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Abstract: Background: Central nervous system (CNS) disorders benefit from ongoing monitoring 
to assess disease progression and treatment efficacy. Mobile health (mHealth) technologies offer a 
means for the remote and continuous symptom monitoring of patients. Machine Learning (ML) 
techniques can process and engineer mHealth data into a precise and multidimensional biomarker 
of disease activity. Objective: This narrative literature review aims to provide an overview of the 
current landscape of biomarker development using mHealth technologies and ML. Additionally, it 
proposes recommendations to ensure the accuracy, reliability, and interpretability of these 
biomarkers. Methods: This review extracted relevant publications from databases such as PubMed, 
IEEE, and CTTI. The ML methods employed across the selected publications were then extracted, 
aggregated, and reviewed. Results: This review synthesized and presented the diverse approaches 
of 66 publications that address creating mHealth-based biomarkers using ML. The reviewed 
publications provide a foundation for effective biomarker development and offer recommendations 
for creating representative, reproducible, and interpretable biomarkers for future clinical trials. 
Conclusion: mHealth-based and ML-derived biomarkers have great potential for the remote 
monitoring of CNS disorders. However, further research and standardization of study designs are 
needed to advance this field. With continued innovation, mHealth-based biomarkers hold promise 
for improving the monitoring of CNS disorders. 

Keywords: machine learning; biomarker; wearables; smartphones; mHealth; remote monitoring; 
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1. Introduction 
1.1. Motivation 

Disorders that are affected by the Central Nervous System (CNS), such as 
Parkinson’s Disease (PD) and Alzheimer’s Disease (AD), have a significant impact on the 
quality of life of patients. These disorders are often progressive and chronic, making long-
term monitoring essential for assessing disease progression and treatment effects. 
However, the current methods for monitoring disease activity are often limited by 
accessibility, cost, and patient compliance [1,2]. Limited accessibility to clinics or disease 
monitoring devices may hinder the regular and consistent monitoring of a patient’s 
condition, especially for patients living in remote areas or for those who have mobility 
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limitations. Clinical trials incur costs related to personnel, infrastructure, and equipment. 
A qualified healthcare team, including clinical raters, physicians, and nurses, contributes 
to personnel costs through salaries, training, and administrative support. Trials involving 
specialized equipment for measuring biomarkers can significantly impact the budget due 
to costs associated with procurement, maintenance, calibration, and upgrades. 
Furthermore, infrastructure costs may increase as suitable facilities are required for data 
collection during patient visits and equipment storage. Patient compliance poses 
challenges for disease monitoring, as some methods require patients to adhere to strict 
protocols, collect data at specific time intervals, or perform certain tasks that can be 
challenging for patients to execute. Low or no compliance can lead to incomplete or 
unreliable monitoring results, which in turn can hinder the reliability of the assessments. 
Given these limitations, there is a growing interest in exploring alternative approaches to 
monitoring CNS disorders that can overcome these challenges. The increasing adoption 
of smartphones and wearables among patients and researchers offers a promising avenue 
for remote monitoring. 

Patient-generated data from smartphones, wearables, and other remote monitoring 
devices can potentially complement or supplement clinical visits by providing data during 
evidence gaps between visits. As the promise of mobile Health (mHealth) technologies is 
to provide more sensitive, ecologically valid, and frequent measures of disease activity, 
the data collected may enable the development and validation of novel biomarkers. The 
development of novel ‘digital biomarkers’ using data collected from electronic Health 
(eHealth) and mHealth device sensors (such as accelerometers, GPS, and microphones) 
offers a scalable opportunity for the continuous collection of data regarding behavioral 
and physiological activity under free-living conditions. Previous clinical studies have 
demonstrated the benefits of smartphone and wearable sensors to monitor and estimate 
symptom severity associated with a wide range of diseases and disorders, including 
cardiovascular diseases [3], mood disorders [4], and neurodegenerative disorders [5,6]. 
These sensors can capture a range of physiological and behavioral data, including 
movement, heart rate, sleep, and cognitive function, providing a wealth of information that 
can be used to develop biomarkers for CNS disorders in particular. These longitudinal and 
unobtrusive measurements are highly valuable for clinical research, providing a scalable 
opportunity for measuring behavioral and physiological activity in real-time. However, 
these approaches may carry potential pitfalls as the data sourced from these devices can 
be large, complex, and highly variable in terms of availability, quality, and synchronicity, 
which can therefore complicate analysis and interpretation [7,8]. Machine Learning (ML) 
may provide a solution to processing heterogenous and large datasets, identifying 
meaningful patterns within the datasets, and predicting complex clinical outcomes from 
the data. However, the complexities involved in developing biomarkers using these new 
technologies need to be addressed. While these tools can aid the discovery of novel and 
important digital biomarkers, the lack of standardization, validation, and transparency of 
the ML pipelines used can pose challenges for clinical, scientific, and regulatory 
committees.  

1.2. What Is Machine Learning 
In clinical research, one of the primary objectives is to understand the relationship 

between a set of observable variables (features) and one or more outcomes. Building a 
statistical model that captures the relationship between these variables and the 
corresponding outputs facilitates the attainment of this understanding [9]. Once this 
model is built, it can be used to predict the value of an output based on the features.  

ML is a powerful tool for clinical research as it can be used to build statistical models. 
A ML model consists of a set of tunable parameters and a ML algorithm that enables the 
generation of outputs based on given inputs and selected parameters. Although ML 
algorithms are fundamentally statistical learning algorithms, ML and traditional 
statistical learning algorithms can differ in their objectives. Traditional statistical learning 
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aims to create a statistical model that represents causal inference from a sample, while ML 
aims to build generalizable predictive models that can be used to make accurate 
predictions on previously unseen data [10,11]. However, it is essential to recognize that 
while ML models can identify relationships between variables and outcomes, they may 
not necessarily identify a causal link between them. This is because even though these 
models may achieve good performances, it is crucial to ensure that their predictions are 
based on relevant features rather than spurious correlations. This enables the researchers 
to gain meaningful insights from ML models while also being aware of their inherent 
limitations. 

While ML is not a substitute for the clinical evaluation of patients, it can provide 
valuable insights into a patient’s clinical profile. ML can help to identify relevant features 
that clinicians may not have considered, leading to better diagnosis, treatment, and patient 
outcomes. Additionally, ML can help to avoid common pitfalls observed in clinical 
decision making by removing bias, reducing human error, and improving the accuracy of 
predictions [12–15]. As the volume of data generated for clinical trials and outside clinical 
settings continues to grow, ML’s support in processing data and informing the decision-
making process becomes necessary. ML can help to uncover insights from large and 
complex datasets that would be difficult or impossible to identify manually. 

To develop an effective ML model, it is necessary to follow a rigorous and 
standardized procedure. This is where ML pipelines come in. Table 1 showcases an 
exemplary ML pipeline, which serves as a systematic framework for automating and 
standardizing the model generation process. The pipeline encompasses multiple stages, 
as defined by the authors, to ensure an organized and efficient approach to model 
development. First, defining the study objective guides the subsequent stages and ensures 
the final model meets the desired goals. Second, raw data must be preprocessed to remove 
errors, inconsistencies, missing data, or outliers. Third, feature extraction and selection 
identifies quantifiable characteristics of the data relevant to the study objective and 
extracts them for use in the ML model. Fourth, ML algorithms are applied to learn patterns 
and relationships between features, with optimal configurations identified through 
iterative processes until desired performance metrics are achieved. Finally, the model is 
validated against a new dataset that is not used in training to ensure generalizability. 
Effective reporting and assessment of ML procedures must be established to ensure 
transparency, reliability, and reproducibility. 

Table 1. Representation of a standard machine learning pipeline. 

Stage Objective Example 

1. Study Design 

The ML pipeline is provided with a study objective 
in which the features and corresponding outputs are 
defined.  
The ML model aims to identify the associations 
between the features and outputs. 

The study objective is to classify 
Parkinson’s Disease patients and 
control groups using smartphone-
based features. 

2. Data Preprocessing Data preprocessing filters and transforms raw data 
to guarantee or enhance the ML training process. 

To improve the model performance, 
one may identify and exclude any 
missing or outlier data.  

3. Feature Engineering 
and Selection 

Feature engineering uses raw data to create new 
features that are not readily available in the dataset.  
Feature selection selects the most relevant features 
for the model objective by removing redundant or 
noisy features.  
Together, the goal is to simplify and accelerate the 
computational process while also improving the 
model process.  

An interaction of two or more 
predictors (such as a ratio or 
product) or re-representation of a 
predictor are examples of feature 
engineering.  
Removing highly correlated or non-
informative features are examples of 
feature selection. 
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For deep learning methods, the concept of “feature 
engineering” is typically embedded within the 
model architecture and training process, although 
substantial preprocessing steps may occur prior to 
that. 

Note: The feature selection step can 
occur during model training 

4. Model Training and 
Validation 

During training, the ML model(s) iterates through 
all the examples in the training dataset and 
optimizes the parameters of the mathematical 
function to minimize the prediction error.  
To evaluate the performance of the trained ML 
model, the predictions of an unseen test set are 
compared with a known ground truth label.  

Cross-validation can be used to 
optimize and evaluate model 
performance.  
Classification models may be 
evaluated based on their prediction 
accuracy, sensitivity, and specificity, 
while regression models may be 
evaluated using variance explained 
(R2) and Mean Absolute Error. 

1.3. Objectives 
The objective of this narrative literature review is to provide an overview of the ML 

practices used in studies that use mHealth technologies and ML to develop novel 
biomarkers for clinical trials. In this review, each component of the ML pipeline has a 
dedicated section. Based on the results obtained from the review process, each ML 
component section provides a comprehensive analysis and discussion of the most 
common and notable practices. These sections delve into the motivations behind these 
practices, their limitations, and their overall impact on the ML pipeline. This review will 
not provide precise recommendations for best practices, as much of the research in this 
area is new and quickly evolving. Rather, the recommendation section discusses the 
approaches for standardization and validation procedures that are necessary for the 
development of ML biomarkers to ensure the effectiveness and acceptance of these 
biomarkers by clinical, scientific, and regulatory committees.  

