Network (CNN) 
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2.2. Pattern Recognition Methods of Signal Data Based on Deep Learning
2.2.1. Deep Neural Network (DNN)

A deep neural network (DNN) refers to a neural network composed of two or more
hidden layers based on the concept of a multilayer perceptron (MLP). Each layer of the
DNN is composed of a defined number of neurons (or nodes), and all neurons are fully
connected to one another [22–25]. DNN learning is a process of updating the weights
between connected neurons and is performed by minimizing the value of the loss function
through gradient descent [26]. In the case of an image, the input size is in the form of
h × w; however, the input size for the 1D signal is configured in the form of 1 × w.

2.2.2. One-Dimensional (1D) Convolutional Neural Network (CNN)

In general, a convolutional neural network (CNN) is a neural network that has been
studied for object detection or recognition based on image data. The convolutional layer
uses an N × M 2D kernel to extract image features. The features extracted through the
convolution of several layers are finally connected to the fully connected layer to perform
classification [27].

Since the breathing signal is composed of a one-dimensional signal rather than an
image, the two-dimensional image data are transformed to learn them, based on a CNN-
based neural network. However, in this case, meaningless features may be generated due
to the forced data transformation. This may lead to deterioration in the performance of the
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neural network. Therefore, constructing a convolutional neural network suitable for 1D
data characteristics is necessary [28–32].

In the 1D CNN for learning 1D data, the convolution layer receives a vector type as an
input and performs convolution using a 1 ×m kernel. Because of this, the feature map is
also extracted in the form of one-dimensional data. Therefore, it can be used for learning
the breathing signal data. The process of extraction of a feature map by the convolutional
layer of a 1D CNN for the classification of the input signal data is similar to the process
employed by the convolutional layer of a 2D CNN. Next, the features that undergo the
max-pooling process are composed of a fully connected layer for classification, and the
shape is the same as that of a 2D CNN [33–35]. Appropriately setting hyperparameters
such as the depth of the neural network and the size and number of kernels according
to the characteristics of the input data is important. Therefore, the process of optimizing
hyperparameters using an optimization algorithm is crucial.

2.2.3. Siamese Neural Network (SNN)

A Siamese neural network (SNN) is a neural network composed of two identical
CNN-based networks with exactly the same parameters and weights. This model is used
in environments where it is difficult to obtain sufficient data for a particular class, or
when objects that the model has not learned must be classified [18,36–38]. The SNN-based
method can predict the class to which a small or once-seen object belongs by using a
model trained on other data. To solve these environmental problems, one-shot learning or
few-shot learning has been employed [39–42]. As shown in Figure 3, this model calculates
and compares vectors by applying the same weight to two input images. When training is
performed, if the two input images are the same, the similarity is assigned as 1; if they are
different, it is assigned as 0.
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2.2.4. Distance Function

When classifying or recognizing objects, many deep learning models need to be able
to distinguish similarities and differences between input objects. The similarities and
differences between these objects are abstracted into the concept of distance. In other
words, in case of similarity between objects, the distance is close, whereas if there are many
differences, the distance is long. A distance function is a function that considers two vectors
as inputs and calculates the distance between two points [43,44]. Applying these distance
functions according to the characteristics of the data is important for model performance.
Furthermore, the distances in the same class are short, whereas the distances in different
classes are long.

In an SNN, the model structure differs depending on the distance function that is used
to calculate the distance between two embedding vectors [45,46]. Figure 4 shows the model
structure when a distance-based metric is used. Distance-based metrics include Euclidean
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distance, Manhattan distance, and Hamming distance [47,48]. This model structure maps
similarity based on a fully connected layer, because the size of the input vector and the size
of the output vector are the same. Figure 5 shows the model structure when a similarity-
based metric is used. Since this model structure uses cosine similarity or dot-product
similarity, the size of the output vector is always 1, regardless of the size of the input vector;
therefore, this structure does not require separate mapping [49,50].
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3. Proposed Method for the Multiple Respiration Patterns and Each Pattern’s Range
Classification Based on a 1D SNN

The existing 1D-CNN-based respiration pattern detection method exhibits suitable
performance in detecting one respiration pattern for each type based on the breathing
data. However, if there are multiple respiration patterns in the continuous breathing
data, classifying and analyzing the ranges for each respiration pattern is difficult, and
classification errors may exist. To solve these problems in this study, we propose a 1D-
SNN-based respiration pattern recognition model that can be applied even when learning
data collection and detection of objects that do not participate in learning are difficult. The
reason for approaching the respiration pattern classification method with a 1D SNN model
is based on the idea that the most similar respiration pattern can be classified as a target by
comparing the similarity between the feature-embedding vectors of the target data and the
feature-embedding vectors of the query data. In addition, in the pattern detection result for
continuous breathing data, we propose a merge-and-split for respiration pattern (MASRP)
algorithm that merges if the contact area is the same pattern and separates it in case of a
different pattern.

3.1. Limitations of Existing Research

DNNs (which are traditional machine learning algorithms) and the recent 1D-CNN-
based respiration pattern recognition methods are valid recognition methods when classify-
ing one respiration pattern per input datum. However, if two or more respiration patterns
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are included in the input data, the recognition rate may be reduced, and results that are
not included in the ground truth may appear due to the threshold value. Owing to this
problem, when dividing a range by the respiration pattern in the breathing data of a certain
range, it can be located in a range containing multiple patterns during the sliding window
search, as shown in Figure 6. Figure 6 exhibits an erroneous recognition result between the
eupnea and apnea sections. Therefore, the section classification for each respiration pattern
may appear as an erroneous result.
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Table 1 shows the results of recognizing data containing two respiration patterns
in one section using a 1D CNN. Here, even if the two patterns representing the highest
probability values are used as classification results, they appear as different results from
the actual ground truth. Cases due to recognition errors are displayed in red in Table 1.

Table 1. Error examples from the results retrieved in the respiration range containing multiple
patterns (E: eupnea, B: bradypnea, T: tachypnea, A: apnea, M: movement). Error recognition is shown
in red, and normal recognition is shown in blue.

