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Abstract: Ambient Assisted Living (AAL) systems are designed to provide unobtrusive and user-
friendly support in daily life and can be used for monitoring frail people based on various types of
sensors, including wearables and cameras. Although cameras can be perceived as intrusive in terms
of privacy, low-cost RGB-D devices (i.e., Kinect V2) that extract skeletal data can partially overcome
these limits. In addition, deep learning-based algorithms, such as Recurrent Neural Networks (RNNs),
can be trained on skeletal tracking data to automatically identify different human postures in the AAL
domain. In this study, we investigate the performance of two RNN models (2BLSTM and 3BGRU) in
identifying daily living postures and potentially dangerous situations in a home monitoring system,
based on 3D skeletal data acquired with Kinect V2. We tested the RNN models with two different
feature sets: one consisting of eight human-crafted kinematic features selected by a genetic algorithm,
and another consisting of 52 ego-centric 3D coordinates of each considered skeleton joint, plus the
subject’s distance from the Kinect V2. To improve the generalization ability of the 3BGRU model, we
also applied a data augmentation method to balance the training dataset. With this last solution we
reached an accuracy of 88%, the best we achieved so far.

Keywords: human action recognition; ambient assisted living; deep learning; recurrent neural
network; skeletal data

1. Introduction

The world is facing a significant demographic change: the aging population is in-
creasing at an unprecedented rate in all countries. It is estimated that the elderly world
population over 60 years of age will increase to 2.1 billion people by 2050, compared to
1 billion estimated in 2020 [1,2]. Such an increase of the global aging population is associ-
ated with age-related challenges, such as reduced mobility, falls, difficulties in performing
daily activities, memory-related and social isolation issues, which have led the society and
the different national health care systems to face ever-growing demand for monitoring,
assistance, and medical care. Moreover, the recent COVID-19 pandemic has stressed this
situation even further, thus highlighting the need for taking action [3,4].

Ambient Assisted Living (AAL) technologies come as a viable approach to meet these
challenges, thanks to the high potential they have in enabling remote care and support [5].
AAL systems are designed to provide support in daily life in an unobtrusive and user-
friendly manner. Moreover, they are conceived to be smart, to be able to learn and adapt
to the requirements and the requests of the assisted people, and to join with their specific
needs. One of their possible applications regards the monitoring of the elderly based on
different types of sensors, including wearables, environmental and cameras, to collect a
large amount of information ranging from habits to vital parameters of the inhabitant [6].
For this purpose, wearable devices are largely used for the numerous advantages they offer,
including their small size, the low energy demand necessary for their operation, and the
full respect for the subject’s privacy [7]. Nevertheless, they have also some drawbacks.
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For example they need to be worn by the subjects and to be frequently recharged. These
issues could be a significant problem for the elderly subject. Moreover, to fully capture the
3D motion associated with a human action, a single sensor may not be adequate. It may
be necessary to utilize multiple sensors, thus increasing the intrusiveness of the devices
worn by the subject [8–10]. In this context, cameras are recommended, since they overcome
all these limits. Usually, the architecture of the AAL vision-based solutions consists of a
single camera or a set of cameras, installed in the home environment, capturing the data
that is later analyzed by processing and decision modules assessing the opportunity to
produce an alarm for third parties (i.e., caregiver, human operator, ambulance and so on).
Indeed, cameras are far less obtrusive with respect to the burden other wearable sensors
may impose on one’s activities [5,11,12]. Nevertheless, cameras are often perceived as one
of the most intrusive technologies in terms of the privacy of the monitored individuals.
The solution to this drawback may be low-cost RGB-D cameras, which offer the possibility
to extract the “skeleton” of the subject from the depth image, depicting the subject as a
set of body segments and joints. The use of skeletal tracking for monitoring purposes
increases the person’s acceptance of the camera, since it partially preserves privacy [11]. In
the AAL domain, these skeleton data can be used to automatically identify different human
activities by means of a plethora of Artificial Intelligence (AI) algorithms characteristic of
the Human Activity Recognition (HAR) processes [13]. Due to the recent advancements
in computing power, deep learning-based algorithms have become the most effective
and efficient choice for recognizing and solving HAR problems. In this context, deep
learning solutions are trained on the data collected from a sensor, or a set of sensors, in
order to automatically identify the user’s activities [14]. The most attractive deep learning
architectures for skeleton-based HAR are Recurrent Neural Networks (RNN) [4,15–22].

RNNs have the capability to label data sequences or time series; they are able to
keep the ‘memory’ from previous input sequences, which in turn influences the output
of the current sequence. Therefore, unlike traditional machine learning algorithms, from
K-nearest neighbor to multi-layer perceptron, RNNs do not assume that the data sequences
are independent from each other, so that the information learnt from the prior sequences
is used to learn from the current sequence. RNNs introduce the concept of “state” of the
network, as they become a dynamical system for which the output depends on its history.
For this reason, RNNs are commonly used to find out the dynamics of the data time series
by taking advantage of their temporal structures.. Long Short-Term Memory (LSTM) [23]
and Gated Recurrent Units (GRUs) [24] are two different kinds of RNN architectures, both
characterized by internal mechanisms (four for the LSTM and two for the GRU), called
gates, able to regulate the flow of information. These gates can discern, in a sequence
of data, those more significant for the classification, and hence to be kept in the process,
from those less meaningful, to be excluded. This allows the network to select the relevant
information from all the data sequences, keeping the ‘memory’ not only of the previous
sequence but of all learned data [15,25–27].

In this study, we investigate the performance of different RNN models to classify time
series of skeleton-tracking data in order to identify both some daily living and unconventional
postures assumed by a person in a room. This classification process is the core of a more
complex home monitoring system designed by our group, and still in its tuning phase, which
is conceived to recognize dangerous situations or voluntary requests for help. Briefly, the
system, which is tailored to frail people living alone, consists of three main blocks working
in series: acquisition, classification and decision block. The first block manages the data
acquisition through a network of four Kinect V2 (Microsoft, Redmond, WA, USA), the data
pre-processing and the transmission toward the classification block. This latter, based on a
deep learning model, classifies the input data in terms of postures. The posture identified,
one for each Kinect V2 data, paired with its classification accuracy, is finally sent to the last
block that is responsible for making a decision. At this level the most reliably identified
body posture is selected and integrated with the position of the person in the room and with
respect to that of the furniture. This last process allows us to distinguish a scenario of daily
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life from a potentially dangerous situation (for example, a person lying in bed→ probable
everyday life situation; person lying on the ground→ potentially dangerous scenario) in
order to produce an alarm for a third person only if appropriate.

Different feature selection methods, as well as different machine and deep learning archi-
tectures, were proposed for the classification block in previous studies by our group [28,29].
The most promising solution was proposed in Guerra et al. [30], where a genetic algorithm
was applied to select eight kinematic features and a sequence-to-sequence model was trained
to identify five classes. Three classes correspond to the three postures frequently adopted
by a person during daily activities: standing, sitting, and lying down; one represents an
unconventional daily posture, labeled “dangerous-sitting”, and groups all postures that in
some way manifest a malaise or fainting, such as a seated person slumped or lying backward;
and the last class groups all the transitions between two consecutive postures (for example,
between sitting and lying postures and vice-versa). The dangerous-sitting class was defined
in order to allow, at the level of the classification block, an initial distinction between routine
activities and alarm situations. Therefore, for the efficiency of the home monitoring system,
the specificity of the classifying model for such a class is extremely important for reducing the
number of false negatives. The model, characterized by two Bidirectional Long Short-Term
Memory layers, alternated by two dropout layers and, as last layer, a fully connected layer
(2BLSTM2D), reached an overall accuracy of 85.7% and a percentage of about 85% and 95%
regarding the specificity and sensitivity metrics of the dangerous-sitting posture [30]. Here,
aiming to take advantage of the temporal dependency of the inputs to further improve the
accuracy of the classification block and, in particular, its specificity for the dangerous-sitting
class, a new deep RNN architecture based on GRU networks with a sequence-to-last ap-
proach was trained and tested to identify the five classes described above. We hypothesized
that a GRU model, having fewer parameters than the LSTM one given the same number of
units, could learn better with our somewhat limited dataset size. Our GRU-based model was
characterized by three Bidirectional GRU layers, alternated by four dropout layers, and three
fully connected layers (3BGRU), for a total of about 220 k hyperparameters (the 2BLSTM2D
model was described with roughly 460 k).