2. Methods 
2.1. Information Sources and Search Strategy 

Given the wide range of study designs and clinical populations that use smartphones 
and wearables to collect data, we used the Joanna Briggs Institute (JBI) guidelines to 
develop a search strategy [16]. Based on an initial limited search of online databases for 
clinical trials that report using mHealth devices and ML, we developed a custom keyword 
strategy and performed an in-depth search in PubMed, IEEE Xplore, and CTTI (Table 2). 
The search terms for the CNS disorder terms were based on the National Library of 
Medicine’s CNS MeSH descriptor data [17]. The relevant papers were selected based on 
the title and abstract. Finally, other literature review studies that explore the same 
questions were reviewed; the references cited by these studies were then identified and 
reviewed if they met our criteria. The date range for the search was between 1 January 
2012 and 31 December 2022. The search was conducted on 7 January 2023.  

Table 2. An overview of the keyword strategy used for this study. 

Domain Search String 

Technology 

((“smartphone”[tiab] OR “wearable”[tiab] OR “remote + 
monitoring”[tiab] OR “home + monitoring”[tiab] OR 
“mobile + sensors”[tiab] OR “mobile + montoring”[tiab] 
OR “behavioral + sensing”[tiab] OR “geolocation”[tiab] 
OR “mHealth”[tiab] OR “passive + monitoring”[tiab] OR 
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“digital + phenotype”[tiab] OR “digital + 
phenotyping”[tiab] OR “digital + biomarker”[tiab]) 

Analysis 

AND (“machine + learning”[tiab] OR “deep + 
learning”[tiab] OR “random + forest”[tiab] OR “neural + 
network”[tiab] OR “time + series”[tiab] OR 
“regression”[tiab] OR “SVM”[tiab] OR “knn”[tiab] OR 
“dynamics + model”[tiab] OR “decision + tree”[tiab] OR 
“discriminant + analysis”[tiab] OR “feature + 
engineering”[tiab] OR “feature + selection”[tiab] OR “data 
+ mining”[tiab] OR “model”[tiab] OR “classification”[tiab] 
OR “diagnostic”[tiab] OR “prognostic”[tiab] OR 
“symptom + severity”[tiab] OR “prediction”[tiab] OR 
“monitoring”[tiab]) 

Population 

AND (“disease”[tiab] OR “disorder”[tiab] OR 
“diagnosis”[tiab] OR “prognosis” OR “alzheimer”[tiab] 
OR “parkinson”[tiab] OR “Huntington”[tiab] OR 
“neurodegenerative”[tiab] OR “degenerative” OR 
“tremor”[tiab] OR “bipolar”[tiab] OR “depression”[tiab] 
OR “manic”[tiab] OR “anxiety”[tiab] OR “vocal + 
biomarker”[tiab] OR “amyotrophic + lateral + 
sclerosis”[tiab] OR “central + nervous + system”[tiab] OR 
“symptom”[tiab] OR “psychosis”[tiab] OR “stroke”[tiab] 
OR “muscular dystrophy”[tiab] OR “Facioscapulohumeral 
Dystrophy”[tiab] OR “autoimmune”[tiab] OR 
“seizure”[tiab] OR “multiple + sclerosis”[tiab]) 

Date AND (“2012/01/01”[PDAT]:”2022/12/31”[PDAT]) 
Language AND (English[lang]) 

Exclusion Criteria 

NOT(“animals”[tiab] OR “implant”[tiab] OR 
“hospital”[tiab] OR “caregiver”[tiab] OR 
“telemedicine”[tiab] OR “telerehabilitation”[tiab] OR 
“smartphone + addiction”[tiab] OR “nursing”[tiab] 
OR”screening”[tiab] OR “recruitment”[tiab] OR 
“diabetes”[tiab] OR “malaria”[tiab] OR “self-care”[tiab] 
OR “self-management”[tiab] OR “self-help”[tiab]) 

Article Type 

AND (clinicalstudy[Filter] OR clinicaltrial[Filter] OR 
clinicaltrialphasei[Filter] OR clinicaltrialphaseii[Filter] OR 
clinicaltrialphaseiii[Filter] OR clinicaltrialphaseiv[Filter] 
OR controlledclinicaltrial[Filter] OR meta-analysis[Filter] 
observationalstudy[Filter] OR 
randomizedcontrolledtrial[Filter] OR 
systematicreview[Filter]) 

2.2. Inclusion Criteria 
The authors adopted the Population, Intervention, Comparator, Outcomes, Study 

type (PICOS) framework to define the inclusion and exclusion criteria [13] (Table 3). The 
studies included were restricted to those involving participants diagnosed with CNS 
disorders who were remotely monitored under free-living conditions. The intervention 
and device criteria were limited to passive data collected from smartphones and other 
non-invasive remote monitoring sensors, whereas data collected using active engagement 
from participants, such as disposable blood tests or small scales, were excluded. As we 
chose to focus on ML pipelines, we selected studies in which a statistical model was used 
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to analyze a dataset and could potentially be used to generate future predictions using an 
independent dataset. Therefore, traditional statistical models such as linear or logistic 
regression were included, but statistical models such as ANOVA and correlation analyses 
were not included. Further, as the focus was on the development and validation of ML 
models, we did not include studies that did not report on model performance.  

Table 3. Table of the inclusion and exclusion criteria used for study selection. 

Category Criteria 

Population 

The study must be initiated by a research organization and not by the 
participants.  
The participants must have a clinical diagnosis that is affected by the 
CNS. Hence, studies that collected data from participants with no 
clinically confirmed diagnosis were not considered. 

Intervention 
The study must include the use of smartphone or non-invasive 
wearables to remotely monitor and quantify passive biomarkers 
under free-living conditions. 

Comparator A ground truth comparator for digital phenotyping such as clinical 
assessment, medical records, or self-reported outcomes. 

Outcomes 
A ML model that is used to classify a clinical label (such as a 
diagnosis, or clinical event), estimate symptom severity, or to detect 
treatment effects.  

Study Type 

The paper must be about a human-centered observational study 
(cohort or longitudinal) where the data were collected outside the 
clinic, lab, or hospital (free-living conditions). Hence, studies that use 
smartphones or wearables as a form of intervention or as screening 
tools are not of interest.  
The study must show if the ML models had ecological validity by 
validating the models using free-living data. 
The study has to have been written or translated into English and 
published within the last 10 years (2012 onwards). 

2.3. Data Extraction 
Two authors conducted the data extraction following the inclusion criteria, and the 

results were reviewed by the remaining authors. Data relating to the database source, title, 
DOI, publication year, trial setting or scenario, objective, devices used, data collection 
period, number of participants, inclusion of healthy controls, data processing steps, 
feature engineering, feature selection, machine learning models used, hyperparameters 
and hyperparameter optimization, model performance, and validation procedure were 
extracted. The comprehensive data extraction and review conducted by the authors 
encompassed various essential aspects of the studies, ensuring a thorough analysis of the 
database source, trial details, data processing steps, machine learning models, and 
validation procedures. 

3. Results 
3.1. Study Selection 

Our initial keyword search revealed a total of 2310 articles that utilized digital 
phenotyping devices, such as smartphones and wearables, in a clinical study and applied 
ML techniques. After screening the titles and abstracts based on our predefined criteria, 
we narrowed down the articles to 66 studies, which were used for our analysis. Figure 1 
provides an overview of the complete selection process. 
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Figure 1. Flow diagram illustrating the paper selection process for this review. 

3.2. Study Characteristics 
For each of the 66 studies, we extracted information about the clinical population and 

the ML pipeline that was used to develop the digital biomarkers. We found that only half 
of the studies included healthy controls (N = 34). As seen in Figure 2, Parkinson’s disease 
(PD) (N = 27) was the most prevalent disorder identified in our search, followed by Bipolar 
Disorder (BD) (N = 11), and Unipolar Depression or Major Depressive Disorder (MDD) 
(N = 9). The sample size of the selected studies was heterogenous, ranging from 7 to 6221 
participants (Figure 3). Overall, our review provides a comprehensive overview of the 
characteristics of studies that have utilized mHealth devices and ML techniques, which 
can help inform future research in this field. In the following sections, we addressed how 
the selected studies approached the construction of their ML pipelines. 
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Figure 2. Clinical populations and the use of healthy controls in the selected studies. 

 
Figure 3. Sample sizes of clinical populations included in selected studies, with x-axis (sample size) 
presented on a logarithmic scale. 

4. Missing and Outlier Data 
Missing and outlier data are commonly encountered problems for remote sensing 

clinical trials. Missing data can be the result of device charging frequency, device 
robustness, and participant compliance [18]. Outliers can be the result of sensor or device 
dysfunction or malfunction, incorrect data entry, and incorrect classifications [19]. Data 
preprocessing, which refers to the dropping or manipulation of data, is required for 
identifying and removing redundant or irrelevant data and for cleaning the data prior to 
analysis. Without preprocessing, learning from an imperfect dataset can influence the 
prediction accuracy of the models [20]. In this section, we address how the selected studies 
preprocessed their raw data by treating their missing data and outliers, and the limitations 
of doing so.  
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4.1. Handling of Missing Data 
Missing data can be Missing Completely at Random (MCAR), Missing at Random 

(MAR), and Missing Not at Random (MNAR) [21]. MCAR assumes that each observation 
has the same probability of being included or being missed; therefore, there is no 
difference in the characteristics between participants or observations without missing data 
and those with missing data. For example, data may be missed due to the battery of the 
smartphone running out. MAR assumes that missing data may have systematic 
differences between the missing and non-missing data; however, the cause of the missing 
data can be explained by the non-missing data. For example, a smartphone may have 
more missing values when the smartphone battery is low. If the battery percentage is 
known during the data acquisition, researchers can verify the probability of acquiring 
missing data depending on the battery percentage. MNAR assumes that missing data are 
caused by unknown reasons. For example, smartphone sensors may be gradually worn 
down, which therefore creates more missing data over time. The type of missing data 
present in the dataset influences whether a researcher should ignore, exclude, or impute 
the missing data.  

