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Abstract: A new water-soluble poly(propylene imine) dendrimer (PPI) modified with 4-sulfo-1,8-

naphthalimid units (SNID) and its related structure monomer analog (SNIM) has been prepared 

by a simple synthesis. The aqueous solution of the monomer exhibited aggregation-induced 

emission (AIE) at 395 nm, while the dendrimer emitted at 470 nm due to an excimer formation 

beside the AIE at 395 nm. Fluorescence emission of the aqueous solution of either SNIM or SNID 

was significantly affected by traces of different miscible organic solvents, and the limits of detection 

were found to be less than 0.05% (v/v). Moreover, SNID exhibited the function to execute molecular 

size-based logic gates where it mimics XNOR and INHIBIT logic gates using water and ethanol as 

inputs and the AIE/excimer emissions as outputs. Hence, the concomitant execution of both XNOR 

and INHIBIT enables SNID to mimic digital comparators.  

Keywords: poly(propylene imine) dendrimer; 1,8-naphthalimides; aggregation-induced emission 

(AIE); excimer; solvatochromism; water purity; INHIBIT; XNOR; digital comparator 

 

1. Introduction 

Dendrimers are three-dimensional star-shaped supramolecular architectures having 

various functional groups in the structure. They have recently been attracting the 

attention of scientists as an alternative to linear and branched polymers due to their 

unique structural features, including large surface area and the flexibility to incorporate 

different compounds into their periphery or interior parts [1–3]. Over the last two 

decades, numerous structural scaffolds for dendrimers have been reported, ranging from 

pure organic molecular frameworks to organometallic and biomaterials [4–6]. Exploration 

of dendrimers applications in supramolecular chemistry is still ongoing. Recently, many 

reports have presented their potential in drug delivery [7], tissue engineering [8], bio-

imaging [9], catalysis [10], cancer therapy [11], and a variety of other applications. 

Luminescent dendrimers are indispensable components in high-technology industries, 

particularly optoelectronics, light-harvesting antennae in solar cells, sensors for detecting 

pollutants in the environment, biology, and medicine [12–14]. 

The peripheral functionalization of dendrimers with different chromophores such as 

dansyl sulfonate [15,16], pyrene [17], azobenzenes [18], and coumarin [19,20] moieties and 

their potential applications have been described. Our previous works have been focused 

on the functionalization of poly(amidoamine) [21–30] and poly(propylene amine) [31–34] 

dendrimers by 1,8-naphthalimide chromophor groups and studied their potential as 

sensors for transition metal cations and pH. 1,8-Naphthalimides are promising 

fluorophores for designing fluorescent sensors because of their good photostability, 
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strong fluorescence emission, high quantum yield, and flexibility to be modified. 

Molecular architectures based on 1,8-naphthalimides are well-known assemblies with 

bright emissive color, high photostability, and sensor activities for colorimetric and 

fluorometric probing [35–39]. 

Aggregation-based luminogens are non-emissive molecules that become highly 

emissive in solution by limiting their intramolecular rotation (RIR) in the aggregated state 

[40]. There are many reports about the applications of AIEgens, including liquid crystals 

[41], organic light-emitting diodes (OLED) [42], photoluminescent agents [43], and sensors 

[44]. Moreover, aggregation makes some organic fluorophores exhibit a new red-shifted 

emission caused by excited dimers, excimers, formed by associating two fluorophore units 

when they are a close vicinity to each other [45]. There are two kinds of excimers (i) 

dynamic excimers [46] resulting from associating a fluorophore in the excited state and 

(ii) static excimers that are formed in the ground state [47]. These excimers absorb like 

monomers, but the emission is red-shifted related to monomer emission [48,49]. The 

excimer emission is extremely sensitive to the polarity of the solvent [50]. 

Water contamination by organic solvents is disadvantageous for the progress of 

chemical reactions, biological processes, pharmaceuticals, and foodstuffs production [51–

54]. Traditional methods for detecting traces of water in organic solvents, such as 

analytical, chromatographic, and electrochemical methods, suffer from many drawbacks 

like toxic agents, expensive instruments, and complicated operations [55–57]. Recently, 

many organic molecular sensors for detecting water pollution have been reported, though 

they require multistep synthesis, and the sensitivity achieved is low [58–60]. 