Multiple
Patterns

(Ground Truth)

Input Breathing Signals
Probability Value for Each Pattern Retrieved
from the Multiple Respiration Pattern Range

E B T A M

E-A
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3.2. Our Proposed Method

The structure of the 1D SNN that we propose for multi-respiration-pattern recognition
is based on the Siamese network structure. It is modified to allow 1D data to be input to
certain layers to process signal data rather than images. The employed distance metrics
include the cosine similarity and Manhattan distance. A method with high accuracy is
selected for determining the similarity of breathing signal data. The proposed model
structure is shown in Figure 7. Breathing data arrive at a rate of 20 data/s through the
mmWave radar sensor, and a model with an input size is developed to achieve the best
performance (the model with the highest accuracy is a structure with a cosine similarity
distance matric and three CBRM blocks with an input size of 300 in 15 s).
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As shown in Figure 7, the convolution + batch normalization + ReLU + max pooling
(CBRM) unit is composed of a 1D convolution layer, batch normalization, ReLU function,
and max-pooling layer. To determine the optimal depth for each input datum size, CBRM
units were configured from 2 to 5, and each experiment was conducted accordingly.

In the learning process, the degree of similarity is determined by using cosine similarity
for two different feature vectors obtained by inputting two input data to the encoder of
the proposed model. The model is trained by inputting the calculated similarity and label
values to the BCEWithLogitsLoss function. At this time, the label value is 1 for the same type
of breathing and 0 for different types of breathing. BCEWithLogitsLoss is a combination of
a sigmoid layer and binary cross-entropy loss, as shown in Equation (1) [51–53]. Here, x
represents the label value, y represents the model prediction value, N represents the batch
size, and w represents the weight.

`(x, y) = L = {l1, ..., lN}T , ln = −wn[yn · log σ(xn) + (1− yn) · log(1− σ(xn))] (1)

The proposed 1D SNN model consists of Conv1D and MaxPool1D for processing
one-dimensional data, as shown in Figure 7. The size of the input, the kernel size of
the convolution layer, and the number of kernels are determined through additional
experiments, and the optimization of the kernel size uses the harmony search algorithm
proposed in the existing 1D-CNN-based respiration pattern recognition research [54]. The
neural network architecture of the 1D SNN is constructed using these 1D CNN parameters
by combining two 1D CNN models of types A and B. Table 2 shows the structure of the
proposed human multiple respiration pattern recognition model.

Tables 3 and 4 show the DNN and 1D CNN models, respectively, that were applied to
detect the existing respiration patterns.
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Table 2. Proposed 1D SNN architecture for detecting respiration patterns.

Layer Type A Filters Size/Stride Type B

0 Conv1D 64 20 × 1/1 Conv1D
1 BatchNorm1D 64 BatchNorm1D
2 ReLU ReLU
3 MaxPool1D 2 × 1/2 MaxPool1D
4 Conv1D 32 20 × 1/1 Conv1D
5 BatchNorm1D 32 BatchNorm1D
6 ReLU ReLU
7 MaxPool1D 2 × 1/2 MaxPool1D
8 Conv1D 16 20 × 1/1 Conv1D
9 BatchNorm1D 16 BatchNorm1D
10 ReLU ReLU
11 MaxPool1D 2 × 1/2 MaxPool1D
12 FC FC
13 FC FC
14 FC FC

15 Cosine similarity (embedding vector of type A; embedding vector of type B)

Table 3. Existing DNN architecture for detecting respiration patterns.

Layer Type Input Size Output Size

0 Linear 300 256
1 BatchNorm1D 256
2 ReLU
3 Linear 256 128
4 BatchNorm1D 128
5 ReLU
6 Linear 128 64
7 BatchNorm1D 64
8 ReLU
9 Linear 64 32
10 BatchNorm1D 32
11 ReLU
12 Linear 32 5
13 BatchNorm1D 5
14 ReLU

15 Softmax 5 5

Table 4. Existing 1D CNN architecture for detecting respiration patterns.

Layer Type A Filters Size/Stride

0 Conv1D 256 20 × 1/1
1 BatchNorm1D 256
2 ReLU
3 MaxPool1D 2 × 1/2
4 Conv1D 128 20 × 1/1
5 BatchNorm1D 128
6 ReLU
7 MaxPool1D 2 × 1/2
8 Conv1D 64 10 × 1/1
9 BatchNorm1D 64
10 ReLU
11 MaxPool1D 2 × 1/2
12 Dropout 0.4
13 FC
14 FC
15 FC

16 Softmax

The inference process of the proposed 1D SNN model is shown in Figure 8. Five basic
respiration patterns (non-augmented respiration patterns) are input into the previously
proposed model, and the resulting feature vectors are all stored in the database. For
inference, the feature vector is obtained by inputting the input data for query to the learned
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model. Subsequently, it calculates the cosine similarity using the feature vector for the
query and each feature vector previously stored in the database, and then it returns the
respiration pattern with the highest similarity as the detection result.
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The 1D-SNN-based respiration pattern learning model (T) proposed in Figure 7 is
trained using a fixed-length (m × 1) breathing dataset. The learning model takes two inputs
as pairs, and the learning process classifies five basic respiration patterns using cosine
similarity and the BCEWithLogitsLoss loss function on the feature-embedding vector of the
input data. For model training, the similarity between the same types of respiration patterns
is set to 1, and the similarity between different types of respiration patterns is set to 0.

As shown in Figure 8, the proposed SNN-based inference model calculates the cosine
similarity between the embedding vectors (B1, . . . , B5) for each of the five basic respiration
patterns and the embedding vector (R) of the query data of fixed length (m × 1) passed
through the same model T, trained by the learning model T. The respiration pattern of
the query data is detected by selecting the embedding vector from {B1, . . . , B5} whose
similarity with the embedding vector R of the query data is the highest. This method
determines which of the five respiration patterns is most similar to R.

Among the hyperparameters of the proposed 1D SNN, the items that influence the
recognition accuracy of respiration patterns include the input size, number of layers, and
distance metric. The hyperparameters of the 1D CNN constituting the 1D SNN were
designed based on the size and number of kernels obtained through previous 1D-CNN-
based respiration pattern recognition research [55–57]. The distance metric was selected
as the result of calculating the accuracy by applying the Manhattan distance and cosine
similarity methods to the same model.

