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Abstract: Sparse arrays are of deep concern due to their ability to identify more sources than the
number of sensors, among which the hole-free difference co-array (DCA) with large degrees of
freedom (DOFs) is a topic worth discussing. In this paper, we propose a novel hole-free nested array
with three sub-uniform line arrays (NA-TS). The one-dimensional (1D) and two-dimensional (2D)
representations demonstrate the detailed configuration of NA-TS, which indicates that both nested
array (NA) and improved nested array (INA) are special cases of NA-TS. We subsequently derive the
closed-form expressions for the optimal configuration and the available number of DOFs, concluding
that the DOFs of NA-TS is a function of the number of sensors and the number of the third sub-ULA.
The NA-TS possesses more DOFs than several previously proposed hole-free nested arrays. Finally,
the superior direction of arrival (DOA) estimation performance based on the NA-TS is supported by
numerical examples.

Keywords: direction of arrival estimation; sparse array; hole-free nested array with three sub-ULAs;
difference co-array; degrees of freedom

1. Introduction

Direction of arrival (DOA) estimation, as an important means to obtain source angles,
has made significant progress [1–5]. However, the uniform linear arrays (ULAs) [6] and
uniform planar arrays [7–9] are typically utilized in conventional sensor direction-finding
systems to avoid spatial aliasing, whose decreased degrees of freedom (DOFs) and huge
hardware overhead no longer meet the practical needs and development of the current
orientation systems.

Sparse arrays [10–13] have been favored by many scholars and engineers for their
excellent properties such as enhanced DOFs [10], reduced mutual coupling [11] and low
redundancy [12]. In the content of the difference co-array [14], sparse arrays can detect
more sources than physical sensors, providing a new perspective for DOA estimation.

The best-known and fundamental sparse geometry is the nested array (NA) [10],
which acquires hole-free lags in the yielding difference co-array, thereby promoting the
application and development of the subspace-based techniques [10,15–17]. Afterwards,
extensive efforts have been devoted to enhancing the attainable number of uniform DOFs
(uDOFs). An improved nested array (INA) was proposed in [18], which adjusts the inter-
sensor spacing between the inner and outer sub-ULAs and adds an additional sensor at
the end to provide enhanced uDOFs. In [19], an extension of NA (EoNA) with larger array
aperture and more uDOFs was developed by shifting the N2-1 sensors at the end of NA
backward to the unit underlying grid. Enhanced Nested Array (ENA) was constructed
in [20] by arranging a dense ULA and a sparse ULA on both sides of a single sensor.
Moreover, super nested array (SNA) [21], augmented nested array (ANA) [22], generalized
nested array (GNA) [23] and enhanced generalized nested array (EGNA) [24] have been
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designed from alleviating the mutual coupling; SNA and GNA cannot improve the DOFs,
and holes exist in both ANA, GNA and EGNA.

Another popular sparse geometry is the coprime array (CPA) [11], which suppresses
the mutual coupling due to its larger inter-sensor spacing but provides a smaller number
of uDOFs as compared with NA. This array and its variants [25–30] have also been widely
studied, but they inevitably encounter discontinuous lags in the generating difference
co-array. Although various approaches, such as compressed sensing (CS) [31], virtual array
interpolation [32,33] and sensor array motions [34,35], have been proposed to solve this
problem, CS and virtual array interpolation bear a huge computational burden, and sensor
array motions require a quasi-stationarity environment where the source locations are
considered invariant over array motion of half wavelength or multiples half wavelength.
Therefore, the subspace-based techniques such as [10,15–17] are still the most direct and
efficient estimation algorithms.

In this paper, a novel nested array with three sub-ULAs (NA-TS) is proposed for DOA
estimation. NA-TS can offer a large number of uDOFs and its hole-free feature makes it
very compatible with subspace-based algorithms. We derive the closed-form expression
for NA-TS and compare the advantages over existing hole-free nested arrays.

The paper outline is as follows: The complete process of sparse array signal processing
is introduced in Section 2. In Section 3, the configuration of NA-TS is defined, and its
properties are investigated. Simulation results are presented in Section 4. Finally, the
conclusions are drawn in Section 5.

2. Sparse Array Signal Processing

In this section, we focus on the complete process of sparse array signal processing,
which mainly includes the signal model, difference co-array and DOA estimation methods.
Meanwhile, we also introduce some related terminologies to help readers understand
the paper.

