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Abstract: The personalization of autonomous vehicles or advanced driver assistance systems has been
a widely researched topic, with many proposals aiming to achieve human-like or driver-imitating
methods. However, these approaches rely on an implicit assumption that all drivers prefer the
vehicle to drive like themselves, which may not hold true for all drivers. To address this issue, this
study proposes an online personalized preference learning method (OPPLM) that utilizes a pairwise
comparison group preference query and the Bayesian approach. The proposed OPPLM adopts a
two-layer hierarchical structure model based on utility theory to represent driver preferences on the
trajectory. To improve the accuracy of learning, the uncertainty of driver query answers is modeled.
In addition, informative query and greedy query selection methods are used to improve learning
speed. To determine when the driver’s preferred trajectory has been found, a convergence criterion is
proposed. To evaluate the effectiveness of the OPPLM, a user study is conducted to learn the driver’s
preferred trajectory in the curve of the lane centering control (LCC) system. The results show that the
OPPLM can converge quickly, requiring only about 11 queries on average. Moreover, it accurately
learned the driver’s favorite trajectory, and the estimated utility of the driver preference model is
highly consistent with the subject evaluation score.

Keywords: online learning; preference learning; utility theory; Bayesian approach; LCC trajectory

1. Introduction

Advanced driver assistance systems (ADAS) such as adaptive cruise control (ACC),
forward collision warning, lane keeping assistance, and lane change assistance have become
increasingly common in newly manufactured vehicles. The ADAS is expected to improve
driving safety and comfort. However, to be effective, ADAS systems must match drivers’
preferences and driving behaviors [1,2]. Drivers’ preferences vary based on personality
traits, driving experience, and situational factors. Therefore, ADAS systems must be
personalized [3,4].

Personalization methods for ADAS systems can be divided into explicit and implicit
personalization approaches [3]. Explicit personalization requires drivers to manually
choose a specific system setting that matches their preference. ACC is an example of
explicit personalization, where drivers can set their desired speed and choose between
predefined time gaps when using ACC. However, explicit personalization can be difficult
for drivers to understand and may be limited in terms of the available options, particularly
when the settings are interactive between multiple ADAS systems. Limited choices are
another drawback of explicit personalization.

Implicit personalization is a promising approach for resolving these challenges by
developing a personalized driver preference model that can predict preferences based on
collected driver data. One common method for implicit personalization is driving style
identification, where individual drivers are classified into driving style categories such
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as comfortable, normal, and sporty based on individual driving data [5,6]. In study [7],
a driver style identification method was proposed based on questionnaire surveys and
corresponding driving behavior characteristics. This approach was used to identify the
driver type (aggressive, ordinary, or cautious) online, and a driver-adaptive ACC/CA
(collision avoidance) fusion control strategy was designed accordingly. However, as high-
lighted in a review by [8] on the driving style identification method used for ADAS, this
method still faces the challenge of limited categories and may not be able to adapt to
individual preferences.

Imitation learning is another widely researched implicit personalization method,
where the vehicle controller is personalized based on a model built from a group of driver
behaviors [9]. The general process of this method involves observing driver behavior by
collecting driving data from a group of drivers, building a driver behavior or preference
model, and obtaining a personalized vehicle controller based on the driving behavior model
and the measured driving data of a new individual driver [3,4]. The driver behavior model
can be built based on a steering or car-following driver model [10,11] and machine learning
methods [12–14], such as inverse reinforcement learning, which has been used to learn
human-like driving [15–17] since the work in Ref. [18]. However, these methods assume
that drivers prefer the vehicle to drive like themselves, which is not necessarily true for all
drivers [19]. For instance, assertive drivers prefer a significantly more defensive driving
style than their own [20,21]. Ref. [22] revealed that the perceived control of risk-taking for
drivers and passengers is different. Passengers who are out of control of their vehicles
perceive more risk than drivers in control of their vehicles. Therefore, personalized ADAS
must consider drivers’ real preferences when designing their systems.

Preference learning is a type of machine learning that involves learning from observa-
tions that reveal information about an individual’s preferences [23]. It has been applied in
various fields, including user preference mining and human–robot interaction. There are
three main types of preference information used in preference learning: pairwise compar-
ison, ranking, and rating of alternatives [24]. In human–robot interaction, learning user
preferences for robot motion trajectories can be challenging due to the quality and quantity
of user feedback. Learning from demonstration (LFD) is a common method used to learn
user preferences [25,26], but it can be difficult for users to provide demonstrations that
orchestrate all of the robot’s degrees of freedom [27]. Preference queries, such as paired-
group comparison, are an easier form of user feedback, but they require a large amount of
data [28]. To reduce the amount of data required, active learning or active query selection
methods are used [29–31]. Other tricks, such as batch active preference learning [32] and
scale feedback [33], are also used to further reduce the data needed. In study [34], a gener-
ative adversarial network (GAN) has been used to learn human preferences with fewer
queries required. This approach replaces the role of a human in assigning preferences.

At present, great progress to learn user preference in human–robot interaction has been
made. However, these works mainly focus on mobile manipulators such as personal robots
and assembly line robots. Applying preference learning methods to ADAS or autonomous
vehicles is a challenge as driving tasks are much more difficult to demonstrate compared to
mobile manipulators, especially for unskilled drivers.

The acceptable number of queries for drivers is also much less than that for robots.
Even with tricks such as batch learning, about 100 queries are required to obtain driver
preference [32], which is unacceptable for drivers. Ref. [35] uses an augmenting comparison
query with feature queries and an active query selection method to learn the driver’s reward
function for trajectory, which is faster than preference comparison only. However, it does
not provide a convergence criterion to indicate when to stop queries and obtain the final
driver preference. The feature query requires drivers to carefully point out the difference
in the host vehicle’s pose, relative position to the road lane, and other vehicles between
paired-group trajectories, which is not easy for drivers. Therefore, there is a need for further
research to develop efficient and effective preference learning methods that consider the
challenges specific to ADAS and autonomous vehicles.
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Based on preference learning methods, this study aims to develop an online personal-
ized preference learning method (OPPLM) with a particular focus on the trajectory of lane
centering control (LCC) in a simple curve condition without other vehicles involved. The
main contributions of this paper are:

1. Introducing an online personalized preference learning method (OPPLM) based on
pairwise comparison group preference queries and Bayesian approach.