Figure 9 is a model structure based on Manhattan distance, and after passing through
the first fully connected layer it exhibits an N-dimensional vector. When two inputs
are provided here, the distance can be obtained using Equation (2) for the two outputs.
Subsequently, the similarity is measured by processing the last fully connected layer.
Figure 10 shows a model structure based on cosine similarity, and after processing the final
fully connected layer, an N-dimensional vector is obtained. When two inputs (A and B) are
provided, the similarity is obtained using Equation (3).

Manhattan Distance =d(A, B) =
n

∑
i=1
|ai − bi| (2)

Cosine similarity := Sc(A, B) = cos(θ) = (A · B)/‖A‖‖B‖ (3)
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The model configuration to determine the optimized architecture of the proposed
model is configured as shown in Table 5. In the model architecture, the layer implies the
number of 1D CBRMs, and it is composed of 2–5 for each input size. When designing
the model, the minimum kernel size of the 1D convolution layer was set to 6, and when
determining the number of layers, the size of the flattened feature vector was set to 64 or
more after all of the input data had passed through the CBRM unit. The number of FC
layers was configured according to the size of the flattened vector: four if the size was 1024
or more, three if the size was 512 or more, and two if the size was 64 or more. Output dim
refers to the size of the feature vector (output dim = 32) after passing all of the layers before
cosine similarity calculation.

Table 5. Layer configuration diagram according to the input size for the proposed model.

Size Layer Architecture Output
Dim.

100
2 CBRM CBRM FC FC - - -

32

3 CBRM CBRM CBRM FC FC - -

200
2 CBRM CBRM FC FC FC - -
3 CBRM CBRM CBRM FC FC - -
4 CBRM CBRM CBRM CBRM FC FC -

300
2 CBRM CBRM FC FC FC FC -
3 CBRM CBRM CBRM FC FC FC -
4 CBRM CBRM CBRM CBRM FC FC -

600

2 CBRM CBRM FC FC FC - -
3 CBRM CBRM CBRM FC FC FC FC
4 CBRM CBRM CBRM CBRM FC FC FC
5 CBRM CBRM CBRM CBRM CBRM FC FC
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3.3. Merging and Splitting Method of the Respiration Pattern Retrieval Range

In general, since the image consists of a background and an object, the objectness
score and classification probability are high only at the location of the learned object.
Furthermore, since the breathing data consist of continuous patterns learned differently
from the image, the probability values of the objectness score and classification are high in
almost all locations. The sliding window method is used when detecting the continuous
respiration pattern range using a 1D SNN. The stride is set to be the same as the input size.
As per the results of the visualized output, several results are output within one continuous
respiration pattern range, as shown in Figure 11.
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Figure 11. Visualization of 1D-SNN-based respiration pattern recognition results in a continuous
breathing range: (a) Detection result in the range where the respiration pattern does not change.
(b) Detection result in the range where the respiration pattern changes. Pink indicates tachypnea and
blue indicates apnea.

In Figure 11, the detection result is labeled as “Respiration type: Result”. The respira-
tion type represents one of the five respiration patterns (eupnea, bradypnea, tachypnea,
apnea, and movement). The result represents the degree of similarity. As shown in
Figure 11b, the similarity decreases in the presence of multiple respiration patterns. If
the similarity does not exceed the threshold value (set at 0.8 based on the experiments
in this study), merging and splitting are performed by applying the merge-and-split for
respiration pattern (MASRP) algorithm.

When there are two or more respiration patterns in the target area for respiration
pattern detection, MASRP connects the same respiration pattern area in the front and back
with the same respiration pattern. It separates the area when there are different types of
respiration patterns in the front and back. The purpose of this process is to determine the
stability and instability of breathing. This is achieved by calculating consecutive sections of
the same respiration pattern and determining the number of specific respiration patterns
and the length of each respiration pattern within the entire breathing section.

Each respiration pattern is displayed by matching colors in Figure 12. Eupnea is
expressed in blue, bradypnea in yellow, tachypnea in red, apnea in cyan, and movement in
green. To detect a section of a continuous respiration pattern, the corresponding respiration
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pattern is classified based on the procedure shown in Figure 12, and the MASRP algorithm
is applied differently depending on whether the continuous respiration pattern is the same
or different. To detect continuous breathing sections, as shown in Figure 12, the first input
is used to detect respiration patterns in units of 600 (30 s).
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Considering the execution procedure, Figure 12a presents the process of MASRP 1,
and Figure 12b presents the process of MASRP 2. In Figure 12a, (1) presents the similarity
values and respiration patterns based on the inputs presented to the 1D SNN model in
units of 600 (30 s) from the input breathing data. The (2) in panel (a) shows the similarity
value and respiration pattern found after inputting the data divided into 300 (15 s) units
to the proposed 1D SNN model for the range where the similarity value in (1) is lower
than the threshold. For the range in which the similarity value is lower than the threshold
in (2), the range in (3) is divided into 200 (10 s) units and is inputted to the proposed 1D
SNN model. In (3) in panel (a), if the two respiration patterns are the same, Algorithm 1 is
employed to merge the corresponding areas into one area; (4) shows the result of executing
Algorithm 1.

In Figure 12b, (1) shows the division of the input data size by 300 when the similarity
obtained by using a 1D SNN model for respiration pattern recognition with an input data
size of 600 falls below a certain threshold (in this case, 80); (2) shows the similarity obtained
by inputting the divided data into a 1D SNN model with an input data size of 300 and
dividing the input size by 200 when the similarity falls below a certain threshold. When
dividing by 200, the division is based on 200 from the starting point and the ending point,
and a 100-sized respiration pattern overlaps; (3) uses a 1D SNN model with an input size
of 200 to obtain a 200-sized respiration pattern. If the two inputs have the same respiration
pattern, applying the merging algorithm MASRP 1 yields the result shown in (4) in panel (a).
However, if they have different respiration patterns, applying the partitioning algorithm
MASRP 2 yields the result shown in (4) in panel (b). In this case, the left and right areas are
divided according to the similarity ratio of the two respiration patterns.
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Figure 13 describes Algorithm 1 (MASRP 1). Furthermore, as with (3) in Figure 12b, if
the two respiration patterns are different, the overlapping range is cut into units of 100 (5 s),
input to the proposed 1D SNN model, and divided into two ranges using Algorithm 2.
Furthermore, the division criterion is the ratio of similarity of each respiration pattern
existing in the range. Figure 14 describes Algorithm 2 (MASRP 2).