2.1. Signal Model

Let us consider a sparse array with N sensors fixed at the locations S× λ/2, where S
and λ denote the normalized location set and source wavelength, respectively. Location set
S is an integer set

S = {ln|n = 0, 1, · · · , N − 1} (1)

For the sparse array, the steering vector for a certain direction θ is expressed as a(θ) =[
e−j(2π/λ )l0d0 sin θ , e−j(2π/λ )l1d0 sin θ , · · · , e−j(2π/λ )lN−1d0 sin θ

]T
, where j =

√
−1 represents

the imaginary unit. d0 represents the unit inter-sensor spacing. [·]T represents the transpose
operator.

Assume that K far-field narrowband and uncorrelated sources impinge on the sparse
array S from directions Θ = {θk|k = 1, 2, · · · , K }. To be specific, there are sources
{sk(t)|k = 1, 2, · · · , K } with powers

{
σ2

k |k = 1, 2, · · · , K
}

, where t = 1, 2, · · · , L, and L
is the number of sampling snapshots. Then, the array output, at snapshot t, is modeled as

x(t) =
K

∑
k=1

sk(t)a(θk) + n(t) = As(t) + n(t) (2)

where A is the array manifold matrix with the kth column being {a(θk)|k = 1, 2, · · · , K }.
s(t) = [s1(t), s2(t), · · · , sK(t)]

T is the source vector. n(t) = [n1(t), n2(t), · · · , nN(t)]
T is the

additive white noise vector following the complex Gaussian distribution CN
(
0, σ2

nIN
)
,

which is independent of the sources. σ2
n represents the noise power, and IN represents the

N × N-dimensional identity matrix.
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2.2. Difference Co-Array

Under the above assumptions, the covariance matrix of x(t) can be calculated as

R = E
[
x(t)xH(t)

]
= ARsAH + σ2

nIN (3)

where Rs = E
[
s(t)sH(t)

]
= diag

[
σ2

1 , σ2
2 , · · · , σ2

K
]

is the source covariance matrix. The term
σ2

nIN is the noise covariance matrix. E[·] represents the expectation operator. [·]H represents
the Hermitian transpose operator. diag[·] forms a diagonal matrix from the entries.

Note that in practice, (3) can be approximated by the average of multiple sampling
snapshots

R̂≈ 1
L

L

∑
t=1

x(t)xH(t) (4)

Then, following the Khatri–Rao processing [14], we vectorize (3) to yield the following
model

r = vec(R) = (A∗ ◦A)p + σ2
nvec(IN) = Bp + σ2

ni (5)

where p =
[
σ2

1 , σ2
2 , · · · , σ2

K
]T . i = vec(IN) =

[
eT

1 , eT
2 , · · · , eT

N
]T with {ei|i = 1, 2, · · · , N }

being a column vector of 1 in the ith row and 0 in the rest. The symbol ◦ represents
the Khatri–Rao product. [·]∗ represents the conjugate operator. vec(·) represents the
vectorization operator.

Comparing (2) and (5), r can be viewed as an output of a virtual array whose manifold
matrix is expressed as A∗ ◦ A. The virtual array is the well-known difference co-array
whose sensor locations are given by the difference set

D = {lm − ln|m, n = 0, 1, · · · , N − 1} (6)

Next, we will define several useful terminologies regarding the difference co-array.

Definition 1 (DOFs): For a given sparse array S, the DOFs is the cardinality of its difference
co-array D, i.e. , DOFs = |D|.

Definition 2 (uDOFs): For a sparse array S, let U represent the largest consecutive segment
around zero in D, then the cardinality of U is termed uDOFs, i.e., uDOFs =|U|.

Definition 3 (Hole): The smallest consecutive lags containing D is defined as
V , {m|min(D) ≤ m ≤ max(D)}. Thus, an integer h is considered as a hole in the difference
co-array if h ∈ V but h /∈ D.

Definition 4 (Restricted Array): A restricted array refers to an array without holes in its differ-
ence co-array. In other words, for a restricted array, we have D = U = V.

It is obvious that |V| ≥ |D| ≥ |U|, where the equal sign is taken if and only if the
difference co-array is hole-free.

Now, let us proceed to consider the single-snapshot model. Note that duplicate
elements and holes are allowed in D, we need to use a |U| × N2-dimensional selection
matrix J to update (5)

y = Jr = B1p + σ2
ne (7)

where J is a binary matrix with only a 1 in each row, whose position is determined by the
index of the selected element among D. B1 denotes a |U| × K-dimensional array manifold

matrix of a virtual ULA. The term e =
[
01×(|U|−1)/2, 1, 01×(|U|−1)/2

]T
.
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2.3. DOA Estimation

Assuming [y]i represents the i + (|U|+ 1)/2 th component of vector y, we construct
the Toeplitz matrix as follows:

T =


[y]0 [y]−1 · · · [y]−(|U|−1)/2
[y]1 [y]0 · · · [y]−(|U|−1)/2+1

...
...