At first, the features considered were those previously selected by the genetic algo-
rithm [30–32]. As a second step, inspired by the work of Wang et al. [33], we tested the
hypothesis that the performance of this new architecture could increase by using a large
number of raw kinematic features (i.e., joints coordinates) instead of the reduced set of
structured features selected with the genetic algorithm (eight kinematic features: articular
angles, absolute angles and vertical joint positions [30]). To this end, we defined a new set
of 52 features based on 3D skeleton joint coordinates, computed in an egocentric reference
system, and the Euclidean distance of the subject from the Kinect V2 which was acquiring
the data [34]. Finally, as a last step, focusing on the idea that the home monitoring system
must recognize the dangerous situation immediately as its occurs rather than during it,
we applied the same architecture to classify only four classes, abolishing transition one
(previous Class 5). Specifically, the data referring to the transition between two consecutive
postures have been labelled with the class corresponding to the posture following the
transition. For example, if the subject changes from a standing to sitting posture, the data
referring to the transition are labelled as the sitting posture class. The performance of
this latter architecture was compared with the one previously proposed [30], yet with a
sequence-to-last approach, 52 input features and four output classes, which will be re-
ferred to as the 2BLSTM2D model. Finally, to increase the generalization abilities of the
3BGRU model we also applied a data augmentation method for rebalancing the training
dataset [35].

2. Materials and Methods

The subjects involved in the study as well as the experimental set-up employed to
acquire the data have been the same detailed in [28]. Therefore, hereinafter only a brief
overview of the fundamental information is provided.
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2.1. Subjects

Twelve subjects (seven females and five males; age ranging 25 and 60 years old)
participated in the study. All subjects gave written informed consent in accordance with
the Declaration of Helsinki.

2.2. Experimental Set-Up

The data were acquired with four Kinect V2 devices, arranged in a prototyped room
according to a configuration that allows covering the largest possible room area: two of
them were positioned to see the whole room, while the remaining were placed to specifically
acquire two areas of the room, i.e., the bed and the desk. The four Kinect V2 recorded the
scene simultaneously but the captured data were processed separately. A custom-made
C#-based tool with GUI was developed using VisualStudio 2017 to control the Kinect
V2 acquisitions.

A total of 265 trials of about 13 min each were recorded. In each trial, subjects were
asked to adopt an ordered sequence of postures (standing, sitting, lying, and slumping in
a chair with the head leaned forward or backward). An exemplification, in the form of
body stick diagrams, of the four different postures required of the subjects is depicted in
the panels of Figure 1. Each posture was taken for about 10 s, whereas the transitioning
from one posture to the following one lasted about 1 s.
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Figure 1. Example of the four postures acquired with the Kinect V2 camera. Standing posture (top 
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posture consisting in slumping on a chair with the head leaned backward (bottom right panel) are 
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Figure 1. Example of the four postures acquired with the Kinect V2 camera. Standing posture (top
left panel), sitting posture (top right panel), lying posture (bottom left panel) and dangerous–sitting
posture consisting in slumping on a chair with the head leaned backward (bottom right panel) are
depicted in the Kinect V2 spatial reference system. In the visualization, the red lines indicate the body
segments of the head, trunk, and pelvis. The green lines represent the body segments of the right
hemi-body, including the shoulder, arm, forearm, hand, thigh, leg, and foot. Similarly, the blue lines
represent the body segments of the left hemi-body.

2.3. Data Analysis

From the data of each Kinect V2, the spatial coordinates (x, y, z) of 17 skeletal joints
(Figure 2) were estimated by a custom-developed software based on the Kinect’s SDK.
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In order to make comparable the data of the four Kinects, all joint coordinates were roto-
translated to be referred to a global reference system (X, Y, Z). The set of kinematic features
previously defined in Guerra et al. [28] (articular angles, head and trunk pitch and roll
angles and head, C7 (mid-point between the shoulder joints) and Hc (mid-point between
the hip joints) vertical position) were computed. Taking into account the strong correlation
between the accuracy of the acquisition data and the position of the subject with respect to
the camera, we considered another regressor: the Euclidean distance between the C7 joint
and the Kinect V2 position (see Equation (1)).

D(C7, Kn) =
√
(XC7 − XKn)

2 + (YC7 −YKn)
2 + (ZC7 − ZKn)

2 (1)

where n = 1, . . . 4 (number of Kinect V2 system).
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Figure 2. The 17 joints skeleton considered from each Kinect V2 recording [30] Each number corre-
sponds to a specific point of repere of the body used to reconstruct the skeletal stick diagram.

Finally, the 3D skeleton joint coordinates were also computed in an egocentric reference
system centered in the C7 joint [36–41]. All feature values were normalized: the angle
values were divided by 180; the head, C7 and Hc vertical absolute position and all the
ego-centric joint coordinates were scaled with respect to the subject’s height; the D(C7, Kn)
were computed between 0 and the depth value of the room (5 m).

In order to maintain the temporal consistency among the data of each Kinect V2
system, the frames referring to the missing data, principally due to the transient exit of the
subject from the camera view or when the subject was not facing the camera, have been
filled with the value of 999. Finally, a moving mean filter, with a 15-frame (equal to 0.5 s)
time window, was carried out. If the time window contained only 999 values (missing
data), the mean was not calculated, and the 999 value was retained.

2.4. Dataset Construction

Four datasets were created. In each dataset, the training data consisted of data collected
from 10 out of 12 subjects, while the test data included data from the remaining two subjects.
To maintain inter-subject variability in the test set, a tall male and a short female subject
were selected, with the female subject being younger than the male. The datasets were
divided into temporal sequences of 120 frames, i.e., four seconds of data. For the training
data an overlapping of 60 frames (50%) was considered. Each frame in a temporal sequence
was labeled with the class corresponding to the majority class in the sequence.

The first dataset was characterized by eight features (pitch and roll angles of the head and
trunk, angle between head and shoulder segments, angle between trunk and hip segments,
vertical position in the global reference system of the C7 and Hc joints (see Guerra et al.: Apitch,
Aroll, Bpitch, Broll , µ2, δ2, ZC7, ZHc) [30]) and five classes (Class 1: standing posture;
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Class 2: sitting posture; Class 3: lying posture; Class 4: dangerous-sitting posture; Class 5: tran-
sition between two consecutive postures). The full database included a total of 9124 sequences
including those containing the 999 values. The class subdivision of the collected data is shown
in Table 1.

Table 1. Numerosity of sequences (120 frames each) for each class, split into train and test conditions
for the First and Second dataset, separately.

First Dataset Second Dataset

Classes Train Test Train Test

Class 1 1601 225 2305 270
Class 2 2864 385 3172 374
Class 3 1193 230 946 117
Class 4 1559 208 1408 164
Class 5 910 128 680 64

Total 7948 1176 8511 989

The second dataset was characterized by 52 features (Euclidean distance between
C7 joint and the Kinect V2 position, and the egocentric coordinates of all 17 joints) and
five classes (Class 1: standing posture; Class 2: sitting posture; Class 3: lying posture;
Class 4: dangerous-sitting posture; Class 5: transition between two consecutive pos-
tures). The full database included a total of 9500 sequences including those containing the
999 values. The class subdivision of the collected data is shown in Table 1.