Among the selected studies, we found that only 21 of the studies reported the 
quantity of missing data acquired. Only 29 studies reported how they handled their 
missing data. We found that complete-case analysis and imputation were the most 
popular. We identified 14 studies that report using complete-case analysis [22–36]. 
Complete-case analysis (otherwise known as listwise deletion) is the deletion of an 
observation involving one or multiple elements of missing data [26,37,38]. While 
complete-case analysis is the simplest approach to handle missing data, it does reduce the 
sample size and statistical power of the analysis [39] and can potentially lead to bias if the 
data are not MCAR [40]. Imputation is the statistical process of replacing missing data 
with substituted inferred values [41]. We identified studies that imputed their missing 
data using linear interpolation [29,42,43], forward filling [44], −1 [45], zeros, median, 
means, and the most frequent value in the column [24,46]. The advantage of imputation 
is that it enables researchers to use all observations in the dataset. However, the inclusion 
of imputed values can lead to a false impression of the number of complete cases and 
reduce the variance in the dataset [47–49].  

4.2. Identification of Outliers 
Aggarwal’s Data mining: the textbook states that it is the subjective definition of the 

researcher that defines an outlier [50]. In cases where the outlier data were discussed in 
the selected studies, we found that researchers customized their definition of outliers by 
either defining a range of acceptable values [32] or by defining a threshold based on the 
mean and standard deviation [51–53]. Visual inspection by the researchers or the 
optimization of different threshold mechanisms can both be used to define the boundaries 
of normal or outlier data [54,55]. Maleki et al. defined outliers as observations that were 
most likely the result of measurement errors [36]. In terms of the handling of outliers, we 
only identified six studies that explicitly stated that outliers were excluded [26,30,51–
53,56].  

5. Feature Engineering 
5.1. Feature Scaling 

Feature scaling is used to normalize the ranges of the features in a dataset [57]. 
Several feature engineering techniques and ML models (such as Principal Component 
Analysis and Linear Regression) calculate the distances between two observations. If one 
feature has a broader range of values compared to the other features, the calculated 
distances will be heavily influenced by this feature [58]. Therefore, the ranges of all the 
features should be normalized or standardized so that each feature is appropriately and 
proportionally considered with respect to the estimated distances [57]. Feature 
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normalization is a common scaling method for rescaling the features into a bounding 
range using the minimum and maximum values, for example, between 0 and 1. 
Normalization is an ideal approach when the distribution of the data is not Gaussian, as 
normalization preserves the original distribution of the data. However, normalization 
uses minimum and maximum values to define ranges. This makes the method sensitive 
to outliers [57,59]. Alternatively, feature standardization, also known as z-score 
normalization, is a method for rescaling the data to fit a standard normalized distribution 
by using the mean and standard deviation and does not define a bounding range. 
Consequently, the standardization approach is not sensitive to outliers as it has no 
bounding range [57,59]. Normalization, log-transformation, and standardization have 
been reported in a small selection of the selected studies [26,27,36,60,61].  

5.2. Expert Feature Engineering 
Feature engineering is the process of constructing (new) features from the raw data 

or existing features while maintaining the original patterns and information in the data 
[62]. The newly engineered features can be added to or replace features in the original 
dataset. Engineering of the features can speed up the model performance, improve 
learning accuracy, and ease the interpretability of the model. The latter is particularly 
important for clinical trials [63]. Features can be engineered manually by relying on 
domain-knowledge or automatically by using statistical models, such as Principal 
Component Analysis (PCA) and Deep Learning (DL) [62–64]. All features aim to increase 
the separability between the classes or signals, which in turn reduces noise in the dataset. 
While expert engineered features are easy to interpret and explain and have been widely 
used in the development of digital biomarkers, these features are typically task- or 
population-dependent. Due to intra-class variability, some clinically relevant 
characteristics may be exhibited differently by different individuals (such as different 
symptom profiles among patients with the same diagnosis). Furthermore, expert 
engineered features may not be sufficient for representing the most important 
characteristics of complex patterns and can be time-consuming to acquire, especially when 
handling large-scale datasets [65,66]. As clinical data has expanded in terms of diversity, 
availability, and complexity, the aforementioned techniques may be insufficient for 
developing generic features. In the following sections, we address the notable and generic 
procedures used to perform feature engineering. 

5.3. Signal Processing 
To monitor changes in the physical activity of study participants using time series 

data collected from wearable sensors, signal processing is necessary to detect, clean, and 
analyze the components of interest. The feature extraction technique used is influenced 
by the sensor type, study objectives, and signal quality. Typically, signal features are 
extracted from the frequency, time, or cepstrum domain [67]. Frequency domain features 
show the prominence of a signal within a given frequency, whereas time-domain features 
show the changes in the signal of time. Cepstrum domain features represent the rate of 
change in the different frequency bands. The analysis of the frequency, time, or cepstrum 
domain features is not mutually exclusive. We identified studies that use both time- and 
frequency-based features for the estimation of gait speed [68], speech-tasks [69], seizure 
detection [70], tremor detection [71], and FOG detection [72]. In particular, Tougui et al. 
built 138 voice-related features extracted from the cepstral, frequency, and time domains 
[24]. In sum, time series data collected from wearable sensors can be used to monitor the 
physical activity of study participants, but signal processing is necessary to extract 
meaningful features. Different feature extraction techniques can be used depending on 
the sensor type, signal quality, and study objectives. The analysis of these features is not 
mutually exclusive, and studies that use multiple domains for different clinical 
applications have been identified.  
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5.4. Principal Component Analysis 
A common linear dimensionality reduction technique for feature engineering and 

selection is Principal Component Analysis (PCA) [28,73,74]. PCA is used to sufficiently 
explain a high-dimensional dataset through a few principal components and, therefore, 
to reduce a high-dimensional dataset to one of fewer dimensions [75]. To this purpose, 
PCA converts a set of correlated features into a set of uncorrelated features by utilizing 
orthogonal transformation [75]. The principal components enable a reduction in the 
feature space by creating a linear combination of the original features, which consequently 
reduces the storage space and reduces the learning time. Therefore, the periodic 
components within a concurrent time series dataset can be isolated using PCA, which can 
subsequently be used to identify any underlying patterns within the dataset. It is 
important to note that PCA assumes that the data are normally distributed and is sensitive 
to feature variance [75,76]. Consequently, features with larger ranges will dominate 
features with smaller ranges. To make the variables comparable, transformation of the 
data prior to PCA is required [75,76]. Of the studies selected, PCA was used to engineer 
and select features from times series data sourced from waist-worn triaxial accelerometers 
and wearable activity trackers [28,73,74]. However, the limitations of PCA are its 
sensitivity to missing data and outliers and the limited interpretation of the original 
features. Hence, this observation highlights the need for thorough data preprocessing 
prior to using PCA.  

5.5. Clustering 
A clustering algorithm is a common feature engineering method that assigns similar 

observations to a single cluster and assigns dissimilar observations to another [77]. While 
PCA compresses the features into principal components, clustering compresses the 
individual observations into clusters. The grouping of similar observations can improve 
the model’s ability to discriminate between classes [78]. Clustering algorithms, more 
specifically DBSCAN and K-means clustering, have been deployed in smartphone GPS 
systems and Wi-Fi-network sensors to extract meaningful location features such as 
frequented location clusters [79], location patterns [80], and mobility patterns [81]. These 
studies demonstrate that clustering algorithms are a powerful method for reducing the 
number of observations into a smaller number of artificial variables that account for the 
variance within the dataset.  

5.6. Deep Learning 
The performance of ML models can be limited by the development of manual and 

arbitrary features, and this potential obstacle can be overcome by DL algorithms. DL 
algorithms eliminate the need for manual feature engineering, as the DL layers can 
translate the data into more compact and intermediate abstractions of the data, which in 
turn can be used as features to predict the final output [82]. While DL can reduce the need 
for manual data preprocessing and feature extraction, which can potentially improve the 
generalizability and robustness of a model, the interpretation of the DL model is difficult, 
as the abstracted features may not be explainable by clinicians. However, it is important 
to note that the discriminative power of the DL-derived abstractions is strongly influenced 
by the architecture of the DL algorithm, which is also dependent on the trial-and-error 
process [59]. Due to DL’s representation learning, DL is data-hungry, and therefore 
requires more data than other ML algorithms [83,84]. For clinical trial data, because of 
technological limitations and small sample sizes, there may not be enough data to train a 
sufficiently representative DL model [76,83].  

Four studies used DL to engineer features using time series data [23,85–87]. These 
models were used to extract gait features from accelerometer data [85,87] and tremor 
characteristics from IMU data [23,86]. However, it should be noted that the DL models do 
not always outperform the ‘shallow learning’ models, as shown in a study by Juen et al., 
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in which smartphone accelerometers were used to predict natural walking speed and 
distance during a six-minute walk test [85].  

6. Feature Selection 
In recent decades, high-dimensional clinical datasets have relied on feature selection 

[88]. Feature selection is the process of selecting a subset of the most informative features 
that will be processed by the ML algorithm [89]. Reducing the features for analysis has 
both computational and practical benefits. Selecting features can limit storage 
requirements, increase the algorithm processing speed, increase the interpretability of a 
model, and improve model performance.  

6.1. Overfitting and Underfitting 
Overfitting and underfitting are common pitfalls for ML models. Overfitting refers to 

when a ML model fits too well to its training dataset and is unable to generalize its patterns 
to unseen data. This problem can occur when the training dataset is small and not 
representative of the overall potential data distribution. Additionally, if the training 
dataset contains many outliers, the ML model may also fit the outlier data. Underfitting 
occurs when the trained ML model is too simple; therefore, it cannot identify the 
relationship between the features and the outputs. Underfitted models will perform 
poorly for both the train and validation datasets. To address overfitting, reducing the 
number of features considered by the model or updating the model architecture to include 
fewer features can be effective [90]. Underfitting can be improved by adding more features 
considered by the model or by updating the model architecture to increase the complexity 
of the feature space [90]. 