. . .
...

[y](|U|−1)/2 [y](|U|−1)/2−1 · · · [y]0

 (8)

Subsequently, applying the MUSIC [2] or ESPRIT [3] algorithm on T can resolve up to
(|U| − 1)/2 DOAs.

3. Nested Array with Three Sub-ULAs (NA-TS)

As we all know, nested array provides more DOFs than the number of sensors by
systematically nesting two sub-ULAs with different inter-sensor spacing, thereby obtaining
accurate estimation performance. To acquire more DOFs, a novel nested array with three
sub-ULAs, named as NA-TS, is proposed in this section.

3.1. Configuration

It is well known that the INA is constructed by two ULAs and an additional sensor,
and the resulting high DOFs is more conducive to DOA estimation. Inspired by this, we
generalize the additional sensor at the end into an N3-sensor uniform linear array with an
interspacing of d0. To obtain a hole-free difference co-array, we still preserve the distance
between adjacent sub-arrays. Here, we use gapi,j to represent the distance between the
first sensor in the jth sub-ULA and the last sensor in the ith sub-ULA. Thus, we have
gap1,2 = d0 and gap2,3 = (N1 + 1)d0, respectively. In this case, the distance between the
last sensor in the 3rd sub-ULA and the last sensor in the 2nd sub-ULA is (N1 + N3)d0.
Therefore, to further enhance the DOFs, we can set the interspacing of the 2nd sub-ULA to
(N1 + 1 + N3)d0. Then, we obtain the NA-TS shown in Figure 1, whose normalized sensor
locations can be defined by the following set S, i.e.,

S = S1 ∪ S2 ∪ S3 (9)

where
S1 = {s1|s1 = 0, 1, · · · , N1 − 1}
S2 = {N1 + (N1 + 1 + N3)s2|s2 = 0, 1, · · · , N2 − 1}
S3 = {N1 + (N1 + 1 + N3)(N2 − 1) + (N1 + 1) + s3|s3 = 0, 1, · · · , N3 − 1}

(10)
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Figure 1. Nested array with three sub-ULAs (NA-TS), where we assume N1 = 2, N2 = 4 and N3 = 2. 
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Figure 1. Nested array with three sub-ULAs (NA-TS), where we assume N1 = 2, N2 = 4 and N3 = 2.

Remark 1. According to (10) and (11), we can observe that, in case of N3 = 0, the proposed array
configuration degenerates into NA. If we set N3 = 1, the INA configuration can be constructed.
Thus, both NA and INA can be interpreted as special cases of the NA-TS.

Remark 2. To further understand the NA and the proposed NA-TS, Figure 2 shows the two-
dimensional (2D) representations (defined in [21]) of the two sparse arrays, where Li represents
the ith layer defined as the positions from (i− 1)(N1 + 1 + N3) to i(N1 + 1 + N3) − 1. It is
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appreciated from the 2D representations that NA-TS is generated by rearranging the elements of the
NA in the (N1 + 1 + N3)× (N2 + 1) = 7× 7 -layer plane, thus leading to improved DOFs and
array aperture.
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Figure 2. 2D representations of (a) NA, (b) NA-TS (N3 = 1), (c) NA-TS (N3 = 2), (d) NA-TS (N3 = 3),
(e) NA-TS (N3 = 4), and (f) NA-TS (N3 = 5), where N = 12. The black, blue and red circles with
numbers denote the 1st sub-ULA, 2nd sub-ULA and 3rd sub-ULA sensor locations, respectively,
while crosses indicate empty space.

3.2. Properties

Definition 5. The difference co-array of the proposed NA-TS is defined as

D = D+ ∪D− (11)

where D+ = {s− s̃|s, s̃ ∈ S, s ≥ s̃} and D− = {s̃− s|s, s̃ ∈ S, s ≥ s̃}.

Based on the Definition 5, the properties of NA-TS are derived as the following
proposition.