The third dataset was characterized by 52 features (Euclidean distance between C7 joint
and the Kinect V2 position and the ego-centric coordinates of all joints) and four classes
(Class 1: standing posture; Class 2: sitting posture; Class 3: lying posture; Class 4: dangerous-
sitting posture). In this case, the frames referring to the transition between two consecutive
postures were labeled with the class of the posture reached at the end of the transition. For
example, if the subject changes from a standing to sitting posture, the data referring to the
transition are labelled with the sitting posture class; vice versa, if the person changes from a
sitting to a standing posture, the data referring to the transition are labelled with the standing
posture class. The class repartition of the new dataset is shown in Table 2.

Table 2. Numerosity of sequences (120 frames each) for each class, split into train and test conditions
for the Third and Fourth dataset, separately.

Third Dataset Fourth Dataset

Classes Train Test Train Test

Class 1 2516 286 2516 286
Class 2 3470 408 3470 408
Class 3 1016 123 3048 123
Class 4 1509 172 3018 172
Total 8511 989 12,052 989

Finally, the fourth dataset was characterized by 52 features (Euclidean distance between
C7 joint and the Kinect V2 position, and the ego-centric coordinates of all joints) and
four classes (Class 1: standing posture; Class 2: sitting posture; Class 3: lying posture;
Class 4: dangerous-sitting posture). In this dataset, a data augmentation procedure was
carried out for Class 3 and Class 4, those with fewer examples (Figure 3) [42]. The data
augmentation was performed by adding to the data of each sequence a Gaussian noise (cal-
culated on the mean and standard deviation of the data belonging to the sequence) [43,44].
The class splitting of the new dataset is shown in Figure 3 and the reported partitions of
training and test conditions are shown in Table 2.
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2.5. Deep Learning Architecture

The new model that we developed to classify the different datasets was based on the
Bidirectional GRU model. A sketch of the architecture summarizing the different layers is
shown in Figure 4. The model (3BGRU) was composed of a first feature input layer (blue
block in the figure), characterized by a masking property allowing the model to ignore the
999 samples while maintaining the temporal sequence of the data, followed by a GRU layer
with 100 hidden neurons (yellow block in the figure) and a dropout layer (green block in
the figure), for preventing overfitting, with a dropout percentage of 40%. This sequence of
layers was then repeated twice, yet with 50 hidden neurons in the GRU layer, and was then
followed by a fully connected layer (orange block in the figure) with 50 hidden neurons
and a new 40% dropout layer. The architecture ended with a fully connected layer with
25 hidden neurons, and an output layer (cyan block in the figure) implemented with a
softmax activation function. The model was configured for sequence-to-last classification.
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To obtain a statistical assessment of its performance, the model was trained and tested
for 30 simulations on each considered dataset.

2.6. Statistical Analysis

For each dataset and for each simulation we computed the accuracy, precision, sensitiv-
ity and specificity. For model simulations on the third and fourth datasets, the classification
error was also calculated. The latter was defined, for each class, as the ratio between the
number of classification errors and the number of sequences labeled as belonging to such
class (False Negative Rate, FNR; the formula is reported in Equation (2)). For the 3BGRU
architecture tested on each of the four datasets, and for the 2BLSTM one tested on the third
dataset (52 features and four classes), the mean value and the standard deviation of each
considered metric were computed over the 30 simulations. Moreover, for the 3BGRU archi-
tecture as well as for the 2BLSTM architecture, the mean confusion matrix was calculated as
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the mean of the 30 confusion matrices, and all the cells of the mean matrix were normalized
with respect to the frame cardinality of each class.

The ROC curve was also computed for each of the 30 network simulations, and the
mean ROC curve was then obtained by averaging them.

Finally, to explore the performance of the different proposed solutions, the mean
accuracy results of the two architectures classifying five classes were compared with a t-test,
whereas those of the three architectures classifying four classes were compared using a
one-way ANOVA test. For both statistical tests, the alpha level was set at 0.05. Considering
the overall goal of the proposed system, i.e., monitoring the frail individual to raise an
alarm in case a dangerous situation is detected, we focused our analysis on the performance
of the different proposed solutions relative to the identification of Class 4 (dangerous-sitting
class). Accordingly, the comparisons were made in terms of specificity and sensitivity of
Class 4, applying the same statistical tests adopted for the mean accuracy results.

FNR =
FN

FN + TP
(2)

3. Results
3.1. First Dataset (Eight Features—Five Classes)—3BGRU Architecture

During the training, the model received 8511 input sequences (see Table 1), each one
composed of 120 frames, with a 50% overlap. The sequences were labelled based on the
majority class for its constituent frames among the five classes considered (sequence-to-last
model). The validation dataset corresponded to the 10% of the training data. The test
sequences were, instead, 1176 in total.

The mean accuracy value of the model was equal to 0.82 ± 0.01.
Overall, the 3BGRU architecture applied to the first dataset (eight features—five

classes) achieved high mean specificity values (ranging from 0.92 ± 0.01 to 0.97 ± 0.01; see
Table 3) across all classes, indicating a low rate of False Positives (FP). The lowest mean
value was that of Class 2 (Table 3). The sensitivity mean values varied widely across classes,
ranging from 0.62 ± 0.05 for Class 5 to 0.96 ± 0.01 for Class 3 (see Table 3), suggesting that
the model’s ability to identify True Positives (TP) differed depending on the class. In terms
of precision, the architecture achieved mean values ranging from 0.73 ± 0.03 for Class 5 to
0.87 ± 0.03 for Class 1 (see Table 3), indicating that the model may produce more FP for
some classes than others. Notably, the SDs for these measures were relatively small (ranging
from 0.01 to 0.05), implying that the results were consistent across the 30 simulations.

Table 3. Specificity, sensitivity and precision mean value ± SD results, referring to the 3BGRU
architecture with eight features and five classes (first dataset, first five rows) and with 52 features and
five classes (second dataset, last five rows).

Classes Specificity Sensitivity
(Recall) Precision

First dataset
(eight features)

3BGRU

Class 1 0.97 ± 0.01 0.88 ± 0.02 0.87 ± 0.03

Class 2 0.92 ± 0.01 0.82 ± 0.01 0.83 ± 0.02

Class 3 0.95 ± 0.01 0.96 ± 0.01 0.82 ± 0.02

Class 4 0.96 ± 0.01 0.71 ± 0.04 0.79 ± 0.02

Class 5 0.97 ± 0.01 0.62 ± 0.05 0.73 ± 0.03

Second dataset
(52 features)

3BGRU

Class 1 0.89 ± 0.01 0.95 ± 0.01 0.77 ± 0.02

Class 2 0.93 ± 0.01 0.79 ± 0.02 0.88 ± 0.02

Class 3 0.98 ± 0.01 0.87 ± 0.02 0.88 ± 0.02

Class 4 0.95 ± 0.01 0.80 ± 0.03 0.77 ± 0.02

Class 5 0.99 ± 0.01 0.19 ± 0.07 0.47 ± 0.09
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Figure 5 depicts the mean confusion matrix computed over the results of the 30 network
simulations. It summarizes the average values of the FP, False Negatives (FN), True Negatives
(TN) and TP for each class. The most important misclassifications involve Class 4 and Class 5,
with a percentage of correct classifications of 71.84% and 62.69%, respectively. Both classes are
mainly confused with Class 2 (15.04% and 13.49% for Class 4 and 5, respectively). Class 5 is
also confused with all the other three classes (9.52%, 7.93% and 6.94%, respectively Class 1,
Class 3 and Class 4). The best identified class is Class 3 (lying posture), followed by Class 1
(standing posture).
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3.2. Second Dataset (52 Features—Five Classes)—3BGRU Architecture

During the training, the model received 8511 input sequences, each one composed of
120 frames, with a 50% overlap. The sequences were labelled based on the majority class
for its constituent frames among the four classes considered (sequence-to-last model).