Feature selection identifies the most important features in the dataset and eliminates 
the irrelevant ones, which thereby reduces noise. However, it is important to strike a 
balance, as strict feature selection may remove important signals from the data. Therefore, 
selecting the optimal set of features is important for preventing over- and underfitting. In 
the following sections, we will elaborate on the three general methods of feature selection 
that are suitable for ML models [75].  

6.2. Filter Methods 
Filter methods are used during preprocessing prior to training the ML model. 

Filtering involves removing features based on domain knowledge, missing data, low 
variance, or correlation [89,91,92]. As filter methods are independent of any model that is 
to be used in later steps, they are typically faster to implement and reduce the need for 
repeating feature selection for different ML models. In our selected studies, we found five 
studies that used Analysis of Variance (ANOVA), Pearson’s Correlation, or Spearman’s 
Correlation to identify features that were statistically significant predictors of the 
outcomes [24,93–96]. P-value based feature selection, while commonly used in clinical 
studies, is not always suitable for training a ML model. The use of p-values to identify 
statistically significant features was a popular approach that relied on the belief that 
insignificant features were not informative. However, important features can be missed 
when sample sizes are small. Furthermore, p-values can be biased towards low values due 
to the increased risk of type 1 errors during multiple comparisons, which in turn increases 
the probability of random variables being included into the final statistical model [97,98]. 
Additionally, p-value based feature selection methods may be based on certain 
assumptions that may not be applicable to ML models, such as assuming that the 
distribution of scores for the groups among the independent variables are the same [99]. 

We wanted to highlight one filtering method identified in our selected studies: Relief 
[100]. Relief is a feature selection technique that also ranks features and selects only the 
top-scoring features; however, it is notably sensitive to feature interactions [101,102]. 
Yaman et al. first obtained 177 speech-related features and used Relief to select 66 most 



Sensors 2023, 23, 5243 13 of 38 
 

 

predictive vocal biomarkers for the classification of PD [103]. Rodriguez-Molinero used 
Relief to select frequency features that were subsequently used to predict gait 
disturbances among PD patients [104]. Overall, Relief has demonstrated its effectiveness 
in selecting relevant features in various studies related to the prediction of PD using high-
dimensional clinical datasets. 

6.3. Embedded Methods 
The embedded method is a feature selection technique integrated into the ML 

algorithm itself and is commonly seen in penalized regression [105]. Penalized regression 
algorithms aim to learn the optimal coefficients for each feature by minimizing its loss 
function. Regularization (also known as penalization) limits the learning process of the 
model by increasing the penalty of the loss function [106]. The two common penalized 
regression methods, identified in the selected studies, are LASSO (also known as L1 
penalization) (N = 9) [22,24,29,33,42,95,100,101,107,108] and Ridge (L2 penalization) (N = 
2) [109,110]. An advantage of LASSO is that it eliminates non-informative features by 
reducing their coefficients to zero. The first limitation of LASSO is that, if the number of 
features f is greater than the number of observations o, LASSO will select a maximum of 
o predictors as non-zeros, regardless of the relevance of other features. The second 
limitation is that LASSO also suffers from collinearity; hence, if two or more variables are 
highly correlated, then LASSO will randomly select one feature and penalize the other 
correlated features. A disadvantage of Ridge is that it only reduces the weights of the non-
informative features by reducing their coefficients towards zero, but it never reduces the 
number of variables. Therefore, all predictors are included in the final model. However, 
because of this approach, Ridge protects ML models from overfitting [111].  

6.4. Wrapper Methods 
Wrapper methods rely on a stand-alone model to select features, but the performance 

of the selected features is reflected in the performance of the trained model [112]. The 
wrapper method algorithms tend to be greedy search algorithms that aim to select the 
optimal feature subset by iteratively selecting the features based on ML performance. As 
the wrapper method is an iterative process and the model must be evaluated on each 
feature subset combination, this method is computationally expensive. Wrapper-based 
feature selection can be completed by ranking the features in terms of relative importance 
using a ML model (such as decision trees or random forests) [88,101,113]. We identified a 
handful of feature ranking methods that include two stepwise regression techniques: 
Forward Selection and Backwards Elimination [29,36,52,114–116], as well as Recursive 
Feature Selection (RFE) [30,117]. Forward selection starts the modelling process with zero 
features and adds a new feature to the model incrementally, each time testing for 
statistical significance. Backwards elimination starts the modelling process with all 
features and incrementally removes each feature to evaluate its relative importance in 
predicting the model output [97,118]. RFE fits a model, ranks the features, and removes 
the least informative features and continues to remove features until a predefined number 
of features is met [64,119,120]. Senturk et al. illustrated that RFE-based feature selection 
increased the prediction accuracy of ANN, CART, and SVM when using vocal data to 
classify a PD diagnosis [121]. 

7. Machine Learning Algorithms 
ML algorithms build a statistical model based on a training dataset, which can 

subsequently be used to make predictions about a new, unseen dataset. ML algorithms 
have been used in a wide variety of clinical trial applications, such as the classification of 
a diagnoses, classification of physical or mental state (such as a seizure or mood), and the 
estimation of symptom severity. Within the realm of clinical research, ML algorithms can 
be broadly divided into two learning paradigms: supervised and unsupervised learning 
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[122]. In this section, we will discuss the model objectives of supervised and unsupervised 
learning and the specific ML models used to achieve these model objectives.  

Supervised ML algorithms use labeled data to map the patterns within a dataset to a 
known label, while unsupervised ML algorithms do not [123]. Rather, the unsupervised 
ML algorithms learn the structure present within a dataset without relying on 
annotations. Supervised learning can be used to automate the labelling process, detect 
disease cases, or predict clinical outcomes (such as treatment outcomes). There are 
scenarios when experts or participants can provide labelled data; however, it can become 
labor-intensive or time-consuming to label every observation. For example, a supervised 
learning algorithm trained to classify human sounds can be used to automatically 
annotate and quantify hours of coughs [124] and instances of crying [125]. These 
algorithms can also be used to differentiate between clinical populations and control 
participants [95] to identify known clinical population subtypes [23] or classify a clinical 
event (such as a seizure or tremor) [126]. The majority of our selected studies (N = 38) used 
a clinician to provide the label data. Some studies (N = 22) used a combination of a 
clinician and self-reported label data, and six studies solely relied on self-reported 
assessments. Unsupervised ML algorithms can be used to investigate the similarities and 
differences within a dataset without human intervention. This makes it the ideal solution 
for exploratory data analysis, subgroup phenotype identification, and anomaly detection. 
Among digital phenotyping studies, unsupervised learning has been used to identify 
location patterns [81] and classify sleep disturbance subtypes using wrist-worn 
accelerometer data [127]. 

It is important to recognize that unsupervised and supervised methods are not 
mutually exclusive, and they can be effectively combined. For instance, unsupervised 
methods can be employed to extract a meaningful latent representation of the input data. 
Subsequently, these latent vectors, along with the original inputs, can be used as inputs 
for a supervised model. This type of approach is commonly observed when applying 
techniques such as PCA, clustering, or other dimensionality reduction methods 
[29,73,74,128]. By combining unsupervised and supervised methods, valuable 
information can be extracted from the data and used to enhance the performance and 
interpretability of the overall model. 

In clinical research, supervised ML algorithms have been used to classify class labels 
or estimate scores. Classification algorithms learn to map a new observation to a pre-
defined class label. These algorithms can be used to classify patient populations and 
patient population subtypes and identify clinical events. Regression algorithms learn to 
map an observation to a continuous output. These algorithms are commonly used to 
estimate symptom severity [129], quantify physical activity, and forecast future events 
[130]. Among the selected papers that were focused on the classification of a diagnosis or 
state, the four most common algorithms were Random Forest, Support Vector Machine, 
Logistic Regression, and k-Nearest Neighbors (Figure 4). Some additional classification 
algorithm families identified were Naïve Bayes, Ensemble-based methods (including 
Decision Trees, Bagging, and Gradient Boosting), and Neural Networks (such as 
Convolutional, Artificial, and Recurring Neural Networks). The three most common 
algorithms for the regression-focused papers were Linear Regression (including linear 
mixed effects models), Support Vector Machine, and k-Nearest Neighbors (Figure 4). We 
found that most studies only considered or reported a single ML algorithm (N = 32). 
Additionally, 29 of the studies considered or reported two to five ML algorithms, and the 
remaining 5 studies considered six or more. The following section provides an overview 
of the most widely used machine learning models, their properties, advantages, and 
disadvantages. In addition, we discuss some notable off-the-shelf ML approaches and 
some custom-built ML methods such as transfer learning, multi-task learning, and 
generalized and personalized models.  
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Figure 4. Machine learning algorithms and their respective objectives in the selected studies. 

7.1. Tree-Based Models 
A Decision Tree (DT) is a supervised non-parametric algorithm that is used for both 

classification and regression. A DT algorithm has a hierarchical structure in which each 
node represents a test of a feature, each branch represents the result of that test, and each 
leaf represents the class label or class distribution [131,132]. A Random Forest (RF) 
algorithm is a supervised ensemble learning algorithm consisting of multiple DTs that 
aims to predict a class or value [133]. Ensemble learning algorithms use multiple ML 
algorithms to obtain a prediction [134]. Tree-based models have several benefits. As each 
tree is only based on a subset of features and data and because they make no assumptions 
about the relationship between the features and distribution, they are not sensitive to 
collinearity between features, can ignore missing data, and are less susceptible to 
overfitting (for multiple trees), making the model more generalizable [135]. Another 
advantage of RF and DT models is that they can support linear and nonlinear relationships 
between the dependent and independent variables [136]. Further, as the design of the RF 
models can be interpreted in terms of feature importance and proximity plots, the 
interpretability of the RF model is feasible. However, a limitation of using tree-based 
models is that small changes in the data can lead to drastically different models. 
Additionally, the more complicated a tree-based model becomes, the less explainable a 
model becomes. However, pruning the trees can help to reduce the complexity of the 
model. 