2. Establishing a two-layer hierarchical structure model based on utility theory to
model driver preferences on trajectory, taking into account the uncertainty of drivers’
query answers.

3. Utilizing informative and greedy query selection methods to improve the learning
speed. A convergence criterion is proposed to indicate when the driver’s preferred
trajectory has been found.

The paper is organized as follows: Section 2 introduces the proposed OPPLM. Section 3
describes the user study experiment conducted to validate the OPPLM. The experiment’s
results are presented in Section 4, followed by a discussion in Section 5. Finally, the
proposed OPPLM is summarized, and its limitations are pointed out.

2. Methods
2.1. Flow of the Online Personalized Preference Learning Method

Figure 1 illustrates the flow chart of the proposed OPPLM. The driver preference
model is initialized at the beginning and then updates online. The system starts by select-
ing a trajectory from the pre-prepared trajectory pool, which contains many alternative
trajectories. Next, a new pairwise comparison group is constructed based on the selected
trajectory and the driver’s preferred trajectory from the previous query. The driver is
then queried for their preferred trajectory, and the driver preference model is updated
accordingly. Finally, the OPPLM checks whether it has converged or not. If it has, the
learning process ends, and the driver-preferred trajectory is identified. Otherwise, the
process repeats from the first step.
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2.2. Formulation of Driver Preference Model and Estimation Method
2.2.1. Formulation of Driver Preference Model

Utility theory is widely used to model discrete choice problems. In this theory, a
decision maker selects the alternative with the highest utility among those available [36].
The utility of an alternative is typically modeled as a function of its relevant attributes, often
a linear function. To account for the uncertainty of the decision maker, a random utility
is added to the utility function, which makes the discrete choice problem probabilistic. In
this study, the driver’s preferred trajectory is modeled as the one with the highest expected
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utility among all alternatives, while the preferred trajectory of the pairwise comparison
group is modeled as the one with a higher expected utility.

The relevant attributes of trajectory for vehicles typically include safety, comfort,
efficiency, and energy-saving. However, for simplicity, energy-saving is not considered
in this study. Let US, UC, and UE represent the safety, comfort, and efficiency utility,
respectively. Let βS, βC, and βE represent the linear weight parameters of the safety,
comfort, and efficiency utility, with ε representing the random utility. Therefore, the utility
(U) of a trajectory could be represented as follows:

U = βS·US + βC·UC + βE·UE + ε = βΘTX + ε (1)

where, X = (US, UC, UE)
T , (βS, βC, βE)

T = β(θS, θC, θE)
T = βΘT . θS, θC, and θE repre-

sent the normalized linear weight parameters of the safety, comfort, and efficiency utilities,
respectively, all within [0, 1]. β =|βS|+|βC|+|βE| represents the normalization coefficient.

The safety, comfort, and efficiency utility (US, UC, UE) of a trajectory are unknown.
However, they can be calculated using assumed utility functions and corresponding tra-
jectory attributes or characteristic indicators. Let XS_1, XS_2, . . . represent the safety corre-
sponding trajectory indicators. Let βS_1, βS_2, . . . represent the linear weight parameters of
the safety, comfort, and efficiency utility. Similarly, the safety utility (US) can be calculated
using the following equation:

US = βS_1·XS_1 + βS_2·XS_2 + . . . + ε = βSθS
TXS + εS (2)

where, XS = (XS_1, XS_2, . . .)T , (βS_1, βS_2, . . .)T = βS(θS_1, θS_2, . . .)T = βSΘS. The
comfort and efficiency utility functions are similar but use different trajectory characteris-
tic indicators.

The safety utility is calculated based on trajectory indicators. It means that the safety
utility is the driver’s direct perception of the trajectory. Therefore, it is called the safety
perception model (SPM) in this research. Similarly, the comfort perception model (CPM)
and efficiency perception model (EPM) are used for calculating the comfort and efficiency
utility functions, respectively. The utility function of a trajectory, as shown in Equation (1),
is indirectly evaluated using the safety, comfort, and efficiency utility functions, and it is
referred to as the utility evaluation model (UEM).

For pairwise trajectory comparison group (A, B), the probability that a driver with util-
ity function parameter (β, Θ) prefers trajectory A to B, represented by Pr(A|β, Θ, XA, XB),
can be modeled as the probability that the utility of trajectory A (UA) is larger than that of
trajectory B (UB), represented by Pr(UA > UB), which is formulated as:

Pr(A|β, Θ, XA, XB) = Pr(UA > UB) = Pr

(
εB − εA < βΘT(X A − XB

)
) (3)

where, εA and εB could be assumed to be an independent and identical distribution,
although the specific distribution is unknown. A reasonable assumption for the distribution
of ε is a Gaussian distribution, given the central limit theorem. However, this assumption
does not lead to a closed-form solution for the probability. A better assumption for the
distribution is the standard Gumbel (or type I extreme value) distribution, which does lead
to a closed-form solution [36] as follows:

Pr(A|β, Θ, XA, XB) =
1

1 + e−βΘT(XA−XB)
(4)
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Equation (4) models the likelihood that the driver prefers trajectory A to B for the
pairwise comparison group (A, B). The probability that the driver prefers trajectory B to
trajectory A can be modeled as follows:

Pr(B|β, Θ, XA, XB) = 1− Pr(A|β, Θ, XA, XB) =
e−βΘT(XA−XB)

1 + e−βΘT(XA−XB)
(5)

Based on the above equation, it is easy to predict the driver’s answer to a query. If
Pr(A|β, Θ, XA, XB) is larger than 0.5, then the driver is more likely to prefer A than B, and
vice versa.