Algorithm 1 (MASRP 1): Algorithm to merge two ranges of the same overlapping pattern

1© Assign rleft of range 1 to r”left of range 3.

r”left = rleft

2© Assign r′right of range 2 to r”right of range 3.

r”right = r′right

3© Get range 3 as a result of merging range 1 and range 2.
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The MASRP 1 algorithm merges two overlapping regions (range 1 and range 2)
detected by the 1D SNN model when they have the same respiration pattern. During the
merge process, as shown in 1©, the rleft of range 1 is assigned to the r”left of range 3, and the
r′right of range 2 is assigned to the r”right of range 3, as shown in 2©. The merged result of
range 1 and range 2 is represented as range 3, as shown in 3©.

MASRP 2 divides two regions based on the similarity ratio of the detected overlapping
regions (range 1 and range 2) from the 1D SNN model when they have different respiration
patterns. To do this, first, calculate the length l of the overlapped range, as in 1©, and input
it into the 1D SNN model to obtain the similarity Sc with the range l respiration pattern
and the similarity Sc′ with the range 2 respiration pattern. Then, divide l into lr and lr′ by
their respective similarity ratios, as in 2©. Finally, as in 3©, determine range 1 and range 2
by adjusting the rright of range l with lr′ and the r′left of range 2 with lr.

Algorithm 2 (MASRP 2): Algorithm to split the region when two ranges r and r’ detected with
different patterns overlap one another

1© Calculate the length l of the overlapping ranges.

l = rright − r′left

2© After inputting the overlapping range l to the proposed 1D SNN model, divide l using the
similarity value Sc, Sc′ (Sc is the similarity with the Range1 class; Sc′ is the similarity with
the Range2 class) as a ratio value.

lr = l × {Sc/(Sc + Sc
′)}, lr′ = l × {Sc

′/(Sc + Sc
′)}

3© Adjust rright and r′left using divided la and la′.

rright = rright − la′, rleft
′ = rleft

′ + la
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4. Experimental Results and Considerations

In this section, the breathing data collection environment for the experiment and the
composition of the collected data are presented. The experimental results of the proposed
1D SNN respiration pattern classification model and the results of the application of existing
methods (such as DNN and CNN) are compared and evaluated. The performance evaluation
of the proposed 1D SNN evaluates the accuracy based on IOU by comparing the ground
truth with the result of applying the proposed method to test the data on a trained model.

For comparison with the existing method, a respiration pattern recognition model
was implemented with a DNN and a 1D CNN. Subsequently, the results of applying
MASRP (DNN + MASRP, 1D CNN + MASRP) and IOU accuracy with the ground truth
were calculated. We calculated the IOU between the result of the proposed method
(1D SNN + MASRP) and the ground truth. Furthermore, we calculated the IOU between
the results of applying MASRP to the existing methods (DNN, 1D CNN) and the ground
truth. The proposed method was found to be superior to the existing methods.

4.1. Experimental Environment

The mmWave sensor shown in Figure 15 was used for the experiments in this study,
and the specifications of each device are shown in Table 6. Each sensor is composed of an
environment that can measure data through PC and UART communication [58].

Pertaining to the breathing signal collection environment using the mmWave sensor, as
shown in Figure 16, a person lies in an upright position on a simple bed, and the mmWave
sensor is installed at a location 20 cm away from the person’s chest to collect signals for
five respiration patterns. Figure 17 shows an example of a breathing signal measured using
the mmWave sensor.
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Table 6. The mmWave sensor specifications for breathing data measurement.

Item Specification

Maximum detection range 20 m

Frequency range 60–64 GHz

Elevation FOV ±60◦

Gain 5 dBi

Azimuth FOV ±60◦
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Figure 17. Example of a breathing signal measured with the mmWave sensor.

In the aforementioned environment, data were collected using a breathing data mea-
surement program, as shown in Figure 18. Breathing signal data were collected while
inducing eupnea, bradypnea, tachypnea, apnea, and movement signals to be included.
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The system environment for learning and testing the collected data was implemented
on a PC, as shown in Table 7.

Table 7. Learning and testing system environment of the proposed 1D SNN.

Item Specification

CPU Intel Core i7-10700K
GPU NVIDIA GeForce RTX 3090Ti
RAM 64 GB
O/S Ubuntu20.04

Deep learning framework PyTorch
Program language Python3.8
CUDA/CuDNN 11.3/8.1.3

IDE PyCharm
Other libraries PyQT5, Python-Opencv

4.2. Organization of Training and Test Data

For training and testing purposes, a dataset was constructed using mmWave sensors
for 10 people, collecting 30 breathing data per person for 30 min each. To prevent diversity
and potential bias of data, 250 breathing data were collected from 7 out of 10 individuals
for training purposes, while the remaining 50 breathing data were collected from the other
3 individuals for testing purposes. Figure 19 shows the structure of the raw data obtained
from the mmWave sensor.
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Figure 19. Raw data structure of the mmWave sensor.

As shown in Figure 20, the respiration pattern range can be set via the annotation tool
developed for this study. When the range is set, the center point (x) and length (width)
information of the range are automatically entered in the labeling setting area. The screen
displays the respiration rate per minute for the selected area. The respiration rate per
minute is calculated according to the number of peaks in the set area after calculating the
peak for the breathing signal. Finally, the ground truth for the respiration pattern area is set
by clicking the “add” button after entering the class number information. By repeating this
operation, annotation is performed on the continuous breathing data. After all labeling is
completed, the save button may be clicked to save the breathing data file (.npy) and the
annotation information (.txt) file.
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Figure 20. Annotation tool for breathing data pattern area designation and labeling.

The dataset created through annotation is shown in Table 8. The number of respiration
patterns and the length of the data according to the ground-truth set are shown. Each
breathing datum was cut into 30-minute lengths, and there were a total of 36,000 data
points (20 data/s × 60 s × 30 min) within that range. Out of the entire dataset—consisting
of 300 breathing data samples with a length of 30 min each—250 were used for training
and 50 were used as test data. When configuring the training data loader for pattern
classification, one pair of random positive pairs and one pair of random negative pairs that
fit the set input size among the 250 training data were imported, as shown in Figure 21.
When configuring the test data loader, one pair of random positive pairs and N pairs of
random negative pairs were imported that fit the set input size among the 50 test data. In
the case of the same respiration pattern, a positive pair features a label value of 1, and in
the case of a different respiration pattern, a negative pair features a label value of 0.
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Table 8. Results of annotation based on the ground truth for each breathing dataset.