Recently, there has been considerable progress in developing optical molecular 

sensing systems to mimic logic gates and operations for incorporation into information 

technology instead of silicon-based ones [61–65]. A digital comparator to compare two 

inputs can be constructed by the combinational logic circuit of three INHIBIT logic gates 

[66,67] or of XNOR/INHIBIT gates [68,69].  

In this work, a novel water-soluble PPA dendrimer modified with 4-sulfo-1,8-

naphthalimides units was synthesised as a part of our ongoing research on the synthesis and 

characterization of novel periphery functionalized with 1,8-naphthalimides dendrimers. The 

monomer of the dendrimer has also been synthesized and examined so that the results from 

the investigations of the photophysical properties, solvatchromism, and sensory function of 

both the monomer and the dendrimer could be compared. Experiments on the excimer 

formation induced by the aggregation of the dendrimer were carried out as well. Moreover, 

the function of both compounds to mimic logic gates was studied.  

2. Materials and Methods 

The first generation (poly propylene imine) dendrimer (PPI), 4-Sulfo-1,8-naphthalic 

anhydride potassium salt and N,N-dimethyltrimethylenediamine were purchased from 

Sigma Aldrich and used without purification. All used solvents (Sigma Aldrich, St. Louis, 

MO, USA): dimethylsulfoxide (DMSO), N,N-dimetjylformamide (DMF), tetrahydrofuran 

(THF), dichloromethane (DCM), ethanol, dioxane were of spectroscopic grade purity. 1H 

and 13C-NMR spectra were recorded at ambient temperature in DMSO-d6 as a solvent on 

a Bruker Avance II+ 600 spectrometer operating at 600.13 MHz and 151 MHz, respectively. 

The UV-Vis absorption and emission spectra were recorded on Varian Cary 5000 UV-Vis-

NIR spectrophotometer and on a “Cary Eclipse” spectrofluorometer, respectively, using 

1 cm optical path length quartz cuvettes (Hellma, Müllheim im Markgräflerland, 

Germany). Slits width of 5 nm for the excitation and emission. All of the measurements 

were measured at 25.0 °C. TLC monitoring was conducted using silica gel (Fluka F60 254 

20 × 20; 0.2 mm) and toluene/methanol/ (4:1) as an eluent. OriginPro 8 software for data 

processing has been used. Stock solutions of SNIM and SNID were prepared in DMF as 

10−2 M to ensure negligible volumes of the stock to reach the required concentration (3 μL 

for 10−5 M and 1.5 μL for 5 × 10−6 M) using 3 mL as a total volume of the solvent(s).  
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2.1. Synthesis of Potassium 2-(3-(Dimethylamino)propyl)-1,3-dioxo-2,3-dihydro-1H-

benzo[de]isoquinoline-6-sulfonate SNIM 

N,N-Dimethyltrimethylenediamine (250 μL, 2 mmole) were added dropwise to a 

suspension of 4-sulfo-1,8-naphthalic anhydride 1 (0.53 gm, 1.7 mmole) in 25 mL of ethanol 

and was refluxed for 4 h. The final product was isolated after filtration of the solid and 

washing with ethanol. Yield 95%, 0.61 g, m.p. > 300 °C.  
FT-IR (KBr) cm−1: 3080 (CH (Aromatic)); 2960, 2860, 2810, 2780 (CH (Aliphatic)); 

1700, 1650 (C=O). 1H NMR (600 MHz, DMSO) δ 9.24 (dd, J = 8.6, 1.1 Hz, 1H), 8.49 (dd, J = 

7.2, 1.1 Hz, 1H), 8.46 (d, J = 7.5 Hz, 1H), 8.21 (d, J = 7.5 Hz, 1H), 7.88 (dd, J = 8.6, 7.3 Hz, 

1H), 4.09–4.04 (m, 2H), 2.31 (t, J = 7.0 Hz, 2H), 2.12 (s, 6H), 1.80–1.72 (m, 2H). 13C NMR (151 

MHz, DMSO) δ 164.1, 163.6, 150.2, 134.5, 130.8, 130.6, 128.6, 128.0, 127.3, 125.4, 123.2, 122.6, 

57.2, 45.5, 38.7, 25.9. Analysis: C17H17N2O5К S (400.22 g mol−1): Calc. (%): C-46.60, H 4.40, N 

7.25; Found (%): C-46.83, H 4.44, N 7.31. 