The validation dataset corresponded to the 10% of the training data. The test sequences
were 989 in total.

The mean accuracy value of the model was equal to 0.81 ± 0.01.
As summarized in Table 3, the 3BGRU architecture applied to the second dataset

(52 features—five classes) achieved high mean specificity values ranging from 0.89 ± 0.01
to 0.99 ± 0.01, indicating a low rate of FP. The highest mean specificity result was that of
Class 5 at the expense of a very low mean value of sensitivity (0.19 ± 0.07), indicating that
the model had difficulty in correctly identifying TP. The precision mean values ranged from
0.47 ± 0.09 for Class 5 to 0.88 ± 0.02 for Class 3, meaning that the model may produce more
FP in classifying Class 5.

Figure 6 shows the mean confusion matrix computed over the results of the 30 network
simulations. Observing the classification results, the most important misclassifications are
in Class 5, followed by Class 4 and Class 2, with a percentage of correct classifications of
19.05%, 80.24% and 80.10%, respectively. The classifier frequently fails in the identification
of Class 5, which is confused with all the other four classes (23.80%, 38.09%, 4.76% and
14.28%, respectively). Class 2 is mainly confused with Class 1 (13.44%) and Class 4 (4.30%).
The best identified class is Class 1 (standing posture), followed by Class 3 (lying posture).
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3.3. Third Dataset (52 Features—Four Classes)—3BGRU Architecture

The model was trained over 8511 input sequences, each one composed of 120 frames,
with a 50% overlap. The sequences were labelled based on the majority class for its
constituent frames among the four classes considered (sequence-to-last model).

The validation dataset corresponded to the 10% of the training data. The test sequences
were 989 in total.

The mean accuracy value of the model was equal to 0.87 ± 0.01.
The model achieved high mean specificity values for all classes, ranging from 0.93 ± 0.02

to 0.98 ± 0.01, indicating a low rate of FP (see Table 4). The mean sensitivity values were also
relatively high for Classes 1, 2, and 3, ranging from 0.83 ± 0.04 to 0.91 ± 0.03, indicating a
low rate of FN (see Table 4). However, for Class 4, the mean sensitivity value was relatively
low (0.83 ± 0.04), suggesting that the model had difficulty correctly identifying the TP of
this class (see Table 4). The mean precision values ranged from 0.81 ± 0.02 for Class 4 to
0.90 ± 0.02 for Class 2, implying that the model may produce more FP for Class 4 and may
have difficulty distinguishing between TP and FP for some classes (see Table 4).

Table 4. Specificity, sensitivity and precision mean value ± SD results, referring to the 3BGRU
architecture with the third dataset (52 features and four classes), to the 2BLSTM architecture with
the third dataset (52 features and four classes), and the 3BGRU architecture over the fourth dataset
(52 features and four classes with data augmentation).

Classes Specificity Sensitivity
(Recall) Precision

Third dataset
(52 features)

3BGRU

Class 1 0.94 ± 0.01 0.91 ± 0.03 0.86 ± 0.03

Class 2 0.93 ± 0.02 0.85 ± 0.03 0.90 ± 0.02

Class 3 0.98 ± 0.00 0.87 ± 0.02 0.88 ± 0.02

Class 4 0.96 ± 0.01 0.83 ± 0.04 0.81 ± 0.02

Third dataset
(52 features)

2BLSTM

Class 1 0.92 ± 0.02 0.93 ± 0.02 0.82 ± 0.04

Class 2 0.93 ± 0.02 0.80 ± 0.03 0.89 ± 0.03

Class 3 0.98 ± 0.01 0.80 ± 0.07 0.87 ± 0.04

Class 4 0.95 ± 0.01 0.84 ± 0.05 0.79 ± 0.03

Fourth dataset
(52 features)

3BGRU

Class 1 0.95 ± 0.01 0.93 ± 0.02 0.88 ± 0.02

Class 2 0.95 ± 0.02 0.85 ± 0.02 0.92 ± 0.02

Class 3 0.99 ± 0.01 0.89 ± 0.02 0.92 ± 0.02

Class 4 0.95 ± 0.01 0.86 ± 0.04 0.79 ± 0.09
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Figure 7 shows the mean confusion matrix computed over the results of the 30 network
simulations. The major misclassifications are in Class 4, Class 2 followed by Class 3, with a
percentage of correct classification of 83.13%, 85.04% and 87.80%, respectively. Class 2 is
mainly confused with Class 1 (9.06%) and vice versa (7.34%), whereas Class 2 is mistaken
with Class 4 (4.16%) and vice versa (8.72%). Class 4 is also misclassified with Class 3 (5.25%)
and vice versa (9.76%). The best identified class is Class 1 (standing posture), followed by
Class 3 (lying posture) and Class 2 (sitting posture).
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In order to gain a better understanding of how the network manages the transition
frames and to investigate the effectiveness of the choice of identifying four classes instead
of five, considering the transition frames as belonging to one of these four classes and not
to a dedicated class, we analyzed the classification errors. Moreover, for each class, to
understand how much the transitions affected the classification error we computed the ratio
between the number of the transition frames labelled with the class and the numerosity of
the classification error (transition frames error ratio). The mean value over the 30 network
simulations is shown, for each class separately, in the blue bar of Figure 8. The highest
mean classification error occurs in Class 4 (0.17 ± 0.14) followed by Class 2 (0.15 ± 0.09).
Class 2 even shows the highest mean transition frames error ratio (0.03 ± 0.12), whereas
the lowest one is that of Class 3 (0.016 ± 0.04).
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3.4. Third Dataset (52 Features—Four Classes) and 2BLSTM Architecture

The 2BLSTM architecture, defined in Guerra et al. [30], was adapted to run with the
third dataset with a sequence-to-last classification approach, as used for the training of
the 3BGRU model. Thus, during the training the model received as input 8511 sequences
composed of 120 frames each and described by the 52 features. Again, the validation
dataset consisted of the 10% of the training data and the test sequences were 989 in total.

The mean accuracy value of the model was equal to 0. 85 ± 0.01.
The results summarized in Table 4 show high mean specificity values for all classes,

ranging from 0.92± 0.02 to 0.98± 0.01, indicating a low rate of FP. The mean sensitivity val-
ues of Class 2 and Class 3 were slightly lower compared to the other two classes (0.80 ± 0.03
and 0.80 ± 0.07), implying that the model had more difficulty correctly identifying TP for
these classes. Conversely, the mean sensitivity values of the other two classes were high,
0.84 ±0.05 for Class 4 and 0.93 ± 0.02 for Class 1, suggesting that the model was capable of
accurately identifying TP for these classes. Furthermore, the mean precision values ranged
from 0.79 ± 0.03 for Class 4 to 0.89 ± 0.04 for Class 2, indicating that the model had more
difficulty in distinguishing between TP and FP for Class 4.

Figure 9 shows the mean confusion matrix computed over the results of the 30 network
simulations. The highest values of misclassifications are in Class 2 and Class 3 followed by
Class 4, with a percentage of correct classification of 79.70%, 80.48% and 83.79%, respectively.
Class 2 sequences were mainly confused with Class 1 (11.73%) and Class 4 (6.60%). The
best identified class was Class 1 (standing posture), followed by Class 4 (dangerous-sitting
posture). The mean classification errors are also depicted as red bars in Figure 10. Note
that the highest mean classification error occurs in Class 2 (0.20 ± 0.12), which also showed
the highest ratio of false negatives that had previously been considered as transitions
(0.03 ± 0.08).
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As previously described (see Third dataset (52 features—four classes)—3BGRU archi-
tecture paragraph) the mean classification error and the mean transition frames error ratio
were computed and shown in Figure 10.
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3.5. Fourth Dataset (52 Features—Four Classes)—Data Augmentation—3BGRU Architecture

The model was trained on 12052 input sequences, each one composed of 120 frames,
with a 50% overlap and described by the 52 features. The validation dataset was obtained
as a fraction of the training data (10%). The test sequences were 989 in total, as they were
not involved in the data augmentation procedure.