No. of Data Data Length Number of E
Pattern

Number of T
Patterns

Number of B
Patterns

Number of A
Patterns

Number of M
Patterns

1

20 (data) × 60 (s) ×
30 (min) = 36,000

6 3 2 3 5

2 3 3 1 2 1

3 6 3 3 1 2

4 5 2 3 1 1

5 5 2 4 2 1

... ...

298 7 2 3 5 2

299 5 6 6 4 4

300 4 3 4 4 6

(E: eupnea, T: tachypnea, B: bradypnea, A: apnea, M: movement).

4.3. Experiment and Evaluation

In this section, we performed 1:1 verification of respiration patterns for each input size
and layer depth for the 1D SNN model, i.e., the proposed method. Furthermore, we also
evaluated the classification accuracy of respiration patterns for each input size and layer
depth. Through the classification of continuous breathing ranges, respiration patterns were
first detected by applying the 1D SNN model, and they were subsequently classified into
ranges of each respiration pattern based on application of MASRP to the detected areas.
The final results of the application of MASRP and the ground truth were interpreted in
terms of IOU to evaluate the accuracy of the proposed method.

In addition, the superiority of the proposed method was demonstrated by comparing
the IOU between the ground truth and the final result of classification of the respiration pat-
tern area through the application of MASRP to the results of respiration pattern recognition
based on the existing DNN and 1D CNN methods.

4.3.1. Pattern Classification Experiments and Results

Experiments were conducted to determine the optimal input size for respiration interval
detection of the proposed 1D-SNN-based model. The basic hyperparameters required for
learning and testing are defined in Table 9. The basic hyperparameters include test trials, way,
and num train. Here, test trials pertain to the number of samples required for comparison
when conducting an experiment on the test dataset. Way is a parameter that adjusts the
ratio of positive pairs to negative pairs when conducting the trials. Num train is a parameter
that determines how many data will be randomly extracted and trained per epoch.

Table 9. Definition of SNN hyperparameters.

Hyperparameters Definition Defined Parameters

Test trials Test one-shot trials 400
Way Ways in the one-shot trials 5

Num train Respiration values in training dataset 90,000
Batch size Respiration values in each batch of data 4096

Num workers Sub-processes to use for data loading 4
Shuffle Whether to shuffle the dataset between epochs True
Epochs Epochs to train 200

Init momentum Initial layer-wise momentum value 0.5
Lr patience Number of epochs to wait before reducing lr 1

Train patience Number of epochs to wait before stopping train 20
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There were four different input data sizes: 100 (5 s), 200 (10 s), 300 (15 s), and 600 (30 s).
Twenty pieces of data were collected per second from the mmWave radar sensor.

Cosine similarity and L1 distance were used as distance metrics, and each layer was
configured to have 2–5 layers. For 20 epochs, if the maximum accuracy was not updated,
learning was set to stop, and 400 × 5 (test trials × way) random data were imported in
one test. The ratio of positive pairs to negative pairs was 1:5 (1:way). The total number of
epochs was 200, and the batch size was set to 4096.

Table 10 shows the 1:1 verification accuracy for each metric and input data size. In the
experimental results, the overall accuracy of the metric function using cosine similarity
was higher than that using the Manhattan distance metric. Considering the accuracy of
1:1 verification, the model structure exhibiting the highest accuracy by input size showed
the highest performance when the layer depth was set to three for the input sizes of 100,
300, and 600. At 200, it was slightly higher when the layer depth was four. The results of
evaluating the retrieval accuracy with the model are shown in Table 11. The performance
was the highest at the input size of 300, with 87.4% at the input size of 100, 92.0% at 200,
97.6% at 300, and 97.4% at 600. In this study, the input data size was sequentially selected
as 600, 300, 200, and 100 to detect continuous respiration pattern ranges. At this time, the
model with the highest top-1 accuracy was applied for each input data size.

Table 10. The 1:1 verification accuracy per input data size and metric.

Input Data Size Metric Layer Accuracy

100
Cosine similarity 2 82.19

3 82.81

Manhattan distance
2 71.56
3 81.56

200

Cosine similarity
2 91.56
3 90.94
4 92.50

Manhattan distance
2 80.63
3 82.81
4 84.06

300

Cosine similarity
2 96.56
3 98.44
4 93.44

Manhattan distance
2 80.63
3 88.13
4 86.56

600

Cosine similarity

2 97.81
3 98.05
4 96.56
5 95.31

Manhattan distance

2 56.88
3 66.13
4 89.06
5 86.56

Table 11. Top-1 accuracy for respiration pattern detection according to the input size and layer depth.

Input Data Size Layer Accuracy

100
2 87.4
3 84.2

200
2 91.6
3 92.0
4 91.8
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Table 11. Cont.

Input Data Size Layer Accuracy

300
2 95.6
3 97.6
4 91.8

600

2 97.0
3 97.4
4 96.2
5 95.4

Table 12 and Figure 22 show the accuracy and confusion matrix of each respiration
pattern for the proposed method (1D-SNN) and existing methods for respiration pattern
recognition results. The test data used to measure the accuracy of each respiration pattern
consisted of a total of 2000 test datasets, each containing 400 respiration patterns, and the
input data size was 300. In addition, Table 13 shows the recall, precision, and F1 scores for
the respiration pattern recognition results of the proposed method and existing methods.
As shown in Table 12, the experimental results revealed that the 1D SNN, 1D CNN, and
DNN methods exhibited high accuracy in order. Therefore, the proposed MASRP algorithm
was applied, with a focus on 1D SNN, 1D CNN, and DNN, to improve the classification
accuracy of multiple respiration patterns in continuous breathing segments.

Table 12. Comparison of accuracy for each respiration pattern between the proposed method and
existing methods.