2.2. Synthesis of 4-Sulfo-1.8-naphalimide Based PPI Dendrimer SNID 

The poly(propylene imine) dendrimer from first generation (0.32 g, 1 mmol) and 4-

sulfo-1,8-naphthalic anhydride 1 (1.3 g, 4 mmol) were refluxed in 25 mL ethanol, and the 

reaction progress has been monitored by TLC. After 4 h, the product was filtered, washed 

with ethanol, and dried. Yield: 1.34 g (98%), decomposed at temperatures higher than 300 °C. 

FT-IR (KBr) cm−1: 3070 (CH (Aromatic)); 2950, 2850, 2810 (CH (Aliphatic)); 1695, 

1651 (C=O). 1H NMR (600 MHz, DMSO) δ 9.21 (dd, J = 8.6, 1.2 Hz, 4H, Ar-H), 8.43 (d, J = 

7.5 Hz, 4H, Ar-H), 8.38 (d, J = 7.6 Hz, 4H, Ar-H), 8.20 (d, J = 7.6 Hz, 4H, Ar-H), 7.81 (dd, J 

= 8.6, 7.3 Hz, 4H, Ar-H), 4.13–4.03 (m, 8H, (OC)2NCH2), 3.10–2.80 (m, 4H, CH2N<), 2.60–

2.55 (m, 8H, CH2N(CO)2), 1.83–1.74 (m, 8H, (OC)2NCH2CH2CH2N), 1.51–1.43 (m, 4H, 

>CH2CH2CH2CH2N<). 13C NMR (151 MHz, DMSO) δ 164.0 (C=O), 163.6 (C=O), 150.0, 134.4, 

130.7, 130.49, 128.5, 127.9, 127.2, 125.5, 123.3, 122.5 (10 Ar. C), 51.4, 38.9, 25.4 (aliph C). 

Analysis: C64H52N6O20К4S4 (1509.15 g mol−1): Calc. (%): C-50.89, H 3.45, N 5.57; Found (%): 

C-50.80, H 3.49, N 5.52. 

3. Results and Discussion 

3.1. Design and Synthesis of the Probe 

The synthesis of 4-sulfo-1,8-naphthalimide-modified PPA dendrimer SNID and its 

related monomer SNIM is presented in Scheme 1. Their chemical structures were 

confirmed by UV-Vis absorption, fluorescent, FT-IR, and NMR spectra (Figures S1–S6). 

The π-π stacking of 1,8-naphthalimide units is favoured in water, and hence, aggregation-

induced emission AIE is possible. The function of the dendrimer scaffold is to stick close 

to the 4-sulfo-1,8-naphthalimde moieties, thus enabling the aggregation-induced excimer 

formation in water.  

 

Scheme 1. Synthesis of SNIM and SNID. 
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3.2. Photophysical Characteristics 

The influence of solvent polarity  on the absorption and emission spectra of SNIM 

and SNID has been investigated, and the respective data have been summarized in Table 

1. The absorption spectra of monomer and dendrimer have an absorption band in the 

range of 300–370 nm corresponding to the 4-sulfo-1,8-naphthalimide chromophore group, 

Figure 1. While the absorption band was characterized by a well-developed vibrational 

fine structure in most solvents, the structure is almost blurred in the hydroxylic solvents 

due to hydrogen bonding with the solvent molecules and π–π stacking that restricts the 

vibrational transitions. The position of the absorption band is not affected significantly by 

the solvent polarity, suggesting that these compounds in the ground state are not sensitive 

to the polarity of the environment. The solvent polarity has an impact only on the 

vibrational transitions. On the other hand, the absorption spectra of the dendrimer SNID 

in different solvents are similar to the ones of the monomer SNIM, except the molar 

extinction coefficients at the absorption maxima, which are approximately four times 

higher than those of the monomer SNIM, which indicates the full substitution of the 

primary amino groups in the dendrimer periphery by 4-sulfo-1,8-naphthalimide units 

[70].  

Table 1. Wavelength of absorption, wavelength of emission, Stocks shifts, absorption extinction 

coefficient, and quantum yields of the SNIM and SNID in different solvents using Anthracene (ΦF 

= 0.29 in ethanol) as a reference. 