Equations (3)–(5) do not consider the uncertainty of a driver’s answer when distin-
guishing between two trajectories. Sometimes, drivers may find it difficult to discern the
difference between two trajectories, and forcing them to make a deterministic choice may
be inappropriate. In such cases, it is more appropriate to allow for uncertain answers. It is
assumed that when the absolute difference in utility is closer to zero, the driver is more
likely to give an uncertain answer. Thus, the probability of different answers to a query can
be modeled as follows:

Answer to query =


A, Pr(A|β, Θ, XA, XB) > UB
B, Pr(A|β, Θ, XA, XB) < LB

Uncertain otherwise
(6)

where, the UB (upper bound) and LB (lower bound) represent the probability threshold
between the uncertain result and the other two deterministic results.

To calculate the likelihood of a deterministic answer, we can use Equations (4) and (5),
respectively. However, to calculate the likelihood of an uncertain answer, we can view it as
a joint result of two opposite answers:

Pr(A ≈ B|β, Θ, XA, XB) = Pr(A|β, Θ, XA, XB)·Pr(B|β, Θ, XA, XB)

= e−βΘT (XA−XB)(
1+e−βΘT (XA−XB)

)2
(7)

where, Pr(A ≈ B|β, Θ, XA, XB) represents the probability that the driver’s answer is uncertain.
The correlation between the likelihood of different answers to a query and the utility

difference ΘT(X A − XB
)

for drivers with different parameters β is shown in Figure 2.
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for drivers with different parameters β.

Figure 2 illustrates that, on one hand, the likelihood that the driver prefers A to B
increases as the utility difference ΘT(X A − XB

)
becomes larger. However, as ΘT(X A − XB

)
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approaches 0, the likelihood of an uncertain answer increases. On the other hand, for
the same utility difference ΘT(X A − XB

)
, the likelihood of uncertainty decreases as the

parameter β increases, which means that drivers are more likely to give a deterministic
answer to a query. The parameter β measures the driver’s ability to distinguish between
trajectories and is therefore referred to as the perception coefficient in this study. It is worth
noting that, for a specific critical utility difference, e.g., the minimum difference required for
a driver to give a deterministic answer, the perception coefficient β and the corresponding
probability thresholds UB and LB are interrelated. As the perception coefficient β increases,
the values of UB and LB approach 0.5. This coupling indicates that the parameters UB, LB,
and β are interdependent.

Overall, the personalized preference learning system aims to estimate the linear weight
parameters Θ and the perception coefficient β of the driver preference model (UEM, SPM,
CPM, EPM) for each individual.

2.2.2. Estimation Method

The driver preference model parameters are estimated using a Bayesian approach
and a limited greedy estimation method. Firstly, an assumption is made about the prior
probability distribution of estimation parameters. Then, the estimation is updated based on
the driver’s preference trajectory query result of a pairwise trajectory comparison group (A,
B) at every step, following the Bayesian approach. The flow chart of the parameter update
method for query results at each step is shown in Figure 3.
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The first step of the estimation process involves updating the parameter for a given
prior parameter set Θ and perception coefficient β. For the pairwise comparison group
(A, B) and its corresponding driver query answer, the parameter Θ can be updated using
the following equation:

Pr(Θ|β, Ans, XA, XB) = Pr(Θ)·Pr(Ans|β, Θ, XA, XB) (8)

where, Pr(Θ) represents the prior probability distribution of estimation parameters Θ,
and Pr(Ans|β, Θ, XA, XB) represents the likelihood of the query answer as calculated by
Equations (4)–(7). Pr(Θ|β, Ans, XA, XB) represents the posterior probability distribution of
the updated Θ.

The second step of the estimation process involves determining whether the up-
dated driver preference model, with its newly estimated parameters, can correctly predict
the latest query result. The prediction of the latest query result can be calculated using
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Equation (6). If the prediction matches the real driver answer, then the parameter estima-
tion update ends, and the perception coefficient β remains unchanged. However, if the
prediction does not match the real driver answer, the third step involves incrementally
increasing the perception coefficient β and repeating the first and second steps until the
prediction is consistent with the driver answer. This process is referred to as “greedy” be-
cause the likelihood of the answer increases with β, as shown in Figure 2, leading to a more
accurate prediction by the driver preference model with updated parameters. To ensure
parameter estimation stability and prevent noisy answers from significantly decreasing
estimation accuracy, the increment of β is limited to a value no larger than a specified num-
ber Incre_max for each query answer. This is why the estimation method is referred to as
“limited-greedy”. Finally, the parameters Θ are normalized, and the perception coefficient
β is modified accordingly.

2.3. Pairwise Comparison Group Construction and Query Trajectory Selection

To achieve accurate and efficient learning of the driver-preferred trajectory, it is crucial
to construct an appropriate pairwise comparison group that minimizes the required amount
of data. However, there is often a trade-off between speed and accuracy. Selecting a
comparison group that leads to faster learning may result in a suboptimal outcome, while a
more accurate approach may require more data and time. This is similar to the exploration–
exploitation dilemma encountered in reinforcement learning, which can be addressed using
the ε-greedy method [37]. In reinforcement learning, exploitation refers to selecting actions
that have the highest expected reward based on current experience, while exploration
involves selecting untried actions in the hopes of achieving a higher reward.

Drawing on the ε-greedy method, we propose a similar "greedy" policy to construct
the pairwise comparison group. This involves combining a new query trajectory with
one that has been previously compared, at each step, to minimize the required number of
query trajectories. The greedy approach is reflected in both the construction of the pairwise
comparison group and the selection of new query trajectories.

2.3.1. Pairwise Comparison Group Construction

The greedy pairwise comparison group is constructed by selecting the two trajectories
that the driver is most likely to prefer. The first trajectory is the driver’s favorite among all
compared trajectories, representing the greediest selection among them. A second trajectory
selection method is introduced below.

