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Abstract: Detecting students’ classroom behaviors from instructional videos is important for instruc-
tional assessment, analyzing students’ learning status, and improving teaching quality. To achieve
effective detection of student classroom behavior based on videos, this paper proposes a classroom
behavior detection model based on the improved SlowFast. First, a Multi-scale Spatial-Temporal At-
tention (MSTA) module is added to SlowFast to improve the ability of the model to extract multi-scale
spatial and temporal information in the feature maps. Second, Efficient Temporal Attention (ETA) is
introduced to make the model more focused on the salient features of the behavior in the temporal
domain. Finally, a spatio-temporal-oriented student classroom behavior dataset is constructed. The
experimental results show that, compared with SlowFast, our proposed MSTA-SlowFast has a better
detection performance with mean average precision (mAP) improvement of 5.63% on the self-made
classroom behavior detection dataset.

Keywords: classroom behavior detection; behavior detection; SlowFast model; attention mechanism

1. Introduction

Intelligent education has become one of the inevitable trends in the future development
of education [1]. The classroom is an important part of building intelligent schools. When
evaluating the quality of classroom teaching, students’ classroom behavior can be used as
important reference content. Students’ classroom behaviors can reflect students’ learning
state well [2]. At the same time, the behaviors in the recorded teaching videos can be
analyzed accordingly after class, which can help teachers to adjust teaching methods and
progress in time to achieve better teaching results.

In traditional classrooms, teachers need to observe students’ classroom behavior
manually. However, this approach cannot attend to all students at the same time, makes
it difficult to form timely and effective feedback, and brings a certain burden on teachers’
teaching work. With the increasing sophistication of artificial intelligence, the detection
of student behavior in the classroom through deep learning and computer-vision-enabled
techniques is gaining attention [3]. The use of computer-assisted instruction and the
automated detecting and analyzing of student behavior in the classroom has also become a
research hotspot in smart education [4–6].

Classroom behavior detection is generally divided into approaches based on object
detection [7], pose recognition [8], and video behavior recognition or detection [9]. With
growing advances in video behavior detection technology, classroom behavior detection
based on instructional videos has become possible. In the field of video behavior identifica-
tion, deep learning’s ongoing development has produced some excellent outcomes. Among
them, SlowFast [10] achieves good detection results in Kinetics [11] and Charades [12]
behavior recognition datasets, and AVA (Atomic Visual Actions) [13] spatio-temporal
behavior detection dataset. SlowFast also has great application scenarios in real-world
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problems. For example, Cui et al. [14] combined SlowFast with a bounding box labeling
algorithm to detect the smoke phenomenon in a forest. Li et al. [15] applied SlowFast to
a pig behavior recognition scenario. Joshi et al. [16] used SlowFast ResNet-50 to detect
abnormal behavior in a surveillance system. In this study, the issue of detecting student
behavior in a classroom setting is addressed using SlowFast.

The classroom scenario is complex, with masking between students and the need to
detect the behavior of multiple people at the same time. To improve the detection accuracy,
this paper proposes an improved SlowFast network for classroom behavior detection to
perform multi-label detection of common classroom behaviors of students in videos. The
model focuses on detecting seven common classroom behaviors, such as looking at the
board, raising hands, lying on the table, talking, and bowing heads, and finally outputting
information about students’ positions and behaviors. Different classroom behaviors reflect
students’ learning status and concentration. For example, when students show negative
behaviors such as sleeping and turning around, they are generally inattentive or confused
about the teaching content. When students look at the blackboard carefully and raise
their hands to answer questions, it means that they are interested in the content taught
by the teacher. Detecting these behaviors can help analyze students’ participation and
concentration, so as to assess the effectiveness of the classroom, help teachers understand
students’ learning in the classroom, and help to adjust the teaching schedule and improve
teaching methods in time. Additionally, to validate the proposed classroom behavior
detection algorithm, we constructed a students’ classroom behavior dataset. The primary
contributions are as follows:

• Classroom instructional videos were collected to mark common student behaviors
in the classroom, and a classroom behavior dataset was constructed as a basis for
detecting student behaviors.