Solvents Water DMSO DMF Ethanol DCM THF Dioxane 

SNIM 

Dielectric 

constant (25 °C) 
78.35 47.1 37.1 24.5 8.93 7.58 2.25  

λabs.(nm) 339, 350 328, 342, 358 328, 341, 357 327, 337, 354 326, 338, 354 325, 339, 355 323, 336, 353 

λem. (nm) 393 389 380 387 387 405 367 

Stockes shift 

(cm−1) 
3126 2226 1695 2409 2409 3478 1081 

(l mol−1cm−1) 
11,300 

11,100 

9100 

12,400 

11,000 

8900 

12,300 

11,000 

9200 

11,700 

10,500 

8200 

10,500 

9300 

9100 

11,600 

10,500 

6900 

9300 

8600 

ФF 0.237 a 0.004 0.001 0.005 0.007 0.017 0.005 

SNID 

λabs. (nm) 342 327, 342, 357 326, 341, 357 326, 338, 354 324, 338, 354 325, 338, 354 324, 338, 354 

λem. (nm) 393,474 387 379 388 - 404 378 

(cm−1) 8143 2171 1626 2475 - 3496 1794 

 (l mol−1cm−1) 47,800 

55,300 

73,600 

64,500 

52,300 

71,000 

63,200 

42,500 

52,900 

46,100 

42,300 

48,600 

40,400 

48,200 

55,300 

44,100 

45,500 

54,500 

45,300 

ФF 0.132 a 0.001 0.001 0.0035 - 0.0083 0.0036 
a Quinine H sulfate (0.54, water) as a reference. 

Regarding fluorescence emission, after excitation at 340 nm, the monomer gives a 

strong fluorescence emission centred at 392 nm only in water, Figure 2A. It is attributed 

to the monomer molecules aggregation that is induced by the π–π stacking. This stacking 

restricts the nonradiative vibrational de-excitations processes of the excited molecules. 

Moreover, the monomer SNIM gives a weak emission in ethanol and DCM due to the 

vague formation of aggregates in these solvents. The fluorescence emission observed in 

THF, despite the well-developed vibrational fine structure of the absorption band, refers 

to the aggregation favoured in the excited state rather than in the ground state. Strikingly, 

the behaviour of the dendrimer in water is different from that of the monomer, where 
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besides the emission at 395 nm, which is weaker, a strong emission centred at 475 nm is 

observed (Figure 2B). This is confirmed by the photograph of the CNID and SNIM 

compounds dissolved in water, DMF, and ethanol and irradiated with monochromatic 

UV light at 366 nm. The figure shows the blue-green fluorescence emission of CNID in an 

aqueous solution, while SNIM emits blue fluorescence (Figure 2C). The former emission, 

as mentioned above, is caused by the excimer formation of 4-sulfo-1,8-naphthalimide 

units, while that of the latter is due to the aggregation of dendrimer molecules [71].  
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Figure 1. Influence of solvents on the absorption spectrum of (A) SNIM, c = 10−5 M and (B) SNID, c 

= 5 × 10−6 M. 
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Figure 2. Influence of solvents on the emission spectra of (A) SNIM, c = 10−5 M; (B) SNID, c = 5 × 

10−6 M after excitation at 340 nm. Photograph of SNIM and SNID in a solution of water (1), DMF 

(2), and ethanol (3) under monochromatic UV light irradiation at 366 nm (C). 

The discriminated fluorescence emission of the monomer and its dendrimer in water 

encouraged us to investigate the applicability of these compounds as probes for 
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quantitative measurements of the purity of water contaminated with another miscible 

organic solvent. We used ethanol, DMF, and dioxane as representatives for polar protic 

and aprotic and nonpolar solvents, respectively. Moreover, we investigated the influence 

of water traces in the solvents on the emission response of the SNIM and SNID.  