Proposition 1. In case of N1 ≥ 1, N2 ≥ 2, N3 ≥ 1, the proposed NA-TS is a restricted array,
and 2(N1N2 + N2N3 + N1 + N2)− 1 DOFs can be obtained.
Proof. See Appendix A. �

Proposition 2. Given anN = N1 + N2 + N3-sensor NA-TS, the closed-form expression for the
number of DOFs is a function of N and N3, i.e., |D| = N2/2 + 2N − 2N3 − 1 in case of N is
even, and |D| = N2/2 + 2N − 2N3 − 3/2 in case of N is odd.
Proof. See Appendix B. �

3.3. Comparisons

The optimal DOFs and corresponding solutions for NA-TS and other restricted nested
arrays (including NA [10], EoNA [19], ENA [20]) are summarized in Table 1. We can see
that, like other configurations, the NA-TS has a simple closed-form expression for DOFs,
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while possesses more DOFs and effective virtual aperture. Particularly, the maximum DOFs
of NA-TS is obtained in case of N3 = 1.

Table 1. Comparisons of the optimal DOFs and corresponding solutions for relevant arrays.

Arrays N Optimal N1, N2, N3 DOFs

NA
Even N1 = N/2, N2 = N/2, N3 = 0 N2/2 + N − 1

Odd N1 = (N − 1)/2, N2 = (N + 1)/2, N3 = 0 N2/2 + N − 1/2

EoNA
Even N1 = N/2, N2 = N/2, N3 = 0 N2/2 + N + 1

Odd N1 = (N − 1)/2, N2 = (N + 1)/2, N3 = 0 N2/2 + N + 3/2

ENA
Even N1 = N/2, N2 = N/2, N3 = 0 N2/2 + N + 1

Odd N1 = (N − 1)/2, N2 = (N + 1)/2, N3 = 0 N2/2 + N − 1/2

NA-TS

Even N1 = (N − 2N3)/2, N2 = N/2,
1 ≤ N3 < N/2 N2/2 + 2N − 2N3 − 1

Odd N1 = (N − 2N3 − 1)/2,
N2 = (N + 1)/2, 1 ≤ N3 < (N − 1)/2 N2/2 + 2N − 2N3 − 3/2

4. Simulation Results

In this section, extensive numerical examples are provided to evaluate the superiority
of NA-TS, where CPA [11], NA [10], EoNA [19] and ENA [20] are selected as contrasts.

4.1. Degrees of Freedom

In the first numerical example, we evaluate the DOFs property for different configura-
tions. In Figure 3a, the DOFs of NA-TS are plotted as a function of N3 for different numbers
of sensors. Note that NA-TS degenerates into NA when N3 = 0. We can draw the conclusion
that for NA-TS with any number of sensors, the DOFs are greater than those in NA in case
of N3 ≥ 1 as well that as the maximum DOFs are available if N3 = 1. Furthermore, the
curves of the DOFs with the number of sensors for different configurations are plotted in
Figure 3b. It can be found that CPA results in the least number of DOFs due to the holes,
while both NA and its variants can obtain more DOFs, and the proposed NA-TS has more
DOFs than that of other nested configurations. This numerical example verifies the validity
of the DOFs property for the different nested configurations summarized in Table 1.
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4.2. MUSIC Spectra

In the second numerical example, we plot the MUSIC spectra for different configu-
rations in Figure 4, which considered here to consist of 12 sensors. Since the maximum
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estimable number of sources for the CPA is 12, we estimate 12 sources distributed from
−25◦ to 30◦ with a step of 5◦, where the signal-to-noise ratio (SNR) is 0 dB and the number
of snapshots equals 500. It is observed that CPA fails to identify the 12 sources as it performs
the case of the maximum number of estimable sources, while all nested configurations can
accurately identify the 12 sources, which is attributed to the more DOFs and the effective
virtual aperture.
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4.3. Resolution Ability

In the third numerical example, we compare the resolution ability of various configu-
rations composed of 12 sensors with different estimators (including MUSIC, ESPRIT and
CS). Here, two closely spaced sources impinge from 5◦ and 6◦, whose SNR = 0 dB and the
number of snapshots is set to 500. As shown in Figure 5, all configurations can identify
both peaks in the true angles with the CS estimators, whereas the estimation results of the
subspace-based estimators deviate slightly from the true angles. It is worth noting that
CPA fails to resolve the two closely spaced sources with the subspace-based estimators,
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because which utilize only half of the DOFs, and the reduced virtual aperture severely
affects the resolution. It is evident from Figure 5 that the proposed NA-TS (N3 = 1) realizes
a better resolution than other configurations for any estimator due to the enhanced DOFs
and virtual aperture.
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Figure 5. Comparison of resolution, where N = 12, K = 2, SNR = 0 dB and L = 500. The black dashed
lines represent the true DOAs. (a) CPA; (b) NA; (c) ENA; (d) EoNA; (e) NA-TS (N3 = 1); (f) NA-TS
(N3 = 2); (g) NA-TS (N3 = 3); (h) NA-TS (N3 = 4); (i) NA-TS (N3 = 5).