According to the selected studies, RF is a versatile and powerful model used for 
classification and regression tasks across multiple datatypes and populations. RF models 
have been used for the classification of diagnoses among PD patients [107,110], Multiple 
Sclerosis [34,118], and BD and unipolar depressed patients [45,61]. It is also a popular 
classification model for the classification of states or episodes, such as the detection of 
flares among Rheumatoid Arthritis or Axial Spondylarthritis patients [32] and tremor 
detection among PD patients [137], to quantify physical activity among cerebral palsy 
patients [138] and detect the moods of BD patients [69,139]. RF regression algorithms have 
also been used to predict anxiety deterioration among patients who suffer with anxiety 
[140].  

7.2. Support Vector Machines  
A Support Vector Machine (SVM) is a supervised algorithm that is used for 

classification and regression tasks. The objective of a SVM is to identify the optimal 
hyperplane based on the individual observations, also known as the support vectors. For 
SVM regression, the optimal hyperplane represents the minimal distance between the 
hyperplane and the support vectors. Whereas for SVM classification, the objective is to 
find the hyperplane that represents the maximum distance between two classes [141]. The 
hyperplanes can separate the classes in either a linear or non-linear fashion [136]. Given 
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that SVMs are influenced by the support vectors closest to the hyperplanes, SVMs are less 
influenced by outliers, making them more suitable for extreme case binary classification. 
The performance of a SVM can be relatively poor when the classes are overlapping or do 
not have clear decision boundaries. This makes SVMs less appealing for classification 
tasks as inter class similarity is low. SVMs are computationally demanding models as they 
compute the distance between each support vector; hence, SVMs do not scale well for 
large datasets [142].  

SVM classifiers have been used to classify clinical populations (e.g., facial nerve palsy 
and their control participants) [143]. SVM classifiers have also been used to classify events 
or states, such as detecting gait among PD patients [104] and classifying seizures among 
epileptic children [144]. We identified studies that used SVM regression to estimate motor 
fluctuations and gait speed among PD and Multiple Sclerosis patients, respectively 
[74,145].  

7.3. k-Nearest Neighbors  
A k-Nearest Neighbor (k-NN) algorithm is a non-parametric supervised learning 

approach that can be used for multi-class classification and regression tasks. Classification 
k-NN algorithms determine class membership by the plurality vote of its nearest 
neighbors. They can estimate the continuous value of an output by calculating the average 
value of its nearest neighbors [136]. Given this, the quality of predictions is not only 
dependent on the amount of data but also on the density of the data (the number of points 
per unit). K-NN is simple to implement, intuitive to understand, and robust to noisy 
training data. However, the disadvantage is that k-NN is computationally slow when it is 
faced with large multi-dimensional datasets. Further, k-NN does not work well with 
imbalanced datasets, as under- or over-represented datapoints will influence the 
classification [146].  

The most popular application for k-NN algorithms is for wearable-based time series 
data. K-NN classification models have been used to classify PD and healthy controls [24], 
classify tremor severity [147], predict acute exacerbations of chronic obstructive 
pulmonary disease (AECOPD) [44], and identify mood stability among BD and MDD 
patients [33,69,148]. Using wearable data, k-NN regression models have been used to 
predict the deterioration of symptoms associated with anxiety disorder [140].  

7.4. Naïve Bayes  
A Naïve Bayes (NB) classifier is a supervised multi-class classification algorithm. NB 

classifiers calculate the class conditional probability—the probability that a datapoint 
belongs to a given class in the data [141,149]. NB classifiers are computational efficient 
algorithms; thus, they are suitable for real-time predictions, scale well for larger datasets, 
and can handle missing values. A limitation of NB is that it assumes that all features are 
conditionally independent; hence, it is recommended that collinear features are removed 
in advance. Another limitation is that when new feature-observation pairs do not resemble 
the data in the training data, the NB assigns a probability of zero to that observation. This 
approach is particularly harsh, especially when dealing with a smaller dataset. Hence, the 
training data should represent the entire population. 

As NB classifiers help form classification models, we found that NB classifiers have 
been used for the classification of tremors or for freezing gait among PD patients [52], as 
well as to classify flares among Rheumatoid Arthritis and Axial Spondylarthritis patients 
[32] and classify bipolar episodes and mood stability among BD and MDD patients 
[33,69,148].  

7.5. Linear and Logistic Regression 
A Linear Regression model is a supervised regression model that predicts a 

continuous output. It finds the optimal hyperplane that minimizes the sum of squared 
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difference between the true data points and the hyperplane. A Logistic Regression model 
is a supervised classification model that can be used for binomial, multinominal, and 
ordinal classification tasks. Logistic Regression classifies observations by examining the 
outcome variables on the extreme ends and determines a logistic line that divides two or 
more classes [136]. Linear and Logistic Regression are popular in algorithms as they are 
easy to implement, efficient to train, and easy to interpret. However, a limitation of both 
models is that they make multiple assumptions, e.g., that a solution is linear, the input 
residuals are normally distributed, and that all features are mutually independent [150]. 
Multicollinearity, the correlation between multiple features, and outliers will inflate the 
standard error of the model and may undermine the significance of significant features 
[151]. Further, outliers that deviate from the expected range of the data can skew the 
extreme bounds of the probability, making both algorithms sensitive to outliers in the 
dataset [150]. 

Linear Regression has been used to quantify tremors among Essential Tremor (ET) 
patients [116] and to estimate motor-related symptom severity among PD patients [31,93]. 
It has also been used to forecast convergence between body sides for Hemiparetic patients 
[130]. Logistic Regression was a popular approach for classifying PD diagnosis [107,110], 
Post-Traumatic Stress Disorder [109], and distinguishing fallers and non-fallers [152]. 
Logistic Regression has been used to classify drug effects, such as predicting the pre- and 
post-medication states among PD patients [22].  

7.6. Neural Networks 
Neural Networks (NN), also known as Artificial Neural Networks (ANN), can be 

used for unsupervised and supervised classification and regression tasks [153]. NN 
consists of a collection of artificial neurons (or nodes). Each artificial neuron receives, 
processes, and sends the signal to the artificial neuron connected to it. The neurons are 
aggregated into multiple layers, and each layer performs different transformations on the 
signal. The signal first travels from the input layer into the output layer while possibly 
traversing multiple hidden layers in between. NN offer several advantages, such as the 
ability to detect complex non-linear relationships between features and outcomes and 
work with missing data, while it also requires less preprocessing of the data and offers the 
availability of multiple training algorithms. However, the disadvantages of NN include 
increased computational burden, reduced explainability and interpretability (as NN are 
‘black box’ in nature), and the fact that NN are prone to overfitting [154]. However, it is 
important to highlight the growing number of studies that specifically explore explainable 
deep learning approaches for biomarker discovery and development. Studies utilizing 
methodologies such as LIME (Lime Tabular Explainer), SHAP (Shapley Additive 
exPlanations), and other visual inspections of feature distribution and importance have 
aided clinicians in understanding the model mechanisms. These approaches also provide 
patient-specific insights by describing the importance of each feature, which may, in turn, 
facilitate personalized treatment opportunities [90,155–157].  

The most popular applications for neural networks were for the classification of a 
diagnosis or classification of a state or event. The most popular application is the detection 
of tremors among PD patients [23,52,86,137,158]. NN have been used to classify unipolar 
and bipolar depressed patients based on motor activity [45,159], estimate depression 
severity [159], forecast seizures [160], and classify a treatment response using keyboard 
patterns among PD patients [161]. 

7.7. Transfer Learning 
Transfer learning (also known as domain adaption) refers to the act of deriving the 

representations of a previously trained ML model to extract meaningful features from 
another dataset for an inter-related task [162]. One applicable scenario is the training of a 
supervised ML model on data collected in a controlled setting (such as in a lab or clinic). 
The performance of the model may suffer when applied to a dataset collected under free-
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living conditions. Rather than developing a new model trained solely on a free-living 
condition dataset, transfer learning can use patterns learned from the controlled setting 
dataset to improve the learning of the patterns from the free-living conditions dataset.  

Transfer learning can also be a valuable technique for enhancing the utilization of 
limited or rare data [163]. One practical application is to employ pretraining on abundant 
control data and subsequently finetune the model on the specific population of interest to 
improve the model’s performance [163–165]. This approach not only optimizes the 
efficiency of utilizing scarce data but also facilitates model personalization. By adapting a 
pretrained model to individual characteristics or preferences, it becomes possible to create 
personalized models that better cater to unique needs or circumstances. Transfer learning 
thus offers a powerful means to leverage existing knowledge and make the most of 
available data resources, enhancing both the efficiency and personalization of biomarkers. 

Given its application, transfer learning reduces the amount of labeled data and 
computational resources required to train new ML models [162], thus making this method 
advantageous when the sensor modalities, sensor placements, and populations differ 
between studies. While we only identified two studies that applied transfer learning to 
estimate PD disease severity using movement sensor data [166,167], we predict that the 
application of transfer learning will enable future researchers to overcome the challenges 
of a limited dataset and develop more sensitive and effective ML models.  

7.8. Multi-Task Learning 
Multi-task learning (MTL) enables the learning of multiple tasks simultaneously 

[168]. Learning the commonalities and differences between multiple tasks can improve 
both the learning efficiency and the prediction accuracy of the ML models [168]. A 
traditional single-task ML model can have a performance ceiling effect, given the 
limitations of the dataset size and the model’s ability to learn meaningful representations. 
MTL uses all available data across multiple datasets and can learn to develop generalized 
models that are applicable to multiple tasks. To use MTL, there should be some degree of 
information shared between or across all tasks. The correlation allows MTL to exploit the 
underlying shared information or principles within tasks. Sometimes MTL models can 
perform worse than single-task models because of ‘negative transfers’. This occurs when 
different tasks share no mutual information or if the information of tasks are contradictory 
[169]. MTL models have been used to simultaneously model data sourced from two 
separate sources or to model multiple outcomes [170,171]. For example, Lu et al. explored 
the use of MTL to jointly model data collected from two different smartphone platforms 
(iPhone and Android) to jointly predict two different types of depression assessments 
(QIDS and a DSM-5 survey) [79]. They illustrated that the classification accuracy of the 
MTL approach outperformed the single-task learning approach by 48%; thus, the 
classification model benefited from learning from observations sourced from multiple 
devices.  