3.3. Solvatochromism of SNIM 

It has been found that ethanol has no effect on the emission of the aqueous solution 

of SNIM till 60% (v/v) of ethanol. Higher amounts of ethanol (>60%) led to emission 

quenching at 395 nm due to the dissociation of aggregates by ethanol molecules. On the 

other hand, fluorescence emission at 395 nm of ethanol solution of SNIM has enhanced 

by adding water, Figure 3. The limit of detection (LOD) for water presence in ethanol was 

found to be 0.09% by volume. LOD was calculated using LOD = 3σ/b [38], where b is the 

slop and σ is the standard deviation. The increase in the emission by adding water is 

ascribed to the aggregation of SNIM molecules induced by π–π stacking of nonpolar 1,8-

naphthalimide moieties in the presence of water. The low LOD of SNIM towards water 

presence in ethanol indicates that it can be used as a low-cost reagent for the detection of 

traces of water in alcohol. The required volume of water to reach saturation of the fluorescence 

response of SNIM in the ethanol solution was found to be ≈24% (v/v) (Figure S7).  
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Figure 3. Influence of ethanol content on (A) the emission spectrum of water solution of SNIM, (B) 

its emission at 395 nm. Influence of water content on (C) the emission spectrum of SNIM solution 

in ethanol and (D) its emission at 395 nm. c = 10−5 M excitation at 340 nm. 

Moreover, SNIM exhibited the ability to investigate the contamination of water in 

DMF, as a representative for polar aprotic solvents, by its fluorescence emission, Figure 4. 

Similar to ethanol, the presence of DMF decreased the emission of SNIM in water due to 

the dissociation of aggregated molecules by DMF solvation. The limit of detecting DMF 

contamination was found to be 0.08%, refereeing to the applicability of SNIM to detect 

traces of DMF in water. The saturation of emission response was reached after the 
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addition of 5% of DMF to the water solution, after which the decrease in fluorescence with 

increasing DMF content up to 10 % is negligible (Figure 4B). 
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Figure 4. Influence of DMF content on (A) the emission spectrum; (B) emission at 395 nm of SNIM 

solution in water, c = 10−5 M, excitation at 340 nm. 

Moreover, the effect of dioxane, as a representative of nonpolar solvents, on the 

emission of a SNIM solution in water has also been investigated (Figure 5). In this case, 

the emission is quenched by the presence of dioxane traces due to the dissociation of π–π 

stacking between 1,8-naphthalimide moieties. The LOD and dioxane volume required to 

reach saturation was found to be 0.05% and 10%, respectively. Moreover, the influence of 

water presence on the emission of SNIM solution in dioxane has been investigated. 

Contrarily, the presence of water traces enhanced the fluorescence emission. The limit of 

detection of water in dioxane was found to be 0.14%. Hence, SNIM has a dual sensitive 

sensory applicability for investigating the purity of both water and dioxane in the 

presence of the other as a contaminant. In other words, SNIM is able to detect the presence 

of dioxane traces in a water sample and water traces in a dioxane sample. 
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Figure 5. Influence of dioxane content on (A) the emission spectrum and (B) the emission at 395 nm 

of SNIM solution in water. Influence of water content on (C) the emission spectrum and (D) the 

emission at 395 nm of SNIM solution in dioxane, c = 10−5 M, excitation at 340 nm. 
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3.4. Solvatochromism of Dendrimer SNID 

The effect of water traces on the emission of dendrimer solution was examined in 

ethanol solution. As shown in Figure 6, water leads to emissions enhancement at both 395 

nm and 470 nm, and the limits of detection were found to be 0.5% and 1%, respectively. 

The fluorescence enhancement at 395 nm was observed till 50% water fraction; after that, 

the emission quenched by further water addition, Figure 7, due to the higher rate of 

excimer formation and to the fact that more 1,8-naphthalimides unites become included 

in the excimer formation. In concomitance, the emission at 470 nm increased slowly till 50 

% water fraction, then further addition of water increased the rate. Behaviour of the 

dendrimer in the presence of both water and ethanol solutions as inputs and the emission 

at 395 nm (λex. = 340 nm) as output and using the initial case of 50% water fraction mimics 

XNOR logic gate, Figure 7C, where at the initial state (water coded as 0 and ethanol as 0), 

the output is high (coded as 1). Addition of ethanol till water fraction = 20% (ethanol coded 

as 1 and water coded as 0) gets the emission at 395 nm low (coded as 0). Moreover, the 

addition of water till it reaches a water fraction of 80 % (ethanol coded as 0 and water 

coded as 1) gets the emission low and coded as 0. Finally, the addition of both ethanol and 

water in equal amounts (both coded as 1) retains the initial state (emission gets high and 

coded as 1). On the other hand, using the emission at 470 nm as output and the emission 

threshold shown in Figure 7B, SNID mimics INHIBIT logic gate where the emission can 

be considered high (coded as 1) only in the case of adding water alone and otherwise the 

emission is low (coded as 0). Moreover, a combination of XNOR and INHIBIT logic gates 

works as a digital comparator, Figure 7D. 
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Figure 6. Influence of water content (0–10%, v/v) on (A) the emission spectrum, (B) the emissions at 

395 nm, and (C) the emission at 470 nm of SNID solution in ethanol. c = 10−5 M, excitation at 340 nm. 