The mean accuracy value of the model was equal to 0.88 ± 0.01.
The results shown in Table 4 suggest that this model performed well overall, achieving

high mean specificity values for all classes (ranging from 0.95 ± 0.01 to 0.99 ± 0.01),
indicating a low rate of FP. The mean sensitivity values of Class 2 and Class 4 were
relatively low, at 0.85 ± 0.02 and 0.86 ± 0.04, respectively, suggesting that the model had
more difficulty in correctly identifying TP for these classes. However, the mean sensitivity
values of Class 1 were high, at 0.93 ± 0.02, indicating that the model was able to accurately
identify TP for this class. The mean precision values ranged from 0.79 ± 0.09 for Class 4
to 0.92 ± 0.02 for Class 2 and Class 3, suggesting that the model had some difficulty in
distinguishing between TP and FP for Class 4.

Figure 11 shows the mean confusion matrix computed over the 30 network simulations.
The major misclassifications occur in Class 2 and Class 4, with a percentage of correct
classifications of 84.80% and 86.62%, respectively. Class 2 is mainly confused with Class
1 (8.08%), whereas Class 1 is exchanged with Class 2 (5.59%). The best identified class is
Class 1 (standing posture), followed by Class 3 (lying posture).

Observing the mean classification errors of Figure 12 (red bars), the smallest mean error
occurs for Class 1 (0.07 ± 0.09), followed by Class 3 (0.11 ± 0.04) and Class 4 (0.13 ± 0.09).
Class 2 shows the highest value (0.15 ± 0.13) of mean classification error together with that
of mean transition frames error ratio (blue bar, 0.025 ± 0.14).
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3.6. Performance Comparisons between the Two 5-Classes Identification Models

A t-test was run on the mean accuracy results to assess the differences in perfor-
mance between the 3BGRU architecture with eight features and the same architecture
with 52 features when classifying five classes (t(58) = 4.66, p < 0.001). Notably, the 3BGRU
architecture performed better when eight features were used.

Figure 13 depicts the average ROC curves of the two models separately for each
one of the five considered classes. The mean values of the Area Under the Curve (AUC)
were greater than 0.90, i.e., not far from 1, for both models and for all classes except for
Class 5 with the 3BGRU—second dataset, which was equal to 0.79 ± 0.02. This mean value
was statistically lower than that of the same class obtained for the 3BGRU—first dataset
(0.90 ± 0.01; t(58) = 26.83, p << 0.001). A similar behavior was found for Class 3 (0.95 ± 0.01
(3BGRU—second dataset) and 0.98 ± 0.01 (3BGRU—first dataset), t(58) = 9.80, p << 0.001),
whereas the mean AUC of Class 1 was higher for the 3BGRU—second dataset against that
of the same architecture with the first dataset (0.97 ± 0.00 and 0.96 ± 0.01, respectively
t(58) = 6.41, p << 0.001).



Sensors 2023, 23, 5260 15 of 21

Sensors 2022, 22, x FOR PEER REVIEW 15 of 22 
 

 

3.6. Performance Comparisons between the Two 5-Classes Identification Models 
A t-test was run on the mean accuracy results to assess the differences in performance 

between the 3BGRU architecture with eight features and the same architecture with 52 
features when classifying five classes (t(58) = 4.66, p < 0.001). Notably, the 3BGRU archi-
tecture performed better when eight features were used. 

Figure 13 depicts the average ROC curves of the two models separately for each one 
of the five considered classes. The mean values of the Area Under the Curve (AUC) were 
greater than 0.90, i.e., not far from 1, for both models and for all classes except for Class 5 
with the 3BGRU—second dataset, which was equal to 0.79 ± 0.02. This mean value was 
statistically lower than that of the same class obtained for the 3BGRU—first dataset (0.90 ± 
0.01; t(58) = 26.83, p << 0.001). A similar behavior was found for Class 3 (0.95 ± 0.01 
(3BGRU—second dataset) and 0.98 ± 0.01 (3BGRU—first dataset), t(58) = 9.80, p << 0.001), 
whereas the mean AUC of Class 1 was higher for the 3BGRU—second dataset against that 
of the same architecture with the first dataset (0.97 ± 0.00 and 0.96 ± 0.01, respectively t(58) 
= 6.41, p << 0.001). 

 
Figure 13. Average ROC curves of each class considered. For each graph, the curve referred to the 
data of the first dataset 3BGRU (blue line) is superimposed on that of the second dataset 3BGRU (red 
line). The confidence intervals of each average ROC curve are not shown, for purposes of clarity. 

To assess the ability of the two models to correctly identify Class 4 sequences, TP and 
TN rates, also known as sensitivity (Figure 14A) and specificity (Figure 14B), were com-
pared. The 3BGRU architecture with eight features exhibited a significantly lower mean 
sensitivity (0.71 ± 0.04) compared to the same architecture with 52 features (t(58) = 8.67, p 
< 0.001), while it showed a higher sensitivity towards the identification of TN (0.96 ± 0.01 
and 0.95 ± 0.01, t-test: (t(58) = 4.31, p < 0.001). 

Figure 13. Average ROC curves of each class considered. For each graph, the curve referred to the
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To assess the ability of the two models to correctly identify Class 4 sequences, TP
and TN rates, also known as sensitivity (Figure 14A) and specificity (Figure 14B), were
compared. The 3BGRU architecture with eight features exhibited a significantly lower mean
sensitivity (0.71 ± 0.04) compared to the same architecture with 52 features (t(58) = 8.67,
p < 0.001), while it showed a higher sensitivity towards the identification of TN (0.96 ± 0.01
and 0.95 ± 0.01, t-test: (t(58) = 4.31, p < 0.001).
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3.7. Performance Comparisons between the Three Four-Classes Identification Models

By comparing the mean accuracy results of the model classifying four classes, we
found statistically significant differences (one-way ANOVA, F(2,87) = 65.76, p < 0.001).
The Bonferroni post-hoc test showed that the mean accuracy was significantly different
among the models (p < 0.001, for all comparisons). The best performance was obtained by
the 3BGRU architecture with 52 features trained with the balanced dataset obtained after
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applying the data augmentation technique (fourth dataset). When no data augmentation
was performed, the GRU architecture remained the best, when compared with the 2BLSTM.

Figure 15 shows the superimposed average ROC curves of the three models clas-
sifying four classes. For all models, the AUC mean values for Class 1 were close to
1 and higher than those of the other classes (0.97 ± 0.01, 0.97 ± 0.01 and 0.97 ± 0.00
for the 3BGRU—third dataset, 2BLSTM—third dataset and 3BGRU—fourth dataset, respec-
tively). The AUC mean values for Class 3 were significantly different among the mod-
els (one-way ANOVA, F(2,87) = 20.88, p << 0.001); in particular, that of 3BGRU—fourth
dataset (0.93 ± 0.01) was significantly lower with respect to that of 3BGRU—third dataset
(0.95 ± 0.01) and 2BLSTM—third dataset (0.94 ± 0.02), (p << 0.001).
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To assess the ability of the three models to correctly identify Class 4 sequences, the
sensitivity (Figure 16A) and specificity (Figure 16B) were compared among the models.
Statistically significant differences were found among the mean specificity results of the
models (one-way ANOVA, F(2,87) = 4.57, p < 0.015). The Bonferroni post-hoc test demon-
strated that the mean specificity of the 3BGRU architecture with 52 features (third dataset)
was significantly higher with respect to that of each of the other two models (p < 0.037, for
all comparisons). The data augmentation technique, applied to increase the numerosity of
Class 3 and Class 4 (fourth dataset), reduced the mean specificity of the 3BGRU architecture
in the identification of Class 4 (Figure 16A). The same statistical analysis was performed on
the mean sensitivity results to investigate the capability of the different models to produce
TP of Class 4 (Figure 16A). The best mean sensitivity was that of the 3BGRU architec-
ture with data augmentation (fourth dataset, 0.86 ± 0.04), which was statistically different
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from that of the other two models (one-way ANOVA, F(2,87) = 5.51, p < 0.007; Bonferroni
post-hoc test, p < 0.038, for all comparisons).
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4. Discussion

Several RNN network model solutions have been described and tested in this pa-
per. Differently from our previous studies, which aimed at classifying individual video
frames, all models were here sequence-to-last, i.e., producing a single classification for each
presented sequence of frames.