2.3.2. Query Trajectory Selection

A greedy query trajectory selection policy entails selecting the trajectory that the driver
is most likely to prefer according to the current driver preference model, except for the first
one selected above. On the other hand, the ε-greedy policy involves selecting a greedy
trajectory with probability 1− ε at each step, while all non-greedy trajectories are selected
at random with probability ε, the exploration probability, as expressed in Equation (9):

Pr_selected(Trajectory) =
{

1− ε + ε
N , i f Trajectory is greedy

ε
N , otherwise

(9)

Here, Pr_selected(Trajectory) represents the probability of the trajectory being selected,
and N is the number of all alternative trajectories. This equation ensures that each trajectory
has a chance of being selected. As the value of ε increases, the probability of selecting the
greedy trajectory decreases, while the other trajectories become more likely to be selected,
thus increasing the level of exploration. To increase the level of exploration at the start
and decrease it after some queries to speed up convergence, a variable exploration level is
proposed as given in Equation (10):

ε = εini·(1− γ)step (10)
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where, εini is the initial value, and γ is the decay rate. Figure 4 illustrates how ε changes as
the step increases, with an initial value of εini = 1 and three different values of decay rate
γ. The figure shows that as γ increases, ε decreases faster, leading to a decrease in the level
of exploration.

Sensors 2023, 23, x FOR PEER REVIEW 8 of 22 
 

 

� = ���� ∙ (1 − �)���� (10)

where, ����  is the initial value, and �  is the decay rate. Figure 4 illustrates how ϵ 

changes as the step increases, with an initial value of ���� = 1 and three different values 

of decay rate �. The figure shows that as � increases, � decreases faster, leading to a 

decrease in the level of exploration. 

 

Figure 4. The exploration probability � decreases as the step increases, and it decreases faster with 

a larger decay rate �. 

2.4. Convergence Criterion 

A convergence criterion is proposed to end preference learning as shown in Figure 5 

below. 

 

Figure 5. Flow chart of convergence criterion. 

Firstly, it is required to check whether the current step is larger than the Min-Explo-

ration Step, which guarantees a minimum number of queries. The second step is to match 

up the current driver preferred trajectory with the preference estimation, which is the tra-

jectory with the highest utility among all trajectories in the trajectory pool. In addition, the 

trajectory utility can be calculated using Equation (1) with the newly updated preference 

model parameters. If they match, the Flag representing the number of consecutive false 

comparisons should be reset to zero. However, if the comparison is true, the Flag should 

be incremented by one. The final step is to judge whether the Flag is equal to the Threshold 

to ensure a stable preference estimation. This criterion should not be too conservative, 

resulting in numerous inefficient comparison queries, nor too aggressive, resulting in 

premature termination and inaccurate estimation.  

Figure 4. The exploration probability ε decreases as the step increases, and it decreases faster with a
larger decay rate γ.

2.4. Convergence Criterion

A convergence criterion is proposed to end preference learning as shown in Figure 5 below.

1 
 

 
Figure 5. Flow chart of convergence criterion. 

 

Figure 5. Flow chart of convergence criterion.

Firstly, it is required to check whether the current step is larger than the Min-Exploration
Step, which guarantees a minimum number of queries. The second step is to match up the
current driver preferred trajectory with the preference estimation, which is the trajectory
with the highest utility among all trajectories in the trajectory pool. In addition, the trajectory
utility can be calculated using Equation (1) with the newly updated preference model pa-
rameters. If they match, the Flag representing the number of consecutive false comparisons
should be reset to zero. However, if the comparison is true, the Flag should be incremented
by one. The final step is to judge whether the Flag is equal to the Threshold to ensure a stable
preference estimation. This criterion should not be too conservative, resulting in numerous
inefficient comparison queries, nor too aggressive, resulting in premature termination and
inaccurate estimation.
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3. Experiment Configuration

The proposed preference learning method (OPPLM) was evaluated through a user
study conducted on a fixed-base driving simulator.

3.1. Equipment

The fixed-base driving simulator comprises four components, as shown in Figure 6.
These include a real-time target machine, a steering system and pedals, a personal computer,
and a screen. The real-time target machine is responsible for computing trajectory planning,
tracking, and controlling the steering system and pedals. Specifically, it sends alignment
torque to the load motor and haptic feedback torque to the EPS (Electric Power Steering)
motor and outputs the vehicle state to the scenario simulation software (prescan) running
on the personal computer. The real-time scenario is then displayed on a screen with a
resolution of 3840 × 1080.
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3.2. Scenario

The experiment was conducted in a simple single-lane curve scenario without any
other vehicles present. To speed up the experiment procedure, a closed-loop triangular
field was designed, as shown in Figure 7.
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Throughout the entire experiment, the vehicle was controlled by a controller, and the
test subject did not need to drive manually. The vehicle initially entered the curved road
at a speed of 40 km/h and exited the curve with an end speed of 40 km/h. Within the
curve, the vehicle was controlled to follow the planned trajectory, and, outside the curve,
it traveled at a constant speed of 15 km/h on the long straight road to allow the subjects
enough time to evaluate. Smooth speed profiles connected the speed profiles between these
sections to avoid discomfort.
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3.3. Trajectory Pool

To obtain a driver-preferred trajectory under curved driving conditions, a trajectory
planning method capable of generating diverse trajectories is introduced. Additionally,
the trajectory track method utilized in this research is presented. The trajectory pool is
established based on the planning and tracking methods employed in the study.

3.3.1. Trajectory Planning

The trajectory of the curved path is composed of three distinct segments, each corre-
sponding to a particular section of the road, as depicted in Figure 8.
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Figure 8. Three-curve road segments.

Referring to the modes established in Ref. [38], path planning is achieved by combining
various modes with different weights to generate divergent paths. For the entry and exit
segments, the path is planned by connecting the endpoint of the middle segment of the
curve to the center of the road lane using a cubic spline.