• A student behavior detection model based on an improved SlowFast network was
proposed. The model’s ability to acquire spatial, channel, and temporal features
was improved, and the detection accuracy was increased, with the introduction of
Multi-Scale Spatial-Temporal Attention (MSTA) and Efficient Temporal Attention
(ETA) modules.

• Finally, to verify the effectiveness of the revised approach, experiments were carried
out. The findings showed a significant improvement in the improved model’s mean
Average Precision (mAP), which could be utilized to detect classroom conduct.

2. Related Work
2.1. Video Behavior Detection

Mainstream behavior detection algorithms can be generally classified into behavior
recognition, temporal behavior detection, and spatio-temporal behavior detection. Among
them, behavior recognition mainly identifies the category of behavior. Temporal behavior
detection identifies the time period in which the behavior in the video occurs and de-
termines the category of the behavior in the video. Spatio-temporal behavior detection
focuses on identifying the coordinate position of the person in the video and identifying
the duration of the person’s behavior with the category of the behavior. In this paper,
classroom behavior detection focuses on the location and category of classroom behavior
occurrence, so spatio-temporal behavior detection is used for this purpose.

For the problem of spatio-temporal feature extraction in the field of video behavior
understanding, researchers had already proposed many effective backbone network struc-
tures. For example, 3D convolutional neural networks (C3D) [17] use three-dimensional
convolution to extract the spatio-temporal features of actions, which can identify actions
more accurately. Karen et al. [18] proposed a dual-stream network, where one pathway
extracts spatial features through RGB images while the other pathway extracts temporal
features through optical flow images.

With the proposed AVA [13] for the Atomic Vision Action Video dataset, the fo-
cus of the spatio-temporal behavior detection task has gradually shifted toward behav-
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ioral interactions, and many behavior detection algorithms for this dataset have emerged.
Christoph et al. [10] proposed the SlowFast network, based on 3D convolution, to obtain
behavioral features. The network has performed well in both behavior recognition and
behavior detection tasks. It consists of two pathways with distinct temporal rates that are
responsible for the acquisition of spatial and temporal information, respectively. In place
of the double-branch approach, Christoph [19] presented an extended 3D convolutional
network (X3D), which gradually modifies the model’s width parameter to require less
computational work while producing superior results. Li et al. [20] analyzed the effect of
time dependence on behavior detection by placing the behavior detection in a Long-Short
Term Context (LSTC).

Meanwhile, a number of researchers have suggested new spatiotemporal detection
methods. Okan et al. [21] proposed a new spatio-temporal behavior detection framework,
named YOWO (You Only Watch Once), which is well suited for real-time spatio-temporal
behavior detection in videos because it integrates temporal and spatial information into
the framework and uses only one network to directly extract both. Fan et al. [22] proposed
an MViT (Multiscale Vision Transformers) model for video and image recognition by
combining multi-scale feature pyramid structures to achieve the extraction of video features
at different levels, and encoding the features using Transformer to enable the model to
better understand the visual content. Bertasius et al. [23] proposed a new detection network,
TimeSformer, implemented by a convolution-free approach, which employs a self-attentive
module instead of convolution.

2.2. Behavior Detection in Classroom Scenarios

Classroom scenarios with severe occlusion and numerous student targets pose a
great challenge for classroom behavior detection. Recently, computer vision, target detec-
tion, and image classification techniques have also been applied to classroom behavior
detection tasks.

By employing object detection to identify classroom behavior, the behavior that needs
to be identified is treated directly as a target object, and the network is then utilized to
extract spatial features to identify the behavior. Liu et al. [24] used the YOLOv3 algorithm
for student anomalous behavior recognition with the addition of RFB and SE-Res2net
modules to improve the model for small target and crowd occlusion problems in the
classroom environment. Tang et al. [25] performed classroom behavior detection based on
pictures, adding a feature pyramid structure and an attention mechanism to the YOLOv5
classroom behavior detection model to address the problem of high occlusion in the
classroom environment.

Pose recognition is usually used to identify human behavior by using localized human
key point detection. Lin et al. [26] used the OpenPose framework to collect skeletal
information from students and classify the extracted skeletal information into behaviors
by means of a neural network. Yu et al. [27] collected classroom data using the Microsoft
Kinet device for face recognition and then collected human skeleton information to extract
features for behavior classification.