 

 



Sensors 2023, 23, 5268 9 of 15 
 

 

400 450 500 550 600 650 700
0

200

400

600

800

1000

0 %

50 %

E
m

is
s
io

n
 (

A
.U

.)

Wawelength / nm

A

100 %

 

C 

 

0 20 40 60 80 100

0

200

400

600

800

1000
B

INHIBIT
(Water)

0

E
m

is
si

o
n

 (
A

.U
.)

Water %  (water/ethanol) (%)

 Emission at 395 nm
 Emission at 470 nm

1

Initial state

0
1

XNOR

 

D 

 

Figure 7. Influence of water content (0–100%, v/v) on (A) the emission spectrum of SNID solution 

in ethanol, (B) the emissions at 395 nm and 470 nm and their function as outputs in mimicking logic 

gates. (C) Truth table for SNID using water and ethanol as inputs. (D) Electronic representation of 

digital comparator executed by SNID. c = 10−5 M, excitation at 340 nm. 

Furthermore, the applicability of the dendrimer SNID for detecting DMF 

contamination in water has been studied, Figure 8. The addition of DMF traces to SNID 

solution in water was associated with quenching the emissions at 395 nm and 470. The 

limits of detection were found to be 0.09% and 0.2% using emissions at 395 nm and 470 

nm, respectively. The quenching of the emissions by DMF contamination is linear in the 

range of 0–1% of a DMF fraction. On the other hand, the emission spectrum of SNID 

solution in DMF was affected only by large volumes of water, Figure 9, due to the good 

solvation of DMF to dendrimer molecules.  
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Figure 9. Influence of the water content on (A) the emission spectrum, (B) the emissions at 395 nm, 

and (C) the emission at 470 nm of SNID solution in DMF. c = 10−5 M, excitation at 340 nm. 

Moreover, the applicability of SNID for detecting dioxane contamination in water 

samples has been investigated. The presence of dioxane traces quenched both the 

emissions at 395 and 470 nm linearly in the range of 0–2%. The LOD values were found to 

be 0.3% and 0.7% using emissions at 395 nm and 470 nm, respectively, Figure 10. On the 

other hand, the addition of water to SNID solution in dioxane is associated with 

enhancing the emissions at 395 nm and 470 nm, like the case of adding water to SNID 

solution in ethanol, Figure 11. Hence, SNID can act as a digital comparator using water 

and dioxane as inputs and the emissions at 395 nm and 470 nm as outputs. 
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Figure 11. Influence of water content on (A) the emission spectrum, (B) the emissions at 395 nm, 

and (C) the emission at 470 nm as outputs for XNOR and INHIBIT logic gates (insert) of SNID 

solution in dioxane. c = 10−5 M, excitation at 340 nm. 
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4. Conclusions 

This work presents the synthesis of a new water-soluble poly(propylene amine) 

dendrimer from the first generation, modified with 4-sulfo-1,8-naphthalimide SNID and 

its monomer analog SNIM for detecting water contamination by different organic 

solvents. Both the monomer and dendrimer aggregate in the aqueous solution because of 

the π-π stacking of 4-sulfo-1,8-naphthalimide moieties that allows the formation of 

excimers between the excited and non-excited 4-sulfo-1,8-naphthalimide fragments of 

dendrimer molecules. Moreover, the incorporation of 4-sulfo-1,8-naphthalimide units into 

the dendrimer scaffold improves their tolerance towards strong bases. Furthermore, the 

dependence of the emissions, caused by the aggregation and excimer formations, on water 

presence enables these molecules to detect the presence of traces of various organic 

solvents in water and vice versa. It has been shown that the dendrimer SNID mimics both 

XNOR and INHIBIT logic gates which work in combination to execute the function of the 

digital comparator. 
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FTIR spectrum of the dendrimer SNID. Figure S7. Influence of water on (A) emission spectrum and 

(B) emission at 395 nm of SNIM solution in ethanol, c = 10−5 M, excitation at 340 nm. 
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