Speed planning is also conducted using the optimal speed planning methodology
outlined in Ref. [38], with certain modifications to adapt to the curve conditions. Specifically,
the minimum jerk mode, which minimizes the derivative of longitudinal acceleration, is
substituted with the minimum speed variation mode, which aims to minimize variations
in longitudinal speed. In addition, the maximum allowable velocity is replaced by the
maximum allowable lateral acceleration, which is used to constrain the maximum speed
during the curve. For further details, please refer to Ref. [38].

Figure 9 illustrates some of the planned paths and speed profiles presented in the
Frenet coordinate system where a negative lateral offset indicates positions located close to
the inner side of the curved road, and a positive lateral offset indicates positions close to
the outer side. The lateral offsets −1, 0, and 1 indicate the inner side, center, and outer side
of the road, respectively. The speed profile consists of three constant speed profiles, which
are smoothly connected. The minimum constant speed is determined by the maximum
allowable lateral acceleration.
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3.3.2. Trajectory Tracking

The augmented Stanley controller [39] is utilized to track the various planned trajecto-
ries. The tracking error is typically less than 5 cm when following the planned trajectories,
with a maximum error of less than 10 cm. This level of tracking performance is deemed
acceptable and ensures that the distinct planned trajectories can be clearly discerned by
the driver.

3.3.3. Trajectory Pool Setting

A trajectory pool consisting of thirty unique trajectories is generated by manipulating
various parameters of the trajectory planning method. These thirty trajectories are obtained
through an orthogonal design of ten paths and three distinct speed profiles. The speed
profiles differ mainly based on the minimum speed required during the curve, which is set
to 20 km/h, 30 km/h, and 40 km/h.

3.4. Driver Preference Model and Estimation Method Setting
3.4.1. Trajectory Indicators

In line with similar research, trajectory indicators utilized to construct the SPM, CPM,
and EPM were selected based on prior experience. The trajectory indicators commonly
used to identify driving styles [8] and personalize ADAS [4] (p. 400) were reviewed,
including speed, acceleration, jerk, and distance to the lane center, among others. From this
review, three trajectory indicators were selected for each perception model, as detailed in
Table 1 below.

Table 1. The trajectory indicators used to build perception models.

Perception Model Indicators Meaning

SPM
Ind_S1 Maximum left lateral offset to lane center
Ind_S2 Maximum right lateral offset to lane center
Ind_S3 Minimum time to lane crossing

CPM
Ind_C1 The range of lateral offset to lane center
Ind_C2 Mean value of speed jerk
Ind_C3 Mean value of yaw acceleration

EPM
Ind_E1 Minimum speed
Ind_E2 Maximum speed acceleration
Ind_E3 Mean inverse time to right lane crossing

3.4.2. Estimation Method Setting

The parameters of the preference model were estimated without prior knowledge by
assuming a normal distribution with a mean of (1/3, 1/3, 1/3) and an identity covariance
matrix for the prior probability distribution of estimation parameters Θ. The initial per-
ception coefficient was assumed to be one, and the increment limitation Incre_max of the
β was set to three. In order to determine convergence, the minimum number of queries
Min-Exploration was set to four, while the Threshold, which ensures a stable preference
estimation, was set to three.

3.5. Subjects

In order to ensure an effective statistical analysis with a sufficient number of subject
samples, the G*power software [40] was utilized to determine the minimum required
sample size. A paired-samples t-test was employed to validate the results, with an effect
size set at 0.5, an α error probability of 0.05, and a power of 0.8. As a result, a total sample
size of 27 was determined. In the experiment, 29 subjects ultimately participated, with an
average age of 34.9 (SD = 11.8). Among the subjects, 15 were identified as inexperienced
drivers with an average annual driving mileage of less than 1000 km, while 14 were



Sensors 2023, 23, 5246 12 of 22

identified as experienced drivers with an average annual driving mileage of more than
20,000 km.

3.6. Procedure

Before conducting the main experiment, a pre-comparison test was conducted to
ensure that each subject was familiar with the scenario and experiment procedure. Four
pairwise comparison groups were presented to each subject, and they were required to
experience the trajectories in the driving simulator, followed by describing the differences
between the trajectories. The subjects were allowed to experience each trajectory multiple
times until they were confident with the comparison. In case of any ignored differences,
they were informed and the trajectories were re-compared. After comparing all four groups,
the subjects were required to provide answers to the four queries listed in Table 2.

Table 2. Preference query questionnaire.

Query Alternatives

Q1: Which one do you feel safer? First Second Almost same
Q2: Which one do you feel more comfortable? First Second Almost same
Q3: Which one do you think is more efficient? First Second Almost same

Q4: Which one do you prefer? First Second Almost same

During the experiment, each participant was instructed to respond to the four queries
listed in Table 2 for every comparison group. The selection of query trajectories and the
construction of comparison groups were both automated using the method described in
Section 2.3. The first comparison group required the participant to answer the queries
after two trajectories were presented in turn. Subsequently, the participant was required to
compare the newly selected trajectory to the preferred one in the last query and repeat the
process until the OPPLM converged.

Once the OPPLM converged, four trajectories were selected to validate the effective-
ness of the learned driver preference model. The utility of each trajectory in the pool of
30 trajectories was calculated using Equations (1) and (2) with the newly estimated driver
preference model parameters. The 30 trajectories were then sorted in descending order of
utility, and the leading two trajectories, the 15th (middle) trajectory, and the last trajectory
according to their utility were selected for evaluation using the Likert scale presented in
Table 3.

Table 3. Trajectory evaluation Likert scale.