Method Apnea Bradypnea Eupnea Movement Tachypnea Avg. (%)

XGBoost 0.93 0.59 0.76 0.89 0.83 80.1
Decision

tree 0.81 0.41 0.55 0.56 0.47 56.3

SVM 0.99 0.52 0.88 0.97 0.14 69.9
RNN 0.94 0.73 0.87 0.84 0.58 79.5
LSTM 0.82 0.68 0.93 0.8 0.65 77.5
GRU 0.85 0.62 0.81 0.62 0.64 70.8
DNN 0.98 0.81 0.89 0.91 0.56 83.2

1D CNN 0.98 0.86 0.90 0.96 0.91 92.3
1D SNN 0.98 0.97 0.96 0.98 0.99 97.6

Table 13. Comparison of precision, recall, and F1 score between the proposed method and the existing
methods for each respiration pattern.

Method Precision Recall F1 Score

XGBoost 0.801 0.801 0.801
Decision tree 0.567 0.559 0.563

SVM 0.718 0.701 0.709
RNN 0.798 0.794 0.796
LSTM 0.781 0.775 0.778
GRU 0.707 0.707 0.707
DNN 0.846 0.83 0.838

1D CNN 0.924 0.923 0.923
1D SNN 0.977 0.977 0.977
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4.3.2. Evaluation of IOU Accuracy for Merging and Splitting Results of Respiration
Pattern Ranges

For the evaluation of the proposed method, first, a 1D SNN model was used to detect
respiration patterns in the test dataset. The range merging and splitting processes were
performed using the MASRP 1 and 2 algorithms proposed in Section 3.3 for the detection
results. As shown in Figure 23, the ground-truth area of the test data and the results of the
proposed method were compared in terms of the IOU across several samples. The error is
indicated as the discrepancy area. The results of the ground truth and 1D SNN detection
are visually displayed by overlaying colors for each respiration pattern.
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apnea = cyan, movement = green). (a) IOU: 94.6%, (b) IOU: 93.3%, (c) IOU: 92.4%.

Figure 23 shows the ground truth for the test data and the processing results obtained
applying the 1D SNN and the MASRP algorithm on the test data. The inconsistency range
shows the error between the ground truth and the detection results of the proposed method.

The accuracy of the aforementioned results can be changed according to the ignore
threshold value during inference. This value is a threshold value for determining whether
the model correctly detected the pattern range. As the value is smaller, multiple detection
results may occur in one respiration pattern region, and the probability of false detection
increases accordingly. Therefore, in this paper, a relatively high value of 0.8 was acquired,
such that an appropriate number of detection results were obtained. If this value is set to be
extremely high, holes may appear with a high frequency between the detected pattern areas.
Inconsistent areas mostly occurred in the section where the respiration pattern changed. In
particular, when the movement pattern area signal was similar to other respiration patterns,
it was recognized as a respiration pattern, and the discrepancy was substantial.

The accuracy comparison of the proposed 1D-SNN-based detection method
(1D SNN + MASRP) was conducted using 50 test data, as shown in Figure 24. For ac-
curacy comparison, we calculated the IOU between the results of applying MASRP to the
existing methods (1D CNN and DNN) and the ground truth. Thereafter, we calculated the
IOU between the result of the proposed method (1D SNN + MASRP) and the ground truth.
The method with high IOU exhibited high detection performance. Existing methods such
as 1D CNN and DNN use pretrained models.
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The results of applying MASRP to the proposed 1D SNN and the results of applying
MASRP to existing methods were visualized, as shown in Figure 25. When the results of
each pattern were observed, the proposed method appeared much less frequently than
the existing methods in the inconsistent area. The existing methods also encountered the
problem of recognizing a part of a specific pattern area as a completely different pattern
from the ground truth.
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Figure 25. Visualization of samples for IOU accuracy comparison between the existing method and the
proposed methods (eupnea: blue, bradypnea: yellow, tachypnea: red, apnea: cyan, movement: green).

Experiments were conducted on 50 test data, and the average IOU results of the
proposed method and the existing methods are shown in Table 14. The proposed method
exhibited approximately 12.4% higher accuracy than the 1D CNN method and 19.7% higher
accuracy than the DNN method.



Sensors 2023, 23, 5275 24 of 27

Table 14. Average IOU accuracy of the proposed method and the existing methods for test data.

No. 1D SNN + MASRP
(Proposed Method) 1D CNN + MASRP DNN + MASRP

1 93.1% 81.4% 72.8%
2 93.6% 83.9% 76.4%
3 92.8% 78.6% 71.4%
4 95.2% 84.7% 78.9%
5 94.7% 83.4% 71.8%

. . .
49 93.4% 80.2% 73.6%
50 92.5% 79.8% 70.4%

Avg. 93.9% 81.5% 74.2%

5. Conclusions

Recently, various studies have been conducted on the analysis of human sleep quality
or sleep breathing disorders using artificial intelligence technology. Existing studies have
mainly focused on simple classification of apnea patterns. However, recently, in the
field of healthcare or sleep-related healthcare, research that recognizes various respiration
patterns and the classification of simple respiration patterns has gained considerable
interest. In particular, research on recognizing various respiration patterns from long-term
continuous breathing data and extracting information such as frequency and duration for
each respiration pattern requires attention. In this paper, we propose a neural network
model that detects regions for each respiration pattern from long-term breathing data and
an algorithm that merges and divides regions into regions where multiple respiration
patterns exist.

The proposed neural network is based on 1D SNN. We designed a 1D SNN model that
can detect respiration pattern regions from one-dimensional breathing data. In addition, a
study was conducted to extract information such as the frequency and duration of each res-
piration pattern from the entire breathing dataset by applying a merge-and-split algorithm
(MASRP) to the respiration pattern regions detected by the proposed model. In particular,
the proposed method improves the performance by optimizing the main hyperparameters
of 1D SNN through the harmony search algorithm and additional experiments. Since the
1D SNN classifies respiration patterns based on similarity, registering individual respiration
patterns in the model can improve the detection accuracy. In addition, even with long-term
breathing data, it is possible to identify the ratio and frequency of each respiration pattern
in the data, which can be utilized in the medical field.