Recently, some researchers have implemented classroom behavior detection through
video behavior detection techniques; Huang et al. [28] proposed a deep spatio-temporal
residual convolutional neural network, and combined target detection and target tracking
algorithms to detect the classroom behaviors of multiple students in teaching videos in real-
time, and achieved good operational results. To realize real-time recognition of classroom
behaviors for multi-student objectives, Xiao et al. [29] used the YOLOX algorithm to extract
the student behavior at a moment in the instructional video and used CNN (Convolutional
Neural Network) to learn the spatio-temporal information.

The object-based detection approach ignores the temporal characteristics of the be-
havior and cannot combine contextual semantic information. The human keypoint-based
behavior detection is more computationally intensive and has stricter scene requirements,
resulting in its poor stability in different scenes. Video-based behavior detection can cap-
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ture the action information of behavior more comprehensively and achieve more accurate
detection of behavior, but the computational effort also increases. Meanwhile, the above
study found that classroom behavior detection has certain shortcomings [25]. First, there
are relatively few publicly available classroom scenario datasets. Second, some of the
algorithms are only capable of detecting a single behavior detection target at the same time,
so they cannot be used in classroom scenarios where the task of behavior recognition is
performed on multiple students at the same time.

3. Methods

The SlowFast algorithm has made certain research progression in behavior detection,
but its detection accuracy is still lacking in the classroom environment, and the accuracy
rate is not high for actions with a small sample size and is more difficult to identify. There-
fore, on the basis of a SlowFast network, firstly, an MSTA (Multi-scale Spatial-Temporal
Attention) module is introduced into the Slow path to effectively extract multi-scale spatial
information, establish remote channel dependence, and add temporal attention. Secondly,
the ETA (Efficient Temporal Attention) module for temporal dimension is introduced into
the Fast pathway to effectively calculate temporal attention and strengthen the ability
to perceive temporal features of actions. Figure 1 shows the structure of the modified
MSTA-SlowFast model.
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3.1. SlowFast Network

The SlowFast network is a dual-stream network based on the 3D CNN model, which
includes two pathways. The Slow pathway mainly acquires spatial semantic informa-
tion by using a 3D CNN model with a low frame rate. Additionally, the Fast pathway
mainly acquires action information using a high-frame-rate 3D CNN model, but with a
smaller convolution width and less number of channels. Meanwhile, the different spatio-
temporal features are fused by lateral connections. Both paths have a 3D ResNet [30]
network structure.

The SlowFast network settings include τ, α, and β parameters, which represent the
video sampling step, the frame rate ratio of the two pathways, and their channel num-
ber ratio, respectively. Specifically, the Slow pathway to Fast pathway frame-rate ratio
is 1 : α (α > 1) and the channel number ratio is 1 : β (β < 1). The Fast pathway weak-
ens its ability to process spatial information by using smaller convolutions and fewer
channels, thus reducing the computational effort and improving its expressiveness in the
time domain.

The network fuses the features extracted from the Fast pathway into the Slow pathway
through multiple lateral connections. Generally, the feature maps of the Fast pathway
output are converted from

{
αT, S2, βC

}
to
{

T, S2, αβC
}

by using time dimensional con-
volution, and then fused with the feature maps of size

{
T, S2, C

}
of the Slow pathway.

The model needs to detect the student position in the key frame by the detector during
the detection and pass the detection result into the network, and faster R-CNN [31] is
used as the human detector in this paper. The network finally calculates the RoI (region-
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of-interest) features through the RoIAlign algorithm and sends them to the multi-label
classification prediction based on Sigmoid.