Item Scale

I feel very safe. 1 (strongly disagree)–7 (strongly agree)
I feel very comfortable. 1 (strongly disagree)–7 (strongly agree)

I feel very efficient. 1 (strongly disagree)–7 (strongly agree)
I like the way it drives. 1 (strongly disagree)–7 (strongly agree)

3.7. Evaluation Indices

To evaluate the effectiveness of the OPPLM, two aspects are considered: learning speed
and accuracy. The learning speed is measured by the number of queries (QN) required
for the OPPLM to converge. The learning accuracy is evaluated by two indices. The first
index is the goodness-of-fit (GOF) of the final learned driver preference model, which is
calculated by the ratio of QN_Positive to QN, as given by Equation (11).

GOF =
QN_Positive

QN
(11)

Here, QN_Positive refers to the number of queries that can be correctly predicted by
Equation (6) with the learned preference model parameters. In addition, QN refers to the
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queries number that is used when the OPPLM converges. A higher value of GOF indicates
greater accuracy of the model.

The second index is the score–utility consistency (SUC), which measures the consis-
tency between the evaluation Likert score ordering and the corresponding utility ordering
for the final evaluated four trajectories. Taking the item preference (the fourth item in
Table 3) as an example. Let A, B, C, and D represent the four trajectories that are se-
lected to be evaluated after the OPPLM converges in Section 3.6. They are sorted by
utility in descending order, meaning that the utility of the four trajectories is ranked as
UA > UB > UC > UD. Let a, b, c, and d represent the preference evaluation score of the
corresponding four trajectories. The SUC for item preference could be calculated as follows:

SUC =
sign(a− b) + sign(b− c) + sign(c− d)

3
(12)

Here, sign() is the sign function. Sign(a−b) equals 1 when (a−b) is positive; sign(a−b)
equals 0 when (a−b) equals 0; and sign(a−b) equals -1 when (a−b) is negative. For example,
if the evaluation scores of the four trajectories are a = 6, b = 5, c = 4, and d = 3, the evaluation
score ordering is consistent with the utility ordering, indicating that the learned utility
model accurately predicts the driver’s preference. In this case, the SUC is equal to 1.
Conversely, if the scores of the four trajectories are a = 3, b = 4, c = 5, and d = 6, the estimated
utility is opposite to the driver’s preference for trajectory, resulting in an SUC of −1. The
SUC is within the range of [−1, 1]. The SUC value provides an indication of the accuracy of
the model, with a higher SUC indicating greater accuracy.

4. Results

This section presents an analysis of the learning speed and accuracy of the experi-
ment results.

4.1. Learning Speed

The distribution of the number of queries (QN) of all 29 subjects is presented in
Figure 10.
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Figure 10. The result of QN for all subjects: (a) the frequency distribution of QN for all subjects;
(b) the boxplot of QN for inexperienced and experienced subjects.

The mean QN of all participants is 11.1 with a standard deviation of 4.6. The vast
majority of subjects (excluding one outlier) had a QN of less than 20, indicating that the OP-
PLM generally converged within 20 queries. Notably, one participant had a QN of 27, which
deviates significantly from the remaining results. In Figure 10b, the QN of inexperienced
and experienced drivers is compared. The mean QN of the inexperienced subjects is 12.4,
with a standard deviation of 5.7. In comparison, the mean QN of experienced subjects is 9.7,
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with a standard deviation of 2.6. An independent-samples t-test was conducted to examine
the QN difference between inexperienced and experienced subjects. The results indicate
that the influence of subject experience on QN is not statistically significant (t(27) = 1.61,
p = 0.12).

4.2. Learning Accuracy
4.2.1. Goodness-of-Fit

This section presents an analysis of the goodness-of-fit (GOF) of the four driver
preference models (UEM, SPM, CPM, and EPM) for 29 subjects, as shown in Figure 11 and
Table 4.
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Figure 11. The goodness-of-fit (GOF) of the driver preference model (UEM, SPM, CPM, and EPM)
for all subjects. (a) Boxplot of different models; (b) boxplot of different models for experienced and
inexperienced subjects. ** means the statistical test p < 0.01, * means p < 0.05.

Table 4. Summary table of GOF of driver preference model of all subjects.

Driver Preference Model Subjects Mean SD

UEM
All 0.85 0.14

Inexperienced 0.82 0.12
Experienced 0.88 0.15

SPM
All 0.68 0.18

Inexperienced 0.69 0.20
Experienced 0.68 0.17

CPM
All 0.75 0.16

Inexperienced 0.70 0.15
Experienced 0.80 0.17

EPM
All 0.64 0.20

Inexperienced 0.65 0.24
Experienced 0.64 0.17

The UEM model had a mean GOF of 0.85 across all subjects, indicating that 85% of the
queries could be correctly predicted by the learned UEM. This result suggests that the UEM
performs well in modeling subject preference queries in a pairwise comparison group. The
GOF for the other three perception models (SPM, CPM, and EPM) were all above 0.64. To
compare the performance of each model, a paired-sample t-test was conducted between
each two of the four models, as depicted in Figure 11a. The results indicate that the GOF
of UEM is significantly higher than that of SPM (t(28) = 3.98, p = 0.000), CPM (t(28) = 3.25,
p = 0.003) and EPM (t(28) = 4.78, p = 0.000). Additionally, the GOF of CPM was found to be
significantly larger than that of EPM (t(28) = 4.78, p = 0.016).

Moreover, the influence of subject experience on the GOF of the models was investi-
gated. The results demonstrate that the mean GOF of the experienced subjects was higher
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than that of the inexperienced subjects for all models. However, an independent-samples
t-test revealed no significant difference between experienced and inexperienced subjects
for each model (UEM: t(27) = 1.04, p = 0.308; SPM: t(27) = 0.12, p = 0.905; CPM: t(27) = 1.56,
p = 0.130; EPM: t(27) = 0.17, p = 0.861).

4.2.2. Score–Utility Consistency

The score–utility–consistency (SUC) of the driver preference model (UEM, SPM, CPM,
and EPM) of 29 subjects is summarized and presented in Figure 12 and Table 5.
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Figure 12. The score–utility–consistency (SUC) of the driver preference model (UEM, SPM, CPM, and
EPM) for all subjects. (a) Boxplot of different models; (b) boxplot of different models for experienced
and inexperienced subjects. ** means the statistical test p < 0.01, * means p < 0.05.