4.4. Root Mean Square Error

In the fourth numerical example, the root mean square error (RMSE) is used to
investigate the estimation performance of the proposed NA-TS, which is calculated as

RMSE =

√√√√ 1
γK

γ

∑
i=1

K

∑
k=1

(
θ̂i

k − θk
)2

(12)

where γ and K represents the total number of Monte Carlo trials and sources, respectively.
θ̂i

k represents the estimated DOA of θk in the ith trial.
Here we use the SS-ESPRIT algorithm [16] to obtain the source to be estimated. It can

be observed from Figure 6 that NA-TS obtains a slightly improved performance compared
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to NA, ENA and EoNA, and a significantly superior estimation performance than CPA due
to the increased DOFs. Thus, the proposed NA-TS can acquire better DOA estimation.
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4.5. Cramér-Rao Lower Bound

In the last numerical example, the Cramér–Rao Lower Bound (CRLB) [36] performance
comparison between various configurations is implemented. It is evident from Figure 7 that
NA-TS outperforms CPA, NA, ENA and EoNA due to the increased DOFs and extended
array aperture. Consequently, compared to CPA, NA, ENA and EoNA, better estimation
performance can be attained by the proposed NA-TS.
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5. Conclusions

In this paper, we proposed a nested array composed of three sub-ULAs with different
interspacing, which has an explicit geometry and a simple closed-form expression for DOFs.
Both NA and INA can be regarded as special cases of the proposed NA-TS. In addition,
the mathematical derivation proves that NA-TS can generate a hole-free DCA and obtain
enhanced DOFs, which further leads to excellent DOA estimation performance. Future
work can draw on SNA, ANA and EGNA to mitigate sensor coupling, and investigate the
applicability of sensor arrays and estimation algorithms.
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Appendix A. Proof of Proposition 1

A lag d ∈ D+ is considered according to the difference co-array in Definition 5. We
want to show that Proposition 1 holds, which is equivalent to proving that the lag d
traverses all integers from 0 to N1N2 + N2N3 + N1 + N2 − 1, i.e.,

0 ≤ d ≤ N1N2 + N2N3 + N1 + N2 − 1 (A1)

For further analysis, the set D+ in Definition 5 is reformulated as

D+ =
{
Di,j
∣∣Di,j = Sj − Si, 1 ≤ i ≤ j ≤ 3

}
(A2)

where Di,j represents the difference set obtained by subtracting the elements in the ith
sub-ULA from the elements in the jth sub-ULA.

Then, from (10), we can obtain

D1,1 = [s1]︸︷︷︸
∈S1

− [s1]︸︷︷︸
∈S1

= {0, 1, · · · , N1 − 1} (A3)

where 0 ≤ s1 ≤ N1 − 1.

D2,1 = [N1 + (N1 + 1 + N3)s2]︸ ︷︷ ︸
∈S2

− [s1]︸︷︷︸
∈S1

= {1, 2, · · · , N1}+


0
(N1 + 1 + N3)
...
(N2 − 1)(N1 + 1 + N3)

(A4)

where 0 ≤ s1 ≤ N1 − 1, 0 ≤ s2 ≤ N2 − 1.

D3,2 = [N1 + (N1 + 1 + N3)(N2 − 1) + (N1 + 1) + s3]︸ ︷︷ ︸
∈S3

− [N1 + (N1 + 1 + N3)s2]︸ ︷︷ ︸
∈S2

= (N1 + 1) +


{0, (N1 + 1 + N3), · · · , (N2 − 1)(N1 + 1 + N3)}
{0, (N1 + 1 + N3), · · · , (N2 − 1)(N1 + 1 + N3)}+ 1
...
{0, (N1 + 1 + N3), · · · , (N2 − 1)(N1 + 1 + N3)}+ (N3 − 1)

= (N1 + 1) +


{0, 1, · · · , (N3 − 1)}
{0, 1, · · · , (N3 − 1)}+ (N1 + 1 + N3)
...
{0, 1, · · · , (N3 − 1)}+ (N2 − 1)(N1 + 1 + N3)

(A5)
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where 0 ≤ s2 ≤ N2 − 1, 0 ≤ s3 ≤ N3 − 1.