7.9. Generalized vs. Personalized  
ML algorithms can be trained on population data or individual subject data. 

Generalized models, which are trained on population data, are fed data from all 
participants for the purpose of general knowledge learning. Conversely, personalized 
models are trained on an individual’s data and take into consideration individual factors 
such as biological or lifestyle-related variations [172]. We have adopted these terms from 
Kahdemi et al.’s study, in which they developed generalized and personalized models for 
sleep-wake prediction [173]. The heterogenous nature of each population or individual 
can be a potential hinderance for generalizable models. A single individual’s deviation 
from the ‘norm’ may be viewed as a source of ‘noise’ in a generalized model. For example, 
patients with mood disorders such as MDD and BD have large inter-individual symptom 
variability. Abdullah et al. reliably predicted the social rhythms of BD patients with 
personalized models using smartphone activity data [30]. Cho et al. compared the mood 
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prediction accuracy of personalized and generalized models based on the circadian 
rhythms of MDD and BD participants [38]. Their studies illustrated that their personalized 
model predictions were, on average, 24% more accurate than the generalized models. 
These studies lay the groundwork for developing personalized models that are more 
sensitive to individual differences. 

8. Model Hyperparameters 
The process of building an effective ML model consists of two main steps: selecting 

the appropriate ML algorithm and optimizing the model performance by tuning its 
parameters. Each model consists of two types of parameters: (i) the parameters that are 
initialized and continuously updated throughout the learning process (e.g., the weights 
of neurons of a neural networks) and (ii) the hyperparameters that must be set prior to the 
learning process as they define the model architecture (e.g., the regularization parameters 
of a Linear Regression model, and the learning rates of a neural network) [174]. Every 
combination of the selected hyperparameters will have a direct influence on the 
performance of the learned model. For example, as the number of trees in a RF increases, 
the more features tend to be selected by the model, which may not always be relevant for 
the development of biomarkers [175]. Similarly, the number of layers, number of neurons 
per layer, activation functions, and the regularization techniques used for NN can each 
influence the model performance [176]. While most ML algorithms come with default 
values for the hyperparameters, these may not be optimal for the dataset at hand, and 
even tuned hypermeters are at risk of being non-optimal for a different dataset. The 
process of selecting the optimal hyperparameter configurations is known as 
hyperparameter tuning [177].  

To identify the optimal hyperparameters for a model, researchers must define the 
hyperparameter space and the hyperparameter search strategy. When defining the 
hyperparameter space, the distribution of the hyperparameter ranges can be either 
uniform or logarithmic. The uniform distribution assigns equal probability to all 
hyperparameter values within a manually defined range. The log-uniform distribution 
samples hyperparameter values uniformly between the logarithmic transformations of 
the lower and upper thresholds. We argue that log-uniform distribution is particularly 
useful when exploring values that vary over several orders of magnitude. Consider the 
example of tuning a linear regression model with the hyperparameter alpha, which 
determines the strength of regularization. To efficiently explore a wide range of alpha 
values, such as between 0.001 and 10, the log-uniform distribution allows for an evenly 
distributed search space over different orders of magnitude. Log-uniform distribution can 
be used for the initial exploration of a large range of hyperparameter values. The range 
can then be narrowed down to explore with a uniform-distribution to determine the 
optimal hyperparameters for the respective models.  

The manual tuning of hyperparameters is impractical due to the large number of 
available hyperparameters, hyperparameter configurations, and time-consuming model 
evaluations. Automated tuning approaches are preferred, and there are a wide variety of 
approaches available, including GridSearch, RandomSearch, and Bayesian Optimization 
[177]. GridSearch uses brute force to test a finite combination of hyperparameters to 
identify the optimal hyperparameter configuration [178]. This approach can suffer from 
the effects of dimensionality, as more potential hyperparameter configurations can be 
time-consuming and computationally expensive. An alternative to GridSearch is 
RandomSearch. RandomSearch only samples a subset of all possible hyperparameter 
configurations within a specific time or computational budget [179]. While RandomSearch 
only relies on a subsample of configurations, it has been shown to outperform the 
GridSearch method [179]. As GridSearch and RandomSearch do not consider previous 
performance evaluations for their hyperparameter optimization strategy, they are 
inefficient in exploring the hyperparameter search space. Bayesian Optimization, which 
uses Bayes Theorem, is a powerful approach. It considers previous hyperparameter 
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evaluations to choose which hyperparameters to evaluate next and disregards potential 
hyperparameter combinations that are deemed irrelevant [178]. This approach reduces 
the time and computations required for hyperparameter tuning. The benefit of using these 
more automated approaches to hyperparameter tuning is three-fold. First, it reduces the 
time effort required to optimize a ML model. Next, the performance of the ML models is 
improved as the hyperparameters explore different optimal model configurations for 
different datasets. Finally, when the hyperparameters and their ranges (together also 
referred to as the hyperparameter space) and the hyperparameter tuning methods are 
reported, the models and the findings become reproducible [180]. When similar 
hyperparameter tuning processes can be used for different ML algorithms for different 
datasets, researchers can then identify the optimal ML model.  

Among the selected studies, 25 discussed which hyperparameters were considered 
for their models [23,24,34,43,44,46,53,69,73,86,87,94,95,107–110,114,138,158,159,181–184], 
of which one stated they used the default hyperparameters of the models [69]. Only nine 
studies discussed how they selected or optimized their hyperparameters. We identified 
four studies that stated GridSearch was used for the hyperparameter tuning [36,46,95,110]. 
We did not identify any studies that used RandomSearch or Bayesian Optimization. The 
limited reporting of hyperparameters and the hyperparameter tuning process poses a 
problem for the transparency, reproducibility, and comparison of ML models. 

9. Model Evaluation 
Assessing a ML model’s performance is an essential component for determining the 

usability and reliability of the model. Depending on the objective of the research, it is often 
necessary to try to compare the performance of multiple ML models to identify the 
optimal model [185,186]. In ML, the terms metric and measure are often used 
interchangeably, but they do have slightly different meanings. A metric is a function used 
to evaluate the performance of a model, while a measure is a numerical summary of the 
performance of a model obtained using one or more metrics. It is best practice to use 
multiple metrics and model performance visualizations for the model evaluation, as a 
model may perform well for one evaluation metric and poorly for another. Using multiple 
evaluation metrics ensures that the model is operating optimally and correctly. The 
following sections provide more details about the performance metrics used for 
classification and regression models. Table 4 provides an overview of the most common 
performance metrics used in the selected studies, their respective calculations, and their 
clinical interpretations. 

Table 4. Clinical interpretations of common ML performance metrics (True Positive = TP, True 
Negative = TN, False Positives = FP, False Negatives = FN, Sum of Squares of Residuals = RSS, Total 
Sum of Squares = TSS, Number of Observations = N). 

Term Title 2 Title 3 

Accuracy 
𝑇𝑃 + 𝑇𝑁𝐴𝑙𝑙 𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 

Out of all the predictions, how many 
predictions were correctly identified as 
positive or negative? 

Precision 
𝑇𝑃𝑇𝑃 + 𝐹𝑃 

How many predictions were correctly 
labeled as patients out of all correctly 
classified patients and misclassified 
healthy controls? 

Specificity 
𝑇𝑁𝑇𝑁 + 𝐹𝑃 

How many predictions were correctly 
labeled as healthy controls out of all 
healthy controls? In other words, of all 
healthy controls, who were correctly 
identified as such? 
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Recall/Sensitivity 
𝑇𝑃𝑇𝑃 + 𝐹𝑁 

Of all the patients, who were correctly 
classified/identified as such? 

F1-score 
2 𝑥 (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙)𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙  

How many predictions were correctly 
labeled as patients (recall) and what was 
the accuracy with regards to correctly 
predicted patients (precision)? 

Mean Square Error 
1𝑁 𝑎𝑐𝑡𝑢𝑎𝑙 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 

What is the absolute difference between 
the true scores and the predicted scores? 

Root Mean Square Error ∑ (𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝐴𝑐𝑡𝑢𝑎𝑙 )𝑁  
What is the average difference between the 
true and the predicted scores (in the same 
unit of the true scores)? 

R2 1 − 𝑅𝑆𝑆𝑇𝑆𝑆 
What fraction of the variance in the data is 
captured by the model? 

9.1. Classification Measures 
Classification models have discrete outcomes; thus, a metric must reflect how often 

an observation belongs to the correct label or class [187]. There are three categories of 
classification measures: Threshold Metrics, Ranking Metrics, and Error Metrics. Threshold 
Metrics (such as accuracy and F1 score) quantify the prediction errors of the classification 
model as a ratio or rate. Ranking Metrics (such as the Receiver Operating Characteristics 
(ROC) and Area Under the Curve (AUC)) focus on evaluating classification models based 
on how effective they can discern separate classes. Error Metrics (such as Root Mean 
Square Error) quantify the uncertainty of the classification model’s predictions. While the 
Threshold and Ranking Metrics are focused on correct and incorrect predictions, the Error 
Metrics quantify the proportion of classification errors. 

As ML models are increasingly being used to perform high-impact tasks pertaining 
to clinical assessments, an evaluation metric must be selected based on what the 
stakeholders find to be important regarding the model prediction, which can make the 
selection of the model metrics challenging. As seen in Table 4, accuracy, sensitivity, 
specificity, and precision are calculated based on four test results. The True Positive (TP) 
and True Negative (TN) indicate the presence or absence of a diagnostic or characteristic. 
The False Positive (FP) and False Negative (FN) indicate the opposite of the true condition.  