Table 5. Summary table of SUC of driver preference model of all subjects.

Driver Preference Model Subjects Mean SD

UEM
All 0.74 0.24

Inexperienced 0.73 0.26
Experienced 0.74 0.23

SPM
All 0.56 0.41

Inexperienced 0.62 0.38
Experienced 0.50 0.47

CPM
All 0.48 0.36

Inexperienced 0.51 0.28
Experienced 0.45 0.44

EPM
All 0.11 0.51

Inexperienced 0.18 0.15
Experienced 0.05 0.45

The mean SUC of UEM for all subjects is 0.74, indicating good consistency between
the order of estimated utility and the evaluation score. This suggests that UEM models
the degree of the subjects’ trajectory preferences well. The SUC of the other three percep-
tion models (SPM, CPM, and EPM) is smaller than that of UEM, with EPM having the
smallest SUC value. Paired-sample t-tests are conducted for each pair of models, and the
results are displayed in Figure 12a. The analysis reveals that the SUC of UEM is signif-
icantly larger than SPM (t(28) = 2.24, p = 0.03), CPM (t(28) = 3.45, p = 0.002), and EPM
(t(28) = 6.11, p = 0.000). Furthermore, the SUC of EPM is significantly smaller than that of
SPM (t(28) = −3.06, p = 0.005) and CPM (t(28) = −2.81, p = 0.009).

The impact of subject experience on the SUC of the models is also studied. The
results indicate that the mean SUC of experienced subjects is larger than that of inex-
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perienced subjects for each model. However, an independent-samples t-test reveals no
significant difference between experienced and inexperienced subjects for each model
(UEM (t(27) = 0.052, p = 0.96), SPM (t(27) = 0.78, p = 0.442), CPM (t(27) = 0.43, p = 0.671),
EPM (t(27) = 0.68, p = 0.505)).

4.2.3. Evaluation Score

The evaluation score of the four selected trajectories, based on the estimated utility
by UEM for all subjects, is presented in Figure 13. Table 6 provides a summary of the
evaluation scores for UEM and the other three perception models (SPM, CPM, and EPM).

Sensors 2023, 23, x FOR PEER REVIEW 16 of 22 
 

 

Table 5. Summary table of SUC of driver preference model of all subjects. 

Driver Preference Model Subjects Mean SD 

UEM 

All 0.74 0.24 

Inexperienced 0.73 0.26 

Experienced 0.74 0.23 

SPM 

All 0.56 0.41 

Inexperienced 0.62 0.38 

Experienced 0.50 0.47 

CPM 

All 0.48 0.36 

Inexperienced 0.51 0.28 

Experienced 0.45 0.44 

EPM 

All 0.11 0.51 

Inexperienced 0.18 0.15 

Experienced 0.05 0.45 

The mean SUC of UEM for all subjects is 0.74, indicating good consistency between 

the order of estimated utility and the evaluation score. This suggests that UEM models 

the degree of the subjects’ trajectory preferences well. The SUC of the other three percep-

tion models (SPM, CPM, and EPM) is smaller than that of UEM, with EPM having the 

smallest SUC value. Paired-sample t-tests are conducted for each pair of models, and the 

results are displayed in Figure 12a. The analysis reveals that the SUC of UEM is signifi-

cantly larger than SPM (t(28) = 2.24, p = 0.03), CPM (t(28) = 3.45, p = 0.002), and EPM (t(28) 

= 6.11, p = 0.000). Furthermore, the SUC of EPM is significantly smaller than that of SPM 

(t(28) = −3.06, p = 0.005) and CPM (t(28) = −2.81, p = 0.009). 

The impact of subject experience on the SUC of the models is also studied. The results 

indicate that the mean SUC of experienced subjects is larger than that of inexperienced 

subjects for each model. However, an independent-samples t-test reveals no significant 

difference between experienced and inexperienced subjects for each model (UEM (t(27) = 

0.052, p = 0.96), SPM (t(27) = 0.78, p = 0.442), CPM (t(27) = 0.43, p = 0.671), EPM (t(27) = 0.68, 

p = 0.505)). 

4.2.3. Evaluation Score 

The evaluation score of the four selected trajectories, based on the estimated utility 

by UEM for all subjects, is presented in Figure 13. Table 6 provides a summary of the 

evaluation scores for UEM and the other three perception models (SPM, CPM, and EPM). 

 

Figure 13. Boxplot of the evaluation scores of the selected four trajectories according to the estimated 

utility by UEM. N.S means statistical test � > 0.05, which is not significant. The other test results 

are significant. 

Figure 13. Boxplot of the evaluation scores of the selected four trajectories according to the estimated
utility by UEM. N.S means statistical test p > 0.05, which is not significant. The other test results
are significant.

Table 6. Summary table of evaluation scores of the selected four trajectories according to the estimated
utility by each model.

Driver Preference
Model Trajectory Mean SD t 1 p-Value

UEM

1st 6.48 0.57 - -
2nd 5.31 0.85 7.44 0.000
15th 3.69 1.07 8.60 0.000
Last 2.93 1.10 3.99 0.000

SPM

1st 6.31 0.85 - -
2nd 5.41 1.02 4.77 0.000
15th 3.69 1.17 7.79 0.000
Last 3.31 1.54 1.65 0.110

CPM

1st 6.28 0.92 - -
2nd 5.14 1.13 5.78 0.000
15th 4.07 1.39 4.31 0.000
Last 3.62 1.32 1.47 0.152

EPM

1st 5.24 1.38 - -
2nd 5.17 1.26 027 0.787
15th 4.83 1.28 1.26 0.217
Last 4.55 1.53 0.87 0.392

1 The t-statistic value for the paired-samples test between adjacent trajectory groups.

The mean score of the trajectory ranked first, by estimated utility in descending order,
is 6.48, which is larger than that of the other three trajectories. A paired-sample t-test was
conducted to validate the evaluation score difference between adjacent trajectory groups for
the UEM model, and the result showed that the evaluation score was significantly different
between adjacent groups. This qualitative result indicates that the estimated utility by UEM
is consistent with subjects’ degree of preference for trajectory. The summary and statistical
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test results for the other three perception models are also listed in Table 6. The result shows
that the estimated utility by SPM and CPM is consistent with subjects’ corresponding
evaluation of safety and comfort, respectively. However, for EPM, the evaluation score of
trajectories between groups has no significant difference. This indicates that the EPM could
not model subjects’ evaluation of efficiency well. The qualitative result is consistent with
the quantitative result of GOF and SUC, in which the GOF and SUC of the EPM are the
smallest among the models.