D2,2 = [N1 + (N1 + 1 + N3)s2]︸ ︷︷ ︸
∈S2

− [N1 + (N1 + 1 + N3)s2]︸ ︷︷ ︸
∈S2

= (N1 + 1 + N3){0, 1 · · · , (N2 − 1)}
(A6)

where 0 ≤ s2 ≤ N2 − 1.

D3,1 = [N1 + (N1 + 1 + N3)(N2 − 1) + (N1 + 1) + s3]︸ ︷︷ ︸
∈S3

− [s1]︸︷︷︸
∈S1

= (N1 + 1 + N3)(N2 − 1) + (N1 + 1) +


{1, 2, · · · , N1}
{1, 2, · · · , N1}+ 1
...
{1, 2, · · · , N1}+ (N3 − 1)

(A7)

where 0 ≤ s1 ≤ N1 − 1, 0 ≤ s3 ≤ N3 − 1.
We can easily find the corresponding elements from (A3)~(A7) to fulfill the lag d

represented by (A1).
Therefore, in case of N1 ≥ 1, N2 ≥ 2, N3 ≥ 1, the DOFs of the proposed NA-TS

is equal to 2max(d) + 1 = 2(N1N2 + N2N3 + N1 + N2) − 1. Since max(S3) in (10) and
max(D3,1) in (A7) are both equal to N1N2 + N2N3 + N1 + N2 − 1, the NA-TS is a restricted
array. This completes the proof.

Appendix B. Proof of Proposition 2

Based on Proposition 1, the maximal DOFs under the constraint of N = N1 + N2 + N3
can be attributed to the following optimization

max
N1,N2,N3

2(N1N2 + N2N3 + N1 + N2)− 1

s.t. N = N1 + N2 + N3
(A8)

Fixing N3 and using the Arithmetic Mean-Geometric Mean (AM-GM) inequality [10]
we can obtain the solutions of (A8) as follows:

|D| =


N2

2 + 2N − 2N3 − 1 N is even
(

N1 = N−2N3
2 , N2 = N

2 , 1 ≤ N3 < N
2

)
N2

2 + 2N − 2N3 − 3
2 N is odd

(
N1 = N−2N3−1

2 , N2 = N+1
2 , 1 ≤ N3 < N−1

2

) (A9)

This completes the proof.

References
1. Krim, H.; Viberg, M. Two decades of array signal processing research: The parametric approach. IEEE Signal Process. Mag. 1996,

13, 67–94. [CrossRef]
2. Schmidt, R.O. Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 1986, 34, 276–280.

[CrossRef]
3. Roy, R.; Kailath, T. ESPRIT-Estimation of signal parameters via rotational invariance techniques. IEEE Trans. Acoust. Speech Signal

Process. 1989, 37, 984–995. [CrossRef]
4. Wen, F.; Gui, G.; Gacanin, H.; Sari, H. Compressive Sampling Framework for 2D-DOA and Polarization Estimation in mmWave

Polarized Massive MIMO Systems. IEEE Trans. Wirel. Commun. 2023, 22, 3071–3083. [CrossRef]
5. Wen, F.; Shi, J.; Gui, G.; Gacanin, H.; Dobre O., A. 3-D Positioning Method for Anonymous UAV Based on Bistatic Polarized

MIMO Radar. IEEE Internet Things J. 2023, 10, 815–827. [CrossRef]
6. Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.; Al-Dhahir, N. Secure Beamforming for Cognitive Satellite Terrestrial Networks With

Unknown Eavesdroppers. IEEE Syst. J. 2021, 15, 2186–2189. [CrossRef]
7. Lin, Z.; Lin, M.; Champagne, B.; Zhu, W.; Al-Dhahir, N. Secrecy-Energy Efficient Hybrid Beamforming for Satellite-Terrestrial

Integrated Networks. IEEE Trans. Commun. 2021, 69, 6345–6360. [CrossRef]

https://doi.org/10.1109/79.526899
https://doi.org/10.1109/TAP.1986.1143830
https://doi.org/10.1109/29.32276
https://doi.org/10.1109/TWC.2022.3215965
https://doi.org/10.1109/JIOT.2022.3204267
https://doi.org/10.1109/JSYST.2020.2983309
https://doi.org/10.1109/TCOMM.2021.3088898


Sensors 2023, 23, 5214 12 of 13

8. Lin, Z.; Lin, M.; de Cola, T.; Wang, J.-B.; Zhu, W.; Cheng, J. Supporting IoT with Rate-Splitting Multiple Access in Satellite and
Aerial-Integrated Networks. IEEE Internet Things J. 2021, 8, 11123–11134. [CrossRef]