3.2. MSTA Module

The model typically uses the attention mechanism to pick out more crucial details
and concentrate more on important areas of the image. A SENet (Squeeze-and-Excitation
Network) [32] uses a channel attention mechanism, and each channel’s weight was then
adaptively calculated using a fully connected layer after being converted to a single value
using GAP (Global Average Pooling). However, it ignores the importance of spatial in-
formation. A CBAM (Convolutional Block Attention Module) [33] enriches the attention
graph by effectively combining spatial and channel attention, and uses GAP and a global
maximum pool to enhance feature diversity. However, SlowFast as a 3D CNN not only
needs to acquire channel and spatial information but more importantly, to perform be-
havior recognition by temporal information. Therefore, inspired by [34,35], we construct
a Multi-scale Spatial-Temporal Attention (MSTA) module, that can capture and utilize
channel, temporal and differently-sized spatial information more effectively, and establish
channel and spatial remote dependencies at the same time. Figure 2 depicts the structure
of MSTA, that consists of multi-scale spatial feature extraction, channel attention, and
temporal attention.
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The MSTA module first extracts the multi-scale spatial features, dividing the feature
map X into N parts. Each part contains C′ feature channels, where C′ = C/N. For the
division of each channel feature map, multi-scale spatial information is extracted using
the 3D convolution of different sizes. The calculation process is shown in Equation (1),
where Xi denotes the segmented feature map, Ki denotes the convolutional kernel size, Gi
denotes the group size, and Gi = 2(Ki−1)/2.

Si = Conv(1× Ki × Ki, Gi)(Xi) i = 0, 1, 2, . . . , N − 1. (1)

After that, the channel attention weights need to be extracted. The channel weight Zi
is calculated by SEWeight for different sizes of feature maps Si . After, Zi is rescaled using
the Softmax algorithm and then multiplied with the feature map Si of the corresponding
scale. The calculation process is shown in Formulas (2) and (3).

Zi = SEWeight(Si) (2)

Yi = Si � So f tmax(Zi) = Si �
exp(Zi)

∑S−1
i=0 exp(Zi)

(3)

Then, the temporal attention weights are calculated by applying them to the feature
map Y. Specifically, the overall features in each time dimension are encoded into a global
feature t using global pooling. On this basis, the overall feature map is subjected to the
excitation operation, that is, the correlation between the temporal dimensions is constructed
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through two full connection layers and the weights g of the same dimensions are output.
The calculation process is shown in Formula (4).

g = Fex(t, W) = δ(g(t, W)) = δ(W2ReLU(W1t)) (4)

Finally, the feature maps are then multiplied by the temporal dimensional weights to
provide feature maps with richer multi-scale information. Since the spatial information
extracted by the Fast pathway is less, the improvement of the model in this paper is that
the MSTA module is introduced in the slow paths, replacing the 1 × 3 × 3 convolution in
the middle layer of the res5 residual module.

3.3. ETA Module

The Fast pathway mainly obtains temporal features of the action and relatively little
spatial information. The Efficient Temporal Attention (ETA) module is added to the Fast
pathway to enhance model detection performance and help the model better capture
action information. The ETA module is built with reference to ECA (Efficient Channel
Attention) [36] and uses one-dimensional convolution to efficiently implement local cross-
temporal dimensional interactions, avoid dimensionality reduction, and extract temporal
channel correlations. Figure 3 shows the structure of the ETA module.
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The ETA is calculated as follows: first, the GAP is performed to obtain a 1× 1× 1× T
vector, X ∈ RW×H×T×C. Afterward, the weight of each time dimension is obtained by
interacting information across time dimensions. Fast one-dimensional convolution using
a convolution kernel of size k is mostly responsible for achieving this; the formula is
as follows:

wi = σ

(
k

∑
j=1

wjyj
i

)
yj

i ∈ Ωk
i (5)

where σ is the Sigmoid function, yj
i denotes the feature of the jth adjacent channel of the

ith time dimension, and Ωk
i denotes the set of k adjacent channels, where the convolution

kernel’s size, k, is derived adaptively by Formula (6). |t|odd denotes the nearest odd number
to t.

k = ψ(T) =
∣∣∣∣ log2 T

γ
+

b
γ

∣∣∣∣
odd

(6)

The global final objective features are created by multiplying the original feature maps
by the weight of the temporal domain. The ETA module avoids dimensionality reduction
while taking into consideration the impact of cross-temporal context interactions. In the
network, ETA is added to the res5 module of the Fast pathway to enhance the model’s
ability to perceive temporal features.

4. Experimental Results and Analysis
4.1. Dataset

We created a spatiotemporal-oriented classroom student behavior (SCSB) dataset
because there are not any publicly accessible classroom datasets that can be used to deal
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with the issue of video-based classroom behavior detection. Spatiotemporal-oriented
behavior detection aims to find the time and space in which the behavior of interest is
located from the video and requires multiple frames to be correlated in order to determine
the continuous behavior. The dataset is mainly annotated with reference to the publicly
available AVA dataset for spatio-temporal behavior detection [13]. The AVA dataset is
taken from 437 movies, annotated for 80 categories, and provides temporal labels for one
frame per second for bounding boxes and actions.