The data from 10 normal adults were used for learning and testing. Using the mmWave
sensor, 30 cases of 30-minute-long data were measured for each person; that is, a total of
300 data were secured. Each datum was measured to include all five patterns of eupnea,
bradypnea, tachypnea, apnea, and movement. To evaluate the performance of the proposed
method and the existing respiration pattern recognition methods (1D CNN and DNN), the
sliding window method was used to detect the respiration pattern area, and the accuracy
of the detection results was compared with the IOU between the result of applying the
proposed MASRP algorithm and the ground truth. As a result, the proposed method
exhibited approximately 12.4% accuracy improvement over the 1D CNN method and
approximately 19.7% accuracy improvement over the DNN method. In other words,
the average accuracy of classification by respiration pattern confirmed that the proposed
method was improved by approximately 14.5% over DNN and 5.3% over 1D CNN.

While proposing a classification method for respiration patterns with high accuracy,
it is difficult to guarantee 100% accuracy, due to the possibility of multiple respiration
patterns within the detection range. Comparing multiple respiration pattern components
within the target detection window with the existing respiration patterns makes it difficult
to ensure high accuracy. Therefore, we proposed a 1D SNN model based on the similarity of
embedding vectors for respiration pattern features in our proposed method, to improve the
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accuracy. Additionally, we increased the classification accuracy by applying the proposed
MASRP algorithm when multiple respiration patterns existed in the detection range. In
this case, we divided the detection range into detailed sections and applied the 1D SNN to
each section. After division, when multiple respiration patterns existed in the last detailed
section, we divided the section into “before and after” respiration ranges based on the
similarity ratio of each respiration pattern, and then merged them. Therefore, it is still
difficult to guarantee 100% accuracy.
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17. Ćorović, A.; Ilić, V.; Ðurić, S.; Marijan, M.; Pavković, B. The Real-Time Detection of Traffic Participants Using YOLO Algorithm.

In Proceedings of the 26th Telecommunications Forum(TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 1–4.
18. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. ICML Deep. Learn. Workshop

2015, 2, 1.
19. Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021.
20. West, J.B. Respiratory Physiology: The Essentials; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2012.
21. Loughlin, P.C.; Sebat, F.; Kellett, J.G. Respiratory Rate: The Forgotten Vital Sign—Make It Count! Jt. Comm. J. Qual. Patient Saf.

2018, 44, 494–499. [CrossRef] [PubMed]
22. Szegdy, C.; Toshev, A.; Erhan, D. Deep Neural Network for Object Detection. Adv. Neural Inf. Process. Syst. 2013, 2553–2561.

[CrossRef]
23. Huang, Y.; Sun, S.; Duan, X.; Chen, Z. A Study on Deep Neural Networks Framework. In Proceedings of the 2016 IEEE

Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), Xi’an, China,
3–5 October 2016. [CrossRef]

24. Zhang, J.; Zheng, Y.; Qi, D.; Li, R.; Yi, X. DNN-Based Prediction Model for Spatio-Temporal Data. In Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems, Burlingame, CA, USA, 31 October–3
November 2016; pp. 1–4. [CrossRef]

25. Bayraci, S.; Susuz, O. Deep Neural Network(DNN) Based Classification Model in Application to Loan Default Prediction. Theor.
Appl. Econ. 2019, 4, 75–84.

26. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747.
27. Zhao, B.; Lu, H.; Chen, S.; Liu, J.; Wu, D. Convolutional neural networks for time series classification. J. Syst. Eng. Electron. 2017,

28, 162–169. [CrossRef]
28. Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A

survey. Mech. Syst. Signal Process. 2021, 151, 107398. [CrossRef]
29. Zeng, X.; YangJunjie, W.O.; Wang, Y. Gated Bi-directional CNN for Object Detection. Eur. Conf. Comput. Vis 2016, 14, 354–369.
30. Jana, G.C.; Sharma, R.; Agrawal, A. A 1D-CNN-Spectrogram Based Approach for Seizure Detection from EEG Signal. Procedia

Comput. Sci. 2020, 167, 403–412. [CrossRef]
31. Mitiche, I.; Nesbitt, A.; Conner, S.; Boreham, P.; Morison, G. 1D-CNN based real-time fault detection system for power asset

diagnostics. IET Gener. Transm. Distrib. 2020, 14, 5766–5773. [CrossRef]
32. Cho, H.; Yoon, S.M. Divide and Conquer-Based 1D CNN Human Activity Recognition Using Test Data Sharpening. Sensors 2018,

18, 1055. [CrossRef] [PubMed]
33. Taejun, K.; Lee, J.; Nam, J. Sample-Level CNN Architectures for Music Auto-Tagging Using Raw Waveforms. In Proceedings of

the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018.
[CrossRef]

34. Zhang, Q.; Zhou, D.; Zeng, X. HeartID: A Multiresolution Convolutional Neural Network for ECG-Based Biometric Human
Identification in Smart Health Applications. IEEE Access Body Area Netw. 2017, 5, 11805–11816. [CrossRef]

35. Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv.
(Csur) 2020, 53, 1–34. [CrossRef]

36. Zhang, C.; Liu, W.; Ma, H.; Fu, H. Siamese neural network based gait recognition for human identification. In Proceedings of the
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016.
[CrossRef]

37. An, N.; Yan, W.Q. Multitarget Tracking Using Siamese Neural Networks. ACM Trans. Multimed. Comput. Commun. Appl. 2021,
17, 1–16. [CrossRef]

38. Ostertag, C.; Beurton-Aimar, M. Matching ostraca fragments using a siamese neural network. Pattern Recognit. Lett. 2020,
131, 336–340. [CrossRef]

39. Shorfuzzaman, M.; Hossain, M.S. MetaCOVID: A Siamese neural network framework with contrastive loss for n-shot diagnosis
of COVID-19 patients. Pattern Recognit. 2021, 113, 107700. [CrossRef]