In order to analyze their performance statistically, all models were trained 30 times,
for 60 epochs each. Training and testing were performed on four datasets that were built
over the same acquisitions yet considering different numbers and types of features and/or
classes. All the training datasets considered data from the same subset of ten subjects, and
the test datasets were built from the remaining two acquired subjects.

We first trained and tested the 3BGRU (three Bidirectional GRU layers, alternated by
four dropout layers and three fully connected layer), with the first dataset (Table 1) composed
of eight features and labeled with five classes (Class 1: standing posture, Class 2: sitting
posture, Class 3: lying posture, Class 4: dangerous-sitting posture and Class 5: transition
posture). The 3BGRU model achieved a mean accuracy of 82%, while the 2BLSTM2D model
proposed in our previous work obtained a mean accuracy of 85% [30]. Looking to improve
these results and inspired by the work of Wang et al. [33], we then built a new dataset (second
dataset, Table 2) described by a new set of features (the 51 joint egocentric coordinates plus
the Euclidean distance of the subject from the camera). We trained and tested the 3BGRU
model with the second dataset (Table 1), reaching a mean accuracy value of 81%, very close to
the one obtained previously. However, examining in detail Figures 5 and 6, it is possible to
note that the 3BGRU model trained with the second dataset compared to the model trained
with the first dataset better identified Class 1 and Class 4 (from 88.78% to 95.52% and from
71.84% to 80.24%, respectively); the performance over Class 2 remained almost unchanged
(respectively, 82.24% and 80.10%), while Class 3 and especially Class 5 worsened significantly
(respectively, from 96.92% to 87.24% and from 62.69% to 19.05%). Considering the behavior
for Class 5, we studied a new data labelling in which the transition between two consecutive
postures was identified with the posture following the transition. The 3BGRU model was then
trained and tested on such a third dataset (Table 2). In this case, a mean accuracy of 87% was
achieved on the test database. This turned out to be the best result achieved so far in terms
of accuracy. The comparison between Figures 6 and 7 confirms the improved performances
of the 3BGRU model trained with third dataset. While Class 1 is identified as slightly worse
(respectively, from 95.52% to 91.26%) and the performance with Class 3 is unchanged (from
87.93% to 87.80), Class 2 and Class 4 are now better recognized (from 80.10% to 85.04% and
from 80.24% to 83.13%, respectively). These results concerning Class 4 are very important
for the purpose of the home monitoring system, since it is designed to recognize dangerous
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situations (Class 4) immediately after these have occurred, and not while they are occurring
(transition phase between two postures).

To validate the performance of the 3BGRU model on the third dataset, we compared
it with the 2BLSTM architecture proposed in a previous work [30] yet configured for
sequence-to-last classification and the new numbers of inputs and outputs, trained and
tested with the same dataset for 30 simulations of 60 epochs each. In these conditions,
the 2BLSTM model reached a mean accuracy of 85%, significantly lower than that of the
3BGRU model. Moreover, observing in detail the performance of the individual classes,
the misclassification error between Class 3 and Class 2 in the 3BGRU model decreased
(Figures 7 and 9). This was confirmed by the mean sensibility values for Class 3, which was
0.87 ± 0.02 for the 3BGRU model and only 0.80 ± 0.07 for the 2BLSTM one, and for Class 2,
which was 0.85 ± 0.03 for the 3BGRU model compared to 0.80 ± 0.03 (Table 4).

In addition, to further improve the generalization abilities of the 3BGRU model, noting
that in the training database the number of sequences pertaining to the four classes were
highly unbalanced (Figure 3, blue bars), we decided to apply a data augmentation technique.
We therefore implemented a data augmentation method based on adding Gaussian noise
only to the training sequences identified with Class 3 and Class 4, i.e., those most strongly
underrepresented in the dataset (Figure 3, blue bars). With the data augmentation solution,
we obtained a new dataset, the fourth dataset (Table 2). The 3BGRU model trained and tested
with the fourth dataset achieved a mean accuracy of 88%, which was significantly higher
with respect to that of the model trained without the augmented data, i.e., achieved a close
mean accuracy value of, respectively, 88% and 87%. Regarding the 3BGRU model trained
with the fourth dataset, (Table 4) relative to the dangerous-sitting posture (Class 4), the
sensitivity increased from a value of 0.83 ± 0.04 to a value of 0.86 ± 0.04, yet the precision
decreased from 0.81 ± 0.02 to 0.79 ± 0.09.

This was also confirmed by the confusion matrices in Figures 7 and 11. In particular,
the percentage of true positives related to Class 4 increased from 83.13% to 86.62%, and the
percentage of false negatives related to Class 4 accordingly decreased from a percentage
equal to 16.87 to 13.38 (2.90%, 8.72% and 5.23% with the third and 2.32%, 8.13% and 2.90%
with the fourth, respectively, for Class 1, Class 2 and Class 3).

In sum, we developed a new deep learning model based on GRU layers (3BGRU), for
investigating a different RNN solution with about half the number of hyperparameters
with respect to the previously proposed network (2BLSTM2D), based on LSTM layers
(about 220 k free parameters vs. 460 k) [30]. A lower number of hyperparameters could
represent a helpful condition in our context, given the limited amount of data in our custom
dataset. In addition, the 3BGRU model, compared to the 2BLSTM2D, has an extra layer
(3 BGRU vs. 2 LSTM layers), which could improve the model’s discriminative capacity,
increasing the classification performance. With this approach, we also adopted a sequence-
to-last classification, making a single prediction of the subject’s posture for each input
data sequence, corresponding to four seconds of recordings (120 frames). Finally, the
3BGRU model, which was demonstrated to be better for our purpose, was the one trained
with the augmented data, since it improved the identification of the dangerous-sitting
posture (Class 4), yet its specificity slightly decreased compared to the training without
augmented data.

As a final remark, the mean accuracy achieved by our best model was generally lower
than those found in the reference literature, which is around 90% [18,45,46]. Generally,
these accuracy results are obtained by analyzing public datasets containing data that
are either not representative of the everyday life conditions needed for our purpose, or
acquired with experimental setups in which the subject is static and facing the camera
(optimal condition for the Kinect V2 video recordings). Our dataset was tailored to the
home monitoring system under development in our Lab, and to this aim it was based
on postures acquired during everyday life scenarios in which the subjects were free to
be frontal to or turned sideways with respect to the Kinect camera as in natural living
conditions. Unfortunately, this realistic approach increased the amount of noise in our
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dataset, making the classification process more complex and likely reducing the accuracy
of the implemented models.