Binary classification models typically involve a decision threshold hyperparameter 
that determines how the model assigns labels based on the predicted probabilities. The 
default threshold is typically 0.5, meaning that if the predicted probability is greater than 
0.5, the positive label is assigned, and vice versa. However, it is important to note that this 
threshold can be adjusted to accommodate specific needs or domain considerations. To 
evaluate the performance of binary classification models across different decision 
thresholds, the ROC curve is commonly used. The ROC curve provides an overview of 
the model’s performance by illustrating the trade-off between TP and FP rates at various 
threshold values. ROC can aid the assessment of the model’s performance across a range 
of decision thresholds and enable the selection of the threshold that aligns with a specific 
objective. 

It is worth noting that many classification metrics, including accuracy, precision, 
recall, and F1 score, assume binary labels. However, when dealing with multiclass 
classification problems, another approach is to use one-vs-rest or one-vs-one strategies, 
wherein the problem is decomposed into multiple binary classification tasks. The 
performance of the model on each task can then be evaluated using the binary 
classification metrics, and the results can be aggregated or averaged to provide an overall 
assessment of the model’s performance on the multiclass problem. 

Class imbalance can be an obstacle for assessing model performance. In particular, 
accuracy, AUC, ROC, may be sensitive to such imbalances [188]. Hence, when facing class 
imbalance, there are two approaches to consider: one can choose a metric that accounts 
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for class imbalance or one can choose to balance the classes. Metrics such as balanced 
accuracy, F1-score, or Matthews Correlation Coefficient (MCC) are common metrics for 
handling class imbalance, as identified by 15 studies 
[23,24,29,36,44,60,61,107,108,110,114,140,159,161,189]. Balanced accuracy represents the 
mean of the sensitivity and specificity, while the F1-score represents the mean of the 
precision and recall [190]. The MCC measures the correlation coefficient of the binary and 
even multiclass classes. Therefore, the MCC score is high only if the classification model 
correctly predicts both the positive and negative predictions [190,191].  

The other approach to handling class imbalances is adjusting the class distribution 
using oversampling or undersampling. We identified eight studies that used random 
over/under sampling or SMOTE [29,44–46,61,95,109,192]. Oversampling techniques 
duplicate the samples of the minority class, while undersampling removes samples of the 
majority class. However, these techniques also have their disadvantages, as the 
duplication of multiple samples can lead to overfitting of a model, while undersampling 
reduces the diverse representation of the majority class. Thus, we would specifically 
recommend using the Synthetic Minority Oversampling Technique (SMOTE) with Tomek 
Links or Edited Nearest Neighbor (ENN)—two undersampling techniques [193,194]. 
SMOTE is first applied to create an artificial minority class to minimize the class 
imbalance. Next, Tomek Links or ENN can be used to remove samples that are close to 
the boundaries between the classes, which would further separate the classes [193,194]. 

9.2. Regression Measures 
As regression models generate predictions on a continuous scale, the objective is to 

estimate how close the predictions were to the true values [195]. Among the studies 
selected, we found that regression models used Distance Metrics and Error Metrics to 
estimate the strength of the association or the distance between the predicted values and 
the true values [29,42,87,93,96,128,152]. We would like to emphasize that these metrics are 
used to compare the performance of the composite biomarkers rather than the 
performance of the individual features. The most common Distance Metrics were the 
correlation (also known as R) and the percentage of the variance explained (R2). Both were 
used to assess the strength of the association between the predicted and true values [196]. 
There is no rule of thumb for interpreting the strength of R2. While an R2 closer to 1 can be 
obtained in clinical trials, a low R2 can still be useful with respect to trends in the data. We 
would like to address two points of caution when using the R2 [185,187]. First, it is not 
always suitable to compare R2 across different datasets, as different clinical populations 
are likely to differ in their feature variance. Second, the R2 will increase with the number 
of features. To compensate for this, one may use the adjusted R2 to account for the number 
of features [197,198].  

The Error Metrics included the Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and Root Mean Squared Error (RMSE) [133]. The MAE measures the average 
absolute difference between the true and predicted values. The MAE is easy to interpret 
and robust to outliers. The absolute difference accounts for negative differences. The MSE 
squares the error instead of providing the absolute error, which gives more weight to the 
bigger errors. The MSE is sensitive to outliers and not easy to interpret, as the results will 
not have the same unit as the output. However, the RMSE provides an estimation of the 
error in the same units as the output while maintaining the properties of the MSE [199]. 

10. Model Validation 
In ML, model validation refers to the process of evaluating the generalizability of a 

trained model on an unseen dataset. Selecting the most appropriate model validation 
approach depends on the size and characteristics of the datasets. Three datasets are 
required for model validation: the training, test, and validation datasets. In most cases, the 
validation dataset can be a subset of the original dataset; however, this can lead to data 
leakage, which could produce overly optimistic results. Another approach is to create a 
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validation dataset from an independent (but comparable) dataset, which ensures an 
unbiased and independent evaluation of the ML model. However, a limitation is that the 
performance evaluation may reflect high variance due to the limited size of the dataset 
[200]. Moreover, it is crucial to highlight that a participant should only be present in a 
single dataset, such as the training dataset, and should not simultaneously appear in other 
datasets such as the testing or validation datasets. When a participant’s observations are 
distributed across multiple datasets, data leakage can occur, compromising the accuracy 
estimation and its applicability to new participants [183]. As a result, cross-validation on 
the observation level rather than the participant level is methodologically flawed. 
Unfortunately, this is a common issue and needs to be accounted for in future studies 
[201].  

Cross-validation is a popular validation method that uses resampling to train, test, 
and validate a model using different subsets of the data. The training dataset is used to 
train the ML model to learn the patterns within a dataset. The validation dataset is used 
to tune the hyperparameters of the model based on the performance of the ML model 
trained on the training dataset. The test dataset provides an unbiased estimate of the 
performance of the final ML model after training and validation. In the scenario when 
both validation and test datasets are used, the test datasets are only used to assess the 
model once (via hold-out validation) or multiple times (via nested cross-validation). In 
general, datasets need to meet two main requirements. The datasets should not have 
shared or overlapping observations to ensure that data leakage does not lead to bias in the 
estimates, and all observations must be statistically independent [202]. When applying 
feature engineering or feature selection with cross-validation, any transformation or 
selection steps should be performed within each fold of the cross-validation to prevent 
biasing in the training of the prediction model with information from the test dataset [203]. 
The overall performance of the prediction models, obtained by averaging across each 
iteration of the cross-validation, evaluates the effectiveness of the combined feature 
reduction and learning methods in estimating the label for a given dataset. 

Among the selected studies, we found that the most popular cross-validation 
methods were k-fold cross-validation (N = 27), Leave-One-Out cross-validation (N = 16), 
and custom validation (N = 8). Overall, 15 studies did not report the use a validation 
method. K-fold cross-validation randomly splits the datasets in ‘k’ folds; one-fold is used 
for testing and the remaining folds are used for training. This step is repeated until every 
unique fold has been used as the test dataset, and the overall performance is based on the 
average of the performance of each model in each fold [204]. Leave-one-out cross-
validation is a specific type of k-fold cross-validation, wherein individual observations (or 
participants) are the test datasets, and the remaining cases are used for training. Leave-
one-out cross validation prevents data leakage across datasets, as repeated measurements 
of the same subjects can lead to the violation of independence assumption for ordinary 
cross-validation [204–206].  

We would like to highlight the advantages of the nested cross-validation approach. 
While nested cross-validation was the least popular approach, we would argue that nested 
cross-validation is a more robust approach for selecting and evaluating a ML model [207]. 
Currently, the model section without the nested cross-validation approach uses the same 
data to both tune the model hyperparameters and evaluate its performance. Therefore, 
information is “leaked” between the training and validation of the model, which can lead 
to overfitting [207]. Nested cross-validation consists of an inner loop and an outer loop. 
The outer loop assesses the model performance, while the inner loop assesses the 
hyperparameter selection [207]. Each iteration of the outer loop is split into a different 
combination of training and test sets. The outer loop training set is used in the inner loop, 
which is further split into a training and validation dataset. The inner loop split is repeated 
over k-folds, and the best performing model across the k-folds is evaluated in the outer 
loop. This ensures that different data are used to optimize the models’ hyperparameters 
and evaluate the model’s performance. The final model performance represents the 
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average and standard deviation of the model performance as selected by each of the outer 
loops. Without the standard deviation or confidence intervals, it is not possible to evaluate 
the spread or stability of the prediction error of the given models [208,209]. 

It is important to highlight that cross-validation is only used to approximate the 
generalization error of the models built and not to build the final model that will be used 
for making predictions [205,210]. The average prediction error across the folds gives an 
expected error for a single model built on the single dataset. If the variance of the 
prediction error is too high, then the model is considered unstable. To select a single 
model, it is recommended that researchers rebuild the model using the full dataset [211]. 
If an external validation set is available, then this validation set can be used to evaluate 
and compare the single prediction error to that of the cross-validation prediction error. 