9. Lin, Z.; Lin, M.; Wang, J.-B.; de Cola, T.; Wang, J. Joint Beamforming and Power Allocation for Satellite-Terrestrial Integrated
Networks with Non-Orthogonal Multiple Access. IEEE J. Sel. Top. Signal Process. 2019, 13, 657–670. [CrossRef]

10. Pal, P.; Vaidyanathan, P.P. Nested Arrays: A Novel Approach to Array Processing with Enhanced Degrees of Freedom. IEEE
Trans. Signal Process. 2010, 58, 4167–4181. [CrossRef]

11. Vaidyanathan, P.P.; Pal, P. Sparse Sensing with Co-prime Samplers and Arrays. IEEE Trans. Signal Process. 2011, 59, 573–586.
[CrossRef]

12. Ahmed, A.; Zhang, Y.D. Generalized Non-Redundant Sparse Array Designs. IEEE Trans. Signal Process. 2021, 69, 4580–4594.
[CrossRef]

13. Su, X.; Liu, Z.; Shi, J.; Hu, P.; Liu, T.; Li, X. Real-Valued Deep Unfolded Networks for Off-Grid DOA Estimation via Nested Array.
IEEE Trans. Aerosp. Electron. Syst. 2023. early access.. [CrossRef]

14. Ma, W.-K.; Hsieh, T.-H.; Chi, C.-Y. DOA Estimation of Quasi-Stationary Signals with Less Sensors Than Sources and Unknown
Spatial Noise Covariance: A Khatri-Rao Subspace Approach. IEEE Trans. Signal Process. 2010, 58, 2168–2180. [CrossRef]

15. Liu, C.-L.; Vaidyanathan, P.P. Remarks on the Spatial Smoothing Step in Coarray MUSIC. IEEE Signal Process. Lett. 2015, 22,
1438–1442. [CrossRef]

16. Zhou, C.; Zhou, J. Direction-of-Arrival Estimation with Coarray ESPRIT for Coprime Array. Sensors 2017, 17, 1779. [CrossRef]
17. Zhan, C.; Hu, G.; Zhang, Z.; Zhang, Y.; Yue, S. DOA estimation for nested array from reusing redundant virtual array elements

viewpoint. In Proceedings of the 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN),
Xi’an, China, 22–25 August 2020; pp. 79–84. [CrossRef]

18. Yang, M.; Sun, L.; Yuan, X.; Chen, B. Improved nested array with hole-free DCA and more degrees of freedom. Electron. Lett.
2016, 52, 2068–2070. [CrossRef]

19. Iizuka, Y.; Ichige, K. Extension of nested array for large aperture and high degree of freedom. IEICE Commun. Express. 2017, 6,
381–386. [CrossRef]

20. Zhao, P.; Hu, G.; Qu, Z.; Wang, L. Enhanced Nested Array Configuration with Hole-Free Co-array and Increasing Degrees of
Freedom for DOA Estimation. IEEE Commun. Lett. 2019, 23, 2224–2228. [CrossRef]

21. Liu, C.-L.; Vaidyanathan, P.P. Super Nested Arrays: Linear Sparse Arrays with Reduced Mutual Coupling-Part I: Fundamentals.
IEEE Trans. Signal Process. 2016, 64, 3997–4012. [CrossRef]

22. Liu, J.; Zhang, Y.D.; Lu, Y.; Ren, S.; Cao, S. Augmented Nested Arrays with Enhanced DOF and Reduced Mutual Coupling. IEEE
Trans. Signal Process. 2017, 65, 5549–5563. [CrossRef]

23. Shi, J.; Hu, G.; Zhang, X.; Zhou, H. Generalized Nested Array: Optimization for Degrees of Freedom and Mutual Coupling. IEEE
Commun. Lett. 2018, 22, 1208–1211. [CrossRef]

24. Zhang, Y.; Hu, G.; Shi, J.; Zhou, H.; Zhan, C.; Zhao, F. DOA estimation of an enhanced generalized nested array with increased
degrees of freedom and reduced mutual coupling. Int. J. Antennas Propag. 2021, 2021, 7233651. [CrossRef]

25. Qin, S.; Zhang, Y.D.; Amin, M.G. Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal
Process. 2015, 63, 1377–1390. [CrossRef]

26. Raza, A.; Liu, W.; Shen, Q. Thinned Coprime Array for Second-Order Difference Co-Array Generation with Reduced Mutual
Coupling. IEEE Trans. Signal Process. 2019, 67, 2052–2065. [CrossRef]