Limitations of the Proposed Work

The results of this paper can be helpful for Ambient Assisted Living researchers
using deep learning to identify different postures during daily activities. However, there
is an important limitation to this study: the small number of sequences used for model
training. Collecting more data may increase the variety of the training set, thus improving
the generalization ability of the model. A broader range of examples to learn from may
allow the model to better capture the complex patterns present in the data and may
improve its overall performance. Moreover, a large training dataset may offer the possibility
to implement other deep learning models, i.e., transformer [47,48] or a combination of
Convolutional Neural Networks (CNN) and GRU. This approach could help identify key
features and patterns in the data that may be difficult to detect using traditional feature
selection methods, thereby providing a more nuanced and accurate understanding of the
underlying processes at play.

Author Contributions: M.S., G.B. and B.M.V.G. set up the prototype room for the acquisition session.
B.M.V.G. collected the data. G.B. and B.M.V.G. analyzed and created the database. B.M.V.G. and S.R.
developed and implemented the deep learning algorithms. M.S. developed the statistical analysis
between the deep learning algorithms. B.M.V.G. wrote the first draft of the manuscript. M.S. and S.R.
completed and revised the manuscript to reach the final version. All authors have read and agreed to
the published version of the manuscript.

Funding: This work was supported by Regione Lombardia, Bando Smart Living 2016, project ID: 379357.

Institutional Review Board Statement: Ethical review and approval were waived for this study due to
the lack of any risk involved in the experimental study and the absence of any personal data collection.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Acknowledgments: The authors would like to thank Roberto Gandolfi for technical assistance with
the data acquisition experiments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. World Health Organization. World Report on Ageing and Health—World Health Organization—Google Libri; World Health Organiza-

tion: Geneva, Switzerland, 2015.
2. OECD. Fiscal Challenges and Inclusive Growth in Ageing Societies OECD Economic Fiscal Challenges and Inclusive Growth in Ageing;

OECD: Paris, France, 2019.
3. Billari, F.C.; Muttarak, R.; Spiess, C.K. Demographic Change and Growing Population Diversity in Europe; European University

Institute: Fiesole, Italy, 2022.
4. Alsaeedi, A.; Jabeen, S.; Kolivand, H. Ambient assisted living framework for elderly care using Internet of medical things, smart

sensors, and GRU deep learning techniques. J. Ambient. Intell. Smart Environ. 2022, 14, 5–23.
5. Aleksic, S.; Atanasov, M.; Agius, J.C.; Camilleri, K.; Cartolovni, A.; Climent-Peerez, P.; Colantonio, S.; Cristina, S.; Despotovic, V.;

Ekenel, H.K.; et al. State of the art of audio-and video-based solutions for AAL. arXiv 2022, arXiv:2207.01487.
6. Ahas, M.A.R.; Antar, A.D.; Ahmed, M. IoT Sensor-Based Activity Recognition: Human Activity Recognition; Springer: Berlin/Heidelberg,

Germany, 2021.
7. Alsinglawi, B.; Nguyen, Q.V.; Gunawardana, U.; Maeder, A.; Simoff, S.; Alsinglawi, B.; Nguyen, Q.V.; Gunawardana, U.;

Maeder, A.; Simoff, S. RFID Systems in Healthcare Settings and Activity of Daily Living in Smart Homes: A Review. E-Health
Telecommun. Syst. Netw. 2017, 6, 1–17. [CrossRef]

8. Wang, Y.; Cang, S.; Yu, H. A survey on wearable sensor modality centred human activity recognition in health care. Expert Syst.
Appl. 2019, 137, 167–190. [CrossRef]

9. Beddiar, D.R.; Nini, B.; Sabokrou, M.; Hadid, A. Vision-based human activity recognition: A survey. Multimed. Tools Appl. 2020,
79, 30509–30555. [CrossRef]

10. Qiu, S.; Zhao, H.; Jiang, N.; Wang, Z.; Liu, L.; An, Y.; Zhao, H.; Miao, X.; Liu, R.; Fortino, G. Multi-sensor information fusion based
on machine learning for real applications in human activity recognition. Inf. Fusion 2022, 80, 241–265. [CrossRef]

https://doi.org/10.4236/etsn.2017.61001
https://doi.org/10.1016/j.eswa.2019.04.057
https://doi.org/10.1007/s11042-020-09004-3
https://doi.org/10.1016/j.inffus.2021.11.006


Sensors 2023, 23, 5260 20 of 21

11. Gasparrini, S.; Cippitelli, E.; Spinsante, S.; Gambi, E. Tools, undefined; Applications and Undefined Depth cameras in AAL
environments: Technology and real-world applications. In Gamification: Concepts, Methodologies, Tools, and Applications; IGI Global:
Pennsylvania, PE, USA, 2015.

12. Colantonio, S.; Coppini, G.; Giorgi, D.; Morales, M.A.; Pascali, M.A. Computer Vision for Ambient Assisted Living: Monitoring
Systems for Personalized Healthcare and Wellness That Are Robust in the Real World and Accepted by Users, Carers, and Society.
In Computer Vision for Assistive Healthcare; Academic Press: Cambridge, MA, USA, 2018; pp. 147–182. [CrossRef]

13. Schrader, L.; Vargas Toro, A.; Konietzny, S.; Rüping, S.; Schäpers, B.; Steinböck, M.; Krewer, C.; Müller, F.; Güttler, J.; Bock, T.
Advanced Sensing and Human Activity Recognition in Early Intervention and Rehabilitation of Elderly People. J. Popul. Ageing
2020, 13, 139–165. [CrossRef]

14. Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput.
Intell. Neurosci. 2018, 2018, 7068349. [CrossRef]

15. Sharma, V.; Gupta, M.; Pandey, A.K.; Mishra, D.; Kumar, A. A Review of Deep Learning-based Human Activity Recognition on
Benchmark Video Datasets. Appl. Artif. Intell. 2022, 36, 2093705. [CrossRef]

16. Verma, K.K.; Singh, B.M. Deep multi-model fusion for human activity recognition using evolutionary algorithms. Int. J. Interact.
Multimed. Artif. Intell. 2021, 7, 44–58. [CrossRef]

17. Zheng, H.; Zhang, X.M. A Cross-Modal Learning Approach for Recognizing Human Actions. IEEE Syst. J. 2021, 15, 2322–2330.
[CrossRef]

18. Khan, I.; Afzal, S.; Sensors, J.L. Undefined Human activity recognition via hybrid deep learning based model. Sensors 2022, 22, 323.
[CrossRef] [PubMed]

19. Su, B.; Wu, H.; Sheng, M.; Shen, C. Accurate hierarchical human actions recognition from kinect skeleton data. IEEE Access 2019,
7, 52532–52541. [CrossRef]

20. Yadav, S.K.; Tiwari, K.; Pandey, H.M.; Akbar, S.A. Skeleton-based human activity recognition using ConvLSTM and guided
feature learning. Soft Comput. 2022, 26, 877–890. [CrossRef]

21. Mathe, E.; Maniatis, A.; Spyrou, E.; Mylonas, P. A Deep Learning Approach for Human Action Recognition Using Skeletal
Information. Adv. Exp. Med. Biol. 2020, 1194, 105–114. [CrossRef] [PubMed]

22. Sarker, S.; Rahman, S.; Hossain, T.; Faiza Ahmed, S.; Jamal, L.; Ahad, M.A.R. Skeleton-Based Activity Recognition: Preprocessing
and Approaches. Intell. Syst. Ref. Libr. 2021, 200, 43–81. [CrossRef]

23. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
24. Lipton, Z.C.; Kale, D.C.; Elkan, C.; Wetzel, R. Learning to diagnose with LSTM recurrent neural networks. arXiv 2016, arXiv:1511.03677.
25. Khan, N.S.; Ghani, M.S. A Survey of Deep Learning Based Models for Human Activity Recognition. Wirel. Pers. Commun. 2021,

120, 1593–1635. [CrossRef]
26. Wu, D.; Sharma, N.; Blumenstein, M. Recent advances in video-based human action recognition using deep learning: A review.