40. Zhou, X.; Liang, W.; Shimizu, S.; Ma, J.; Jin, Q. Siamese Neural Network Based Few-Shot Learning for Anomaly Detection in
Industrial Cyber-Physical Systems. IEEE Trans. Ind. Inform. 2020, 17, 5790–5798. [CrossRef]

https://doi.org/10.3390/s20226481
https://doi.org/10.1088/1742-6596/1004/1/012029
https://doi.org/10.1016/j.jcjq.2018.04.014
https://www.ncbi.nlm.nih.gov/pubmed/30071969
https://doi.org/10.5555/2999792.2999897
https://doi.org/10.1109/IMCEC.2016.7867471
https://doi.org/10.1145/2996913.2997016
https://doi.org/10.21629/JSEE.2017.01.18
https://doi.org/10.1016/j.ymssp.2020.107398
https://doi.org/10.1016/j.procs.2020.03.248
https://doi.org/10.1049/iet-gtd.2020.0773
https://doi.org/10.3390/s18041055
https://www.ncbi.nlm.nih.gov/pubmed/29614767
https://doi.org/10.48550/arXiv.1710.10451
https://doi.org/10.1109/ACCESS.2017.2707460
https://doi.org/10.1145/3386252
https://doi.org/10.1109/ICASSP.2016.7472194
https://doi.org/10.1145/3441656
https://doi.org/10.1016/j.patrec.2020.01.012
https://doi.org/10.1016/j.patcog.2020.107700
https://doi.org/10.1109/TII.2020.3047675


Sensors 2023, 23, 5275 27 of 27

41. Santoro, A.; Bartunov, S.; Botvinick, M.; Wierstra, D.; Lillicrap, T. Meta-learning with memory-augmented neural networks. Int.
Conf. Mach. Learning. PMLR 2016, 48, 1842–1850.

42. Kulis, B. Metric learning: A survey. Found. Trends®Mach. Learn. 2013, 5, 287–364. [CrossRef]
43. Weller-Fahy, D.J.; Borghetti, B.J.; Sodemann, A.A. Sodemann. A survey of distance and similarity measures used within network

intrusion anomaly detection. IEEE Commun. Surv. Tutor 2014, 17, 70–91. [CrossRef]
44. Yıldırım, Ö.; Baloglu, U.B.; Acharya, U.R. A deep convolutional neural network model for automated identification of abnormal

EEG signals. Neural Comput. Appl. 2018, 32, 15857–15868. [CrossRef]
45. Chen, S.; Bin, M.; Zhang, K. On the similarity metric and the distance metric. Theor. Comput. Sci. 2009, 410, 2365–2376. [CrossRef]
46. Suo, Q.; Ma, F.; Yuan, Y.; Huai, M.; Zhong, W.; Gao, J.; Zhang, A. Deep patient similarity learning for personalized healthcare.

IEEE Trans. Nanobiosci. 2018, 17, 219–227. [CrossRef]
47. Ahonen, T.; Hadid, A.; Pietikainen, M. Face description with local binary patterns: Application to face recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2006, 28, 2037–2041. [CrossRef]
48. Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244.
49. Wojke, N.; Bewley, A. Deep cosine metric learning for person re-identification. In Proceedings of the 2018 IEEE winter conference

on applications of computer vision (WACV), Lake Tahoe, NV, USA, 12–15 March 2018.
50. Kaya, M.; Bilge, H. Deep metric learning: A survey. Symmetry 2019, 11, 1066. [CrossRef]
51. Lawhern, V.J.; Solon, A.J.; Waytowich, N.R.; Gordon, S.M.; Hung, C.P.; Lance, B.J. EEGNet: A compact convolutional neural

network for EEG-based brain–computer interfaces. J. Neural Eng. 2018, 15, 056013. [CrossRef]
52. Liu, P.J.; Saleh, M.; Pot, E.; Goodrich, B.; Sepassi, R.; Kaiser, L.; Shazeer, N. Generating wikipedia by summarizing long sequences.

arXiv 2018, arXiv:1801.10198.
53. Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G. Pytorch: An imperative style, high-performance deep learning

library. Adv. Neural Inf. Process. Syst. 2019, 32, 8024–8035.
54. Kim, S.-H.; Geem, Z.W.; Han, G.-T. Hyperparameter optimization method based on harmony search algorithm to improve

performance of 1D CNN human respiration pattern recognition system. Sensors 2020, 20, 3697. [CrossRef] [PubMed]
55. Dubey, S.R.; Chakraborty, S.; Roy, S.K.; Mukherjee, S.; Singh, S.K.; Chaudhuri, B.B. diffGrad: An Optimization Method for

Convolutional Neural Networks. IEEE Trans. Neural Networks Learn. Syst. 2019, 31, 4500–4511. [CrossRef] [PubMed]
56. Florea, A.-C.; Andonie, R. Weighted Random Search for Hyperparameter Optimization. Int. J. Comput. Commun. Control. 2019,

14, 432–445. [CrossRef]
57. Kim, S.H.; Han, G.T. 1D CNN based human respiration pattern recognition using ultra wideband radar. In Proceedings of

the 2019 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), Okinawa, Japan,
11–13 February 2019.

58. TI mmWave Labs—Vital Signs Measurement (Version 1.2), User Guide; Texas Instruments: Dallas, TX, USA, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1561/2200000019
https://doi.org/10.1109/COMST.2014.2336610
https://doi.org/10.1007/s00521-018-3889-z
https://doi.org/10.1016/j.tcs.2009.02.023
https://doi.org/10.1109/TNB.2018.2837622
https://doi.org/10.1109/TPAMI.2006.244
https://doi.org/10.3390/sym11091066
https://doi.org/10.1088/1741-2552/aace8c
https://doi.org/10.3390/s20133697
https://www.ncbi.nlm.nih.gov/pubmed/32630344
https://doi.org/10.1109/TNNLS.2019.2955777
https://www.ncbi.nlm.nih.gov/pubmed/31880565
https://doi.org/10.15837/ijccc.2019.2.3514

	Introduction 
	Related Research 
	Breathing Signal 
	Pattern Recognition Methods of Signal Data Based on Deep Learning 
	Deep Neural Network (DNN) 
	One-Dimensional (1D) Convolutional Neural Network (CNN) 
	Siamese Neural Network (SNN) 
	Distance Function 


	Proposed Method for the Multiple Respiration Patterns and Each Pattern’s Range Classification Based on a 1D SNN 
	Limitations of Existing Research 
	Our Proposed Method 
	Merging and Splitting Method of the Respiration Pattern Retrieval Range 

	Experimental Results and Considerations 
	Experimental Environment 
	Organization of Training and Test Data 
	Experiment and Evaluation 
	Pattern Classification Experiments and Results 
	Evaluation of IOU Accuracy for Merging and Splitting Results of Respiration Pattern Ranges 


	Conclusions 
	References