27. Wang, X.; Wang, X. Hole identification and filling in k-times extended co-prime arrays for highly-efficient DOA estimation. IEEE
Trans. Signal Process. 2019, 67, 2693–2706. [CrossRef]

28. Zheng, W.; Zhang, X.; Wang, Y.; Shen, J.; Champagne, B. Padded Coprime Arrays for Improved DOA Estimation: Exploiting Hole
Representation and Filling Strategies. IEEE Trans. Signal Process. 2020, 68, 4597–4611. [CrossRef]

29. Zhang, Y.; Hu, G.; Zhang, F.; Zhou, H. Enhanced CACIS configuration for direction of arrival estimation. Electron. Lett. 2022, 58,
737–739. [CrossRef]

30. Shi, J.; Wen, F.; Liu, Y.; Liu, Z.; Hu, P. Enhanced and Generalized Coprime Array for Direction of Arrival Estimation. IEEE Trans.
Aerosp. Electron. Syst. 2023, 59, 1327–1339. [CrossRef]

31. Zhang, Y.D.; Amin, M.G.; Himed, B. Sparsity-based DOA estimation using co-prime arrays. In Proceedings of the 2013 IEEE
International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3967–3971.
[CrossRef]

32. Liu, C.-L.; Vaidyanathan, P.P.; Pal, P. Coprime coarray interpolation for DOA estimation via nuclear norm minimization. In
Proceedings of the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016;
pp. 2639–2642. [CrossRef]

33. Zhou, C.; Gu, Y.; Fan, X.; Shi, Z.; Mao, G.; Zhang, Y.D. Direction-of-Arrival Estimation for Coprime Array via Virtual Array
Interpolation. IEEE Trans. Signal Process. 2018, 66, 5956–5971. [CrossRef]

34. Qin, G.; Amin, M.G.; Zhang, Y.D. DOA Estimation Exploiting Sparse Array Motions. IEEE Trans. Signal Process. 2019, 67,
3013–3027. [CrossRef]

https://doi.org/10.1109/JIOT.2021.3051603
https://doi.org/10.1109/JSTSP.2019.2899731
https://doi.org/10.1109/TSP.2010.2049264
https://doi.org/10.1109/TSP.2010.2089682
https://doi.org/10.1109/TSP.2021.3100977
https://doi.org/10.1109/TAES.2023.3235746
https://doi.org/10.1109/TSP.2009.2034935
https://doi.org/10.1109/LSP.2015.2409153
https://doi.org/10.3390/s17081779
https://doi.org/10.1109/ICICN51133.2020.9205070
https://doi.org/10.1049/el.2016.3197
https://doi.org/10.1587/comex.2017XBL0031
https://doi.org/10.1109/LCOMM.2019.2947585
https://doi.org/10.1109/TSP.2016.2558159
https://doi.org/10.1109/TSP.2017.2736493
https://doi.org/10.1109/LCOMM.2018.2821672
https://doi.org/10.1155/2021/7233651
https://doi.org/10.1109/TSP.2015.2393838
https://doi.org/10.1109/TSP.2019.2901380
https://doi.org/10.1109/TSP.2019.2899292
https://doi.org/10.1109/TSP.2020.3013389
https://doi.org/10.1049/ell2.12583
https://doi.org/10.1109/TAES.2022.3200929
https://doi.org/10.1109/ICASSP.2013.6638403
https://doi.org/10.1109/ISCAS.2016.7539135
https://doi.org/10.1109/TSP.2018.2872012
https://doi.org/10.1109/TSP.2019.2911261


Sensors 2023, 23, 5214 13 of 13

35. Li, S.; Zhang, X.-P. A New Approach to Construct Virtual Array with Increased Degrees of Freedom for Moving Sparse Arrays.
IEEE Signal Process. Lett. 2020, 27, 805–809. [CrossRef]

36. Wang, M.; Nehorai, A. Coarrays, MUSIC, and the Cramér-Rao Bound. IEEE Trans. Signal Process 2017, 65, 933–946. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/LSP.2020.2993956
https://doi.org/10.1109/TSP.2016.2626255

	Introduction 
	Sparse Array Signal Processing 
	Signal Model 
	Difference Co-Array 
	DOA Estimation 

	Nested Array with Three Sub-ULAs (NA-TS) 
	Configuration 
	Properties 
	Comparisons 

	Simulation Results 
	Degrees of Freedom 
	MUSIC Spectra 
	Resolution Ability 
	Root Mean Square Error 
	Cramér-Rao Lower Bound 

	Conclusions 
	Appendix A
	Appendix B
	References