Approximately 250 min of classroom instructional videos were filmed in classroom
scenes, primarily from the front side of the classroom. The videos were cut and filtered,
and more than 600 of them were labeled, each containing 7–20 students, and all were 10 s
in length. Seven common classroom behaviors were selected for labeling: looking at the
board, looking down, turning head/turning around, talking, standing up, raising hands,
and lying on the table. Figure 4 depicts the dataset’s creation process [37].
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Step 1: Video frame extraction. As shown in Figure 5, the videos were first filtered and
cut into videos of 10 s in length for easy labeling, and then the cut videos were divided into
frames according to the frame rate of 30 frames per second [37].
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Figure 5. Schematic diagram of the process of extracting key frames from the dataset.

Step 2: Extract keyframes. One frame out of every 30 frames per second was extracted
as a key frame for that frame, which was used to label student position and student
classroom behaviors.

Step 3: Annotate student locations. The extracted keyframes were input into the
detector, and the Faster RCNN was employed to detect the students in the keyframes, and
the detected student location information was stored in the txt file.

Step 4: Annotate student actions. Due to the characteristics of the time-oriented
student classroom behavior dataset, the VIA annotation tool was selected for the multi-
label annotation of student behaviors. The txt file results obtained from the detector were
converted into JSON data format, and the VIA annotation tool was used to fine-tune the
student detection boxes and annotate the classroom behaviors. Finally, an annotation file in
AVA format was generated.

The total annotation of the final dataset is 51,387. The dataset contains seven kinds of
common student actions in the classroom environment, which can reflect the students’ be-
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havior in classroom scenarios. Figure 6 displays the number of labeled categories. Figure 7
depicts the dataset’s head-turning, hand-raising, and head-lowering behavioral processes.
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Figure 7. Schematic diagram of the behavioral process of turning their head, raising hands,
and bowing.

4.2. Evaluation Indicators

In this study, the evaluation measures for classroom behavior detection tasks include
Precision, Recall, and mAP. The formulae are as follows:

Recall =
TP

TP + FN
(7)

Precision =
TP

TP + FN
(8)

mAP =
∫ 1

0
P(R)dR (9)
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where TP indicates that both the behavioral class and the predicted behavioral class are
positive samples. FP indicates that the true behavioral class is negative, but the predicted
behavioral class is positive. FN is an example where the true value of the behavioral class
is positive, but the predicted behavioral class is negative.

4.3. Ablation Experiments and Analysis

The MSTA and ETA modules introduced in this paper can significantly enhance
the algorithm’s ability to detect behavior. Each enhanced module is chosen for ablation
experiments in order to test the efficacy of the improved approach presented in this work.
A pre-trained model was used in the experiments, and the MSTA and ETA modules are
added sequentially to the original SlowFast while retaining the same experimental setup in
order to assess each module’s impact on improvement. Table 1 displays the results. The
SlowFast backbone network employs 3D ResNet 50, with α taken as 8 and β as 1/8.

Table 1. Comparison results before and after MSTA and ETA improvement.

Model Recall/% Precision/% mAP/%

SlowFast 79.12 78.78 85.47
SlowFast + MSTA 81.28 81.78 90.50
SlowFast + ETA 80.41 81.16 88.91

SlowFast + MSTA + ETA 81.47 81.90 91.10

According to the experiment results, mAP improved by 5.03% when MSTA was used
compared to the original SlowFast. This shows that by substituting the res5 module for the
MSTA module in the Slow pathway, the model is better able to receive spatial information,
channel information, and temporal information. The addition of the ETA module to the
Fast pathway increased the model mAP by 3.44%, indicating that the method enhances the
model’s ability to focus on temporal features by adding a temporal attention mechanism
to the Fast pathway. It enhances the model’s ability to recognize changes in the action,
increasing model accuracy. After introducing both MSTA and ETA, the models achieved
better detection results with a 2.35% improvement in Precision, 3.12% improvement in
Recall, and 5.63% improvement in mAP. It indicates that better classroom behavior detection
can be achieved by adding MSTA in the Slow pathway and also adding ETA time attention
in the Fast pathway.