11. Recommendations 
In this recommendation section, we address the main issues consistently identified 

in the selected studies and how to amend these issues for future trials (see Figure 5 for a 
simplified overview of these recommendations). It is important to bear in mind the 
regulatory implications for developing ML-derived biomarkers. Within the European 
Union, AI medical systems and devices are considered high risk; therefore, they are 
subject to stringent reviews prior to being made available on the market [212]. These 
review requirements emphasize the importance of achieving high levels of performance, 
transparency, and minimal risk in ML-derived biomarker development [213]. High 
performance implies that the developed ML models must be accurate, robust, and capable 
of reliably and consistently predicting the target outcome variable. Furthermore, 
transparency in ML-derived biomarker development refers to the provision of clear and 
adequate information to the user, including appropriate human-readable measures to 
minimize risks associated with the use of the system. The development of ML-derived 
biomarkers must also aim to minimize risks and discriminatory outcomes, which can be 
achieved by training the ML model on high-quality datasets that are representative of the 
target population and by conducting adequate risk assessment checks [214]. These 
considerations are critical for ensuring the safe and effective use of ML-derived 
biomarkers in clinical practice. 
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Figure 5. General recommendations for building an effective and reproducible ML pipeline. 
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When conducting a study focused on disease classification or estimation, the 
inclusion of control data can serve several purposes. By comparing the data from 
individuals with the condition of that of the healthy controls, researchers can discern 
whether the observed differences are specific to the condition or a result of unrelated 
factors. Moreover, analyzing the performance of a model on control subjects can shed light 
on the biomarker’s effectiveness and reliability. By evaluating how well the model 
distinguishes between healthy controls and patients with the condition, researchers can 
gain a better understanding of its predictive capabilities. This evaluation can provide 
insights into potential false positives or false negatives that may occur when using the 
model in real-world settings. 

It is worth noting that, when including control data, the control data should be 
appropriately matched with the patient population data. Having age- and gender-
matched control subjects can help minimize confounding variables, improving the 
accuracy of the analysis. This matching process allows researchers to draw more robust 
conclusions about the relationship between the identified features or patterns and the 
disease activity while also reducing the potential impact of demographic factors on the 
results. 

The finding that only half of the studies included healthy controls is significant as it 
highlights a potential gap or limitation in the existing body of research. Without the 
inclusion of controls, it becomes challenging to attribute identified features or patterns 
solely to the CNS disorder or the severity of the condition. Further, if the dataset only 
contains a relatively homogeneous population, it calls the reliability and predictive 
capabilities of the models into question. We encourage future researchers to include 
control subjects in their studies, as it would improve the strength of their biomarkers and 
the validity of their findings. 

11.2. Data Quality and Preprocessing 
The remote monitoring of clinical trials can generate large and complex datasets that 

include longitudinal data from multiple subjects and data sourced from multiple sensors, 
resulting in a multi-dimensional data structure. To this point, we recommend using the 
WHO mHealth Technical Evidence Review Groups’ mHealth evidence and evidence 
reporting and assessment (mERA) 16-item checklist to provide transparency on which 
mHealth invention was used, where, and how it was implemented to support the 
reproducibility of the mHealth data collection [215]. To ensure the quality and reliability 
of the data, it is important to assess the quality of the data. This assessment includes 
examining the data for missing and outlier data and understanding how these factors 
might affect the generalizability and reproducibility of the ML model. While most studies 
provide detailed information on patient populations, the devices used, and the data 
collected, they often underreport information related to data quality and preprocessing 
steps. Therefore, it is important to provide sufficient details on the methods used to 
preprocess the data, including the quantity of missing and outlier data and the strategies 
employed to handle such data. This information can ensure that the data collection and 
preprocessing process can be reproduced, which, in turn, can enhance the credibility and 
generalizability of the ML model. 

11.3. Feature Engineering and Selection 
There is a wide variety of manual or automated techniques used for engineering and 

selecting features to feed a model. ML models perform best when feature engineering and 
selection are leveraged to formulate potentially clinically relevant features from existing 
data. In addition, the performance of the ML model can be optimized, and the 
computational time can be reduced when the redundancy across the features is reduced. 
While only selecting the most informative features can remove noise (therefore reducing 
the likelihood of overfitting), selecting too few features may reduce the strength of the 
(combined) signal in the dataset, making the ML model vulnerable to underfitting. Feature 
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engineering and selection can be guided by domain expertise and/or automated statistical 
models, where multiple features are evaluated by their importance in predicting the 
outcome. While automated feature engineering techniques, such as clustering, PCA, and 
DL, can be used to extract a reduced set of representative features, this risks a potential 
decline in interpretability, which may limit its clinical application. 

11.4. Model Configuration and Optimization 
When selecting the ML models, there are several factors that should be considered, 

such as model objectives, model types, model hyperparameters, and model evaluation. 
Poor design choices and lenient hyperparameter tuning and validation in these steps can 
lead to poor model performance. We recommend that researchers carefully consider each 
step of building their ML pipeline by comparing multiple ML algorithms, using 
automated methods for assessing multiple hyperparameter configurations, and using 
nested cross-validation to both optimize and validate the ML models. 

11.5. Model Validation 
We would recommend using a minimum of three datasets to validate a ML model 

and train, validate, and test a dataset. At no point should the test set be used for the model 
configuration, which includes the data transformation, feature engineering, and selection, 
or the tuning of the hyperparameters. The test dataset could either be a subset of the 
original data (with no overlapping subjects or observations) or a separate external dataset. 
The use of an external dataset is ideal as this ensures that there is no influence of bias 
during the data collection period and that there is no data leakage between the datasets. 
If an external dataset is not available or if the dataset is not sufficiently large, we 
recommend nested cross-validation. This resampling method supports model 
hyperparameter tuning and performance evaluation without the risk of data leakage 
across the dataset. 

It is crucial to report the evaluation metric results for each dataset. In the case of cross-
validation reporting, we recommend that researchers report the distribution of the 
performance measures (e.g., the mean and standard deviation or median and 95% 
confidence interval) across the folds to show the average and variability of the 
performance of the models. As cross-validation evaluates the prediction error across 
multiple ML models, we would also recommend reporting the performance of the final 
model selected. This is achieved by re-training a ML model on the full dataset and 
evaluating the performance on an external dataset [207,210]. This would give insight into 
how well the model would perform under different circumstances. We also highly 
recommend using multiple evaluation metrics for assessing the model’s performance. 
Seeing as a model might excel for one metric and fail for another, this underscores the 
need for comprehensive evaluation. Employing multiple metrics ensures optimal 
operation and reduces the likelihood of blind spots. 

Once the final model has been trained, there are three approaches to choose from to 
apply the model to a new target dataset. The first approach is to test the model “as-is”, 
implying that the ready-made model can be used in its original state without 
modifications [216]. In the second scenario, the train data and the target data may have 
different characteristics, which may lead to a distribution shift. The type of distribution 
shift between the two datasets can occur for many reasons, including different mHealth 
devices used for data collection, environmental noise, and sampling bias [217]. When this 
occurs, transfer learning can be used to finetune the ready-made model and update its 
weights to better suit the target dataset [216]. In the third scenario, the target dataset may 
have different requirements than the original training dataset [216]. As a result, the 
decision boundary of the classification model can be altered, such as optimizing the model 
for a sensitivity of 90% instead of accuracy. Whether testing the model as-is, employing 
transfer learning, or adjusting the decision boundary, these strategies offer flexibility in 
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adapting the model to different settings and improving its performance for validation 
purposes. 

11.6. Model Reproducibility and Interpretability 
Equally important as the model performance are the ML models’ reproducibility and 

interpretability. Reproducibility is a core component for ensuring that a ML model can be 
validated and reused by clinical researchers. Technical reproducibility involves using the 
same computational procedures to produce consistent model outcomes. Statistical 
reproducibility ensures that the model demonstrates similar statistical performance across 
different subsets of data. Conceptual reproducibility refers to achieving consistent results 
under new conditions, such as data collected from different settings [216]. Transparency 
regarding data quality, feature engineering and selection methods, the hyperparameters 
considered and selected, and the model validation protocol can help ease the ability of the 
scientific community to recreate the work in the published literature. Best practices for 
reproducibility include publishing the code on GitHub or by publishing FAIR metadata 
[211,218,219]. 

Given the potential clinical application of ML models, prior to modeling, researchers 
should determine the model’s interpretability requirement. While ML models provide 
researchers with what was predicted, interpretability requires that the model can explain 
why it made the prediction [185]. Interpretability enables us to understand the causal 
relationships between the data and the ML model’s predictions. There are two situations 
in which the interpretability of a model is required: when an inaccurate prediction can 
have severe or even fatal consequences for the patients (such as a misclassified diagnosis 
[220]) and when the interpretability can be used to identify novel relationships between 
clinical factors and the predicted outcome (such as factors influencing treatment outcomes 
[221]). There can be two situations in which interpretability is not required: situations in 
which incorrect predictions do not have severe consequences (such as counting the 
number of coughs [222]) or situations in which the ML model has been sufficiently 
validated in real clinical applications, even if the predictions are not perfect [223]. While 
black box models may offer more accurate predictions than an interpretable model, they 
only provide limited insight into how the predictions were made. Therefore, both 
interpretable and black box models have their respective merits. 

There are two broad approaches towards achieving interpretability [224]. One 
approach is to use easy-to-interpret models, such as Linear or Logistic Regression, where 
the coefficients of the features can provide insight into the features’ associations with the 
predicted outcome. The other approach is to use explanation methods for explaining 
complex or black box models, such as SHapley Additive exPlanations plots (SHAP), Local 
Interpretable Model-agnostic Explanations (LIME), or Anchors [224]. We recommend that 
researchers report whether their final selected model was an interpretable model or a 
black box [225]. If it was interpretable, we recommend discussing what interpretations can 
be derived from the models. 

12. Conclusions 
The rise and breadth of ML applications in clinical trials highlight the increasing 

reliance and importance of ML in the development of novel biomarkers [226]. While the 
advances in ML applications have demonstrated great potential for innovative biomarker 
development, the process of its development is not well documented, which, in turn, 
limits the reproducibility of these findings. This review has illustrated the steps taken to 
translate raw data from mHealth technologies into meaningful clinical biomarkers using 
ML. Given the lack of consistent reporting in the ML methods, the present review cannot 
provide a complete or detailed picture of the notable and generic practices. However, the 
authors have provided an overview of the status quo of the development and translation 
of ML-derived biomarkers in mHealth-focused clinical trials. The recommended checklist 
provided in the review could serve as a foundation for the design of future ML-derived 
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biomarkers in conventional ML practices. By encouraging consistent and transparent 
reporting, researchers can accelerate the integration of novel biomarkers derived from 
mHealth sensors and ML pipelines into future clinical trials. 
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