In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017;
pp. 2865–2872. [CrossRef]

27. Pham, V.; Bluche, T.; Kermorvant, C.; Louradour, J. Dropout Improves Recurrent Neural Networks for Handwriting Recognition.
In Proceedings of the 2014 14th International Conference on Frontiers in Handwriting Recognition, Hersonissos, Greece, 1–4
September 2014; pp. 285–290. [CrossRef]

28. Guerra, B.M.V.; Ramat, S.; Beltrami, G.; Schmid, M. Automatic pose recognition for monitoring dangerous situations in Ambient-
Assisted Living. Front. Bioeng. Biotechnol. 2020, 8, 415. [CrossRef]

29. Guerra, B.M.V.; Ramat, S.; Gandolfi, R.; Beltrami, G.; Schmid, M. Skeleton data pre-processing for human pose recognition using
Neural Network. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), Montreal, QC, Canada, 20–24 July; pp. 4265–4268. [CrossRef]

30. Guerra, B.M.V.; Schmid, M.; Beltrami, G.; Ramat, S. Neural Networks for Automatic Posture Recognition in Ambient-Assisted
Living. Sensors 2022, 22, 2609. [CrossRef] [PubMed]

31. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling.
arXiv 2014, arXiv:1412.3555.

32. Cahuantzi, R.; Chen, X.; Güttel, S. A comparison of LSTM and GRU networks for learning symbolic sequences. arXiv 2021,
arXiv:2107.02248.

33. Wang, L.; Huynh, D.Q.; Koniusz, P. A Comparative Review of Recent Kinect-Based Action Recognition Algorithms. IEEE Trans.
Image Process 2020, 29, 15–28. [CrossRef] [PubMed]

34. Ahad, M.A.R.; Ahmed, M.; Das Antar, A.; Makihara, Y.; Yagi, Y. Action recognition using kinematics posture feature on 3D
skeleton joint locations. Pattern Recognit. Lett. 2021, 145, 216–224. [CrossRef]

35. Johnson, J.M.; Khoshgoftaar, T.M. Survey on deep learning with class imbalance. J. Big Data 2019, 6, 1–54. [CrossRef]
36. Vemulapalli, R.; Arrate, F.; Chellappa, R. Human action recognition by representing 3D skeletons as points in a lie group. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 23–28 June
2014; pp. 588–595. [CrossRef]

37. Wu, D.; Shao, L. Leveraging hierarchical parametric networks for skeletal joints based action segmentation and recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, 23–28 June 2014.

https://doi.org/10.1016/B978-0-12-813445-0.00006-X
https://doi.org/10.1007/s12062-020-09260-z
https://doi.org/10.1155/2018/7068349
https://doi.org/10.1080/08839514.2022.2093705
https://doi.org/10.9781/ijimai.2021.08.008
https://doi.org/10.1109/JSYST.2020.3001680
https://doi.org/10.3390/s22010323
https://www.ncbi.nlm.nih.gov/pubmed/35009865
https://doi.org/10.1109/ACCESS.2019.2911705
https://doi.org/10.1007/s00500-021-06238-7
https://doi.org/10.1007/978-3-030-32622-7_9
https://www.ncbi.nlm.nih.gov/pubmed/32468527
https://doi.org/10.1007/978-3-030-68590-4_2
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/s11277-021-08525-w
https://doi.org/10.1109/IJCNN.2017.7966210
https://doi.org/10.1109/ICFHR.2014.55
https://doi.org/10.3389/fbioe.2020.00415
https://doi.org/10.1109/EMBC44109.2020.9175588
https://doi.org/10.3390/s22072609
https://www.ncbi.nlm.nih.gov/pubmed/35408224
https://doi.org/10.1109/TIP.2019.2925285
https://www.ncbi.nlm.nih.gov/pubmed/31283506
https://doi.org/10.1016/j.patrec.2021.02.013
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1109/CVPR.2014.82


Sensors 2023, 23, 5260 21 of 21

38. Chaudhry, R.; Ofli, F.; Kurillo, G.; Bajcsy, R.; Vidal, R. Bio-inspired dynamic 3d discriminative skeletal features for human action
recognition. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR,
USA, 23–28 June 2013. [CrossRef]

39. Wang, C.; Wang, Y.; Yuille, A.L. An approach to pose-based action recognition. In Proceedings of the 2013 IEEE Conference on
Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013. [CrossRef]

40. Gaglio, S.; Re, G.L.; Morana, M. Human activity recognition process using 3-D posture data. IEEE Trans. Hum. Mach. Syst. 2015,
45, 586–597. [CrossRef]

41. Cippitelli, E.; Gasparrini, S.; Gambi, E.; Spinsante, S. A human activity recognition system using skeleton data from RGBD
sensors. Comput. Intell. Neurosci. 2016, 2016, 4351435. [CrossRef]

42. van Dyk, D.A.; Meng, X.L. The Art of Data Augmentation. J. Comput. Graph. Stat. 2012, 10, 1–50. [CrossRef]
43. Meng, F.; Liu, H.; Liang, Y.; Tu, J.; Liu, M. Sample fusion network: An end-to-end data augmentation network for skeleton-based

human action recognition. IEEE Trans. Image Process. 2018, 28, 5281–5295. [CrossRef]
44. Núñez, J.C.; Cabido, R.; Pantrigo, J.J.; Montemayor, A.S.; Vélez, J.F. Convolutional Neural Networks and Long Short-Term

Memory for skeleton-based human activity and hand gesture recognition. Pattern Recognit. 2018, 76, 80–94. [CrossRef]
45. Mourot, L.; Hoyet, L.; Le Clerc, F.; Schnitzler, F.; Hellier, P. A Survey on Deep Learning for Skeleton-Based Human Animation.

Comput. Graph. Forum 2022, 41, 122–157. [CrossRef]
46. Le, V.T.; Tran-Trung, K.; Hoang, V.T. A Comprehensive Review of Recent Deep Learning Techniques for Human Activity

Recognition. Comput. Intell. Neurosci. 2022, 2022, 8323962. [CrossRef] [PubMed]
47. Plizzari, C.; Cannici, M.; Matteucci, M. Spatial Temporal Transformer Network for Skeleton-Based Action Recognition. Lect. Notes

Comput. Sci. 2021, 12663, 694–701. [CrossRef]
48. Liu, Y.; Zhang, H.; Xu, D.; He, K. Graph transformer network with temporal kernel attention for skeleton-based action recognition.

Knowl. Based Syst. 2022, 240, 108146. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/CVPRW.2013.153
https://doi.org/10.1109/CVPR.2013.123
https://doi.org/10.1109/THMS.2014.2377111
https://doi.org/10.1155/2016/4351435
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1109/TIP.2019.2913544
https://doi.org/10.1016/j.patcog.2017.10.033
https://doi.org/10.1111/cgf.14426
https://doi.org/10.1155/2022/8323962
https://www.ncbi.nlm.nih.gov/pubmed/35498187
https://doi.org/10.1007/978-3-030-68796-0_50
https://doi.org/10.1016/j.knosys.2022.108146

	Introduction 
	Materials and Methods 
	Subjects 
	Experimental Set-Up 
	Data Analysis 
	Dataset Construction 
	Deep Learning Architecture 
	Statistical Analysis 

	Results 
	First Dataset (Eight Features—Five Classes)—3BGRU Architecture 
	Second Dataset (52 Features—Five Classes)—3BGRU Architecture 
	Third Dataset (52 Features—Four Classes)—3BGRU Architecture 
	Third Dataset (52 Features—Four Classes) and 2BLSTM Architecture 
	Fourth Dataset (52 Features—Four Classes)—Data Augmentation—3BGRU Architecture 
	Performance Comparisons between the Two 5-Classes Identification Models 
	Performance Comparisons between the Three Four-Classes Identification Models 

	Discussion 
	References