The influence of driver experience on the result is presented in Figure 14. A paired-
sample t-test is conducted to compare the result of different driver experience groups for
each model. The result shows that there is little difference between drivers with different
experience, except for the CPM. For inexperienced drivers, there is a significant difference
between the evaluation scores of comfort of the 2nd and 15th trajectories, but not for
experienced drivers. The degree to which comfort affects drivers’ preference for trajectory
is inconsistent among drivers of different experience.
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Figure 14. Boxplot of the evaluation scores of the selected four trajectories according to the estimated
utility by different models: (a) UEM, (b) SPM, (c) CPM, and (d) EPM. The test result difference for
the experienced and inexperienced driver groups are marked in the figure, in which N.S. means
statistical test p > 0.05, which is not significant, ** means the statistical test p < 0.01, and * means
p < 0.05.
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5. Discussion
5.1. Learning Speed

The OPPLM converged in approximately 11 queries on average. This is significantly
fewer queries than those required in human–robot-interaction related research, where as
many as 100 queries are often required [32]. However, there was one subject who required
27 queries, as shown in Figure 10a, which is significantly more than the others. The reason
for this is that this subject provided conflicting answers to some pairwise comparison
groups. It is challenging for subjects to avoid such cases completely, and a more efficient
approach is required to handle such cases and improve the convergence speed of OPPLM
in the future.

Another problem with the learning speed is that OPPLM converged too early for
some subjects. Six subjects’ OPPLM converged within seven queries, which occurred when
the subject’s favorite trajectory was selected by accident, and the greedy trajectories were
selected at the first few queries. Early convergence can result in a sub-optimal solution
for finding the subject’s favorite trajectory. To avoid such cases and guarantee enough
exploration, further study is needed.

In this research, the convergence and stopping of OPPLM were based on the proposed
convergence criterion. However, for practical applications, convergence of OPPLM is not
necessary. As long as the driver is satisfied with the current trajectory and does not request
another query actively, the OPPLM will not be updated. Thus, the learning speed of a
satisfied trajectory may be faster in actual application.

5.2. Learning Accuracy

The mean goodness of fit (GOF) for UEM, calculated within the range of 0–1 for all
subjects, is 0.85, while the mean score–utility–consistency (SUC), calculated within the range
of [−1, 1], is 0.74. A paired-sample t-test confirms a significant difference in the evaluation
score between two adjacent trajectory groups for UEM, indicating that UEM models the
subject’s degree of preference for trajectory well. However, for some subjects, the GOF of
UEM is less than 0.6, and the SUC is less than 0.4. Nonetheless, the accuracy of UEM is
considerably higher than that of the other three perception models (i.e., SPM, CPM, and
EPM). This suggests that the three perception models are not estimated well, particularly
EPM. The low accuracy of these models could be attributed to the direct relationship
between the query trajectory selection and convergence criteria with UEM. Therefore, to
enhance the learning accuracy of UEM, it is necessary to improve the estimation accuracy
of the perception models.

5.3. Driver Preference Model Assumption and Setting

In this research, a two-layer hierarchical structure model based on utility theory is
assumed to be the driver preference model. The corresponding trajectory indicators for each
of the three perception models are selected based on experience. However, the selection
method of indicators could be further optimized or even adapted to individual drivers to
improve the accuracy of the driver preference model. Additionally, the estimation method
settings in Section 3.4.2 could be further studied to improve the performance of OPPLM.

Moreover, the proposed OPPLM could be applied to other advanced driver assistance
system functions or autonomous vehicles to learn drivers’ preferences based on the driver
preference model. However, for different functions, the driver preference model needs to
be specifically developed. Further research is needed to explore the potential applications
of OPPLM in other contexts and to improve its performance.

6. Conclusions

This research introduced an online personalized preference learning method (OPPLM)
based on pairwise comparison group preference queries and the Bayesian approach. The
driver preference model was established using a two-layer hierarchical structure model
based on utility theory. To improve accuracy, the uncertainty of drivers’ query answers
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was modeled, and informative and greedy query selection methods were used to enhance
learning speed. A convergence criterion was proposed to identify the preferred trajectory.

A user study was conducted to learn the drivers’ preferred trajectories of the lane
centering control (LCC) system in a simple curve condition without other vehicles. A
total of 14 experienced and 15 inexperienced subjects participated in the experiment. The
results demonstrate that the OPPLM converges rapidly, within approximately 11 queries
on average, and that the driver evaluation scores of the trajectories are consistent with the
estimated utility by the learned driver preference model. The OPPLM can quickly and
accurately learn the preferences of most subjects.

However, several limitations need to be addressed. The conflict of query answers
is common, causing a delay in convergence and inaccurate preference estimation. To
ensure adequate exploration, more exploration is necessary for occasional situations. The
perception models are not estimated accurately enough when the OPPLM converges
because the query selection method and convergence criteria are directly related to UEM
only. The trajectory indicators used to build perception models are chosen based on
experience, which can be optimized and even adapted to each individual. The estimation
method settings in Section 3.4.2 are established based on experience and should be studied
further to improve the performance of OPPLM.

7. Patents

A patent is being applied for based on this research.
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