The recognition of each behavior type is shown in Table 2 both before and after model
modification. It demonstrates that the original algorithm has a superior recognition effect
for behaviors with a high sample count (such as looking at the blackboard or lowering
your head) and behaviors with more obvious characteristics (such as standing, or lying on
a table). However, the accuracy rate of behavior detection with a small sample size and
which involved difficulty to distinguish, such as head turning and conversation, was low.
The improved model, while maintaining the behavior detection effect with high detection
accuracy, greatly improved the detection accuracy of the three behaviors of turning/turning,
talking, and raising hands. Figure 8 displays the results of the comparison.

Table 2. Improved accuracy before and after behavior category detection.

Lookup Bow Turn Talk Stand Raise-Hand Lie

SlowFast 95.56 89.09 81.13 62.04 91.07 85.4 93.98
MSTA 96.56 93.11 84.03 81.26 94.71 88.20 95.62
ETA 96.25 92.60 83.57 71.05 91.65 89.77 97.50

MSTA + ETA 96.36 93.33 84.84 84.95 92.69 88.99 96.54
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4.4. Comparison Experiments and Analysis

A comparative experiment was performed to test the effect on model detection when
α was taken to different values. As shown in Table 3, the SlowFast backbone network was
taken as 3D ResNet 50, and α was taken as 8 and 4. The experimental results show that
both MSTA and ETA made significant improvements on the SlowFast network when α was
taken as different values. Additionally, when α was 4, the model detection effect was better,
but the model computation was larger due to the number of sampling frames of the Slow
path when α was taken as 8. When α was 4, the FLOPs increased by 33.87 and 32.39 G
before and after the model improvement, respectively, compared with that when α was 8.
The computational effort of the improved model is reduced because MSTA uses grouped
convolution for multi-scale spatial feature extraction, which reduces the computational
effort, and the ETA does not cause a dramatic increase in computational effort.

Table 3. Results of the SlowFast algorithm before and after improvement for different sizes.

SlowFast α Improve Size/MB Param/106 FLOP(G) mAP/%

α = 8
Before 128.64 33.66 40.62 85.47
After 121.49 31.79 39.15 91.10

α = 4
Before 128.64 33.66 74.49 87.62
After 121.49 31.79 71.54 91.19

The same number of datasets were utilized under the same configuration conditions
to compare the improved SlowFast with the LSTC and Slow-only networks, in order to
confirm that it had a better detection effect. The experimental results were mainly evaluated
by the mAP evaluation index, and Table 4 displays the precise experiment results. The
algorithm used in this paper had an mAP of 91.10% when detecting student behavior in
the classroom. Comparing the improved model to SlowOnly and LSTC, it achieved better
detection results. This indicates that the improved model performs well in terms of its
accuracy in time-oriented classroom behavior detection, and is able to meet the task of
detecting students’ classroom behavior in the classroom setting. Figure 9 shows the results
of the classroom behavior detection.

Table 4. The results of the comparison experiment.

Model Pre-Training Size/MB Param/106 mAP/%

SlowOnly (3D ResNet 50) kinetics400 121.50 31.8 75.38
SlowOnly (3D ResNet 101) kinetics400 194.15 50.8 82.84

LSTC kinetics600 274.23 71.8 86.78
SlowFast (3D ResNet 50) kinetics600 128.64 33.66 85.47

MSTA-SlowFast kinetics600 121.49 31.79 91.10
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5. Conclusions

In this paper, we proposed a video classroom behavior detection method based on
an improved SlowFast network. To provide model detection accuracy, the attention mech-
anism was used to improve the network structure. First, MSTA blocks were introduced
into the Slow pathway to effectively extract multi-scale spatial information, temporal in-
formation and establish long-range channel dependencies. Secondly, the ETA blocks were
introduced into the Fast pathway to effectively calculate temporal attention. It was experi-
mentally demonstrated that after the introduction of the two modules, the improved model
could achieve a mAP of 91.10% on the self-made student classroom behavior detection
dataset, which was 5.63% higher than the original model. It has been shown that the en-
hanced method suggested in this paper can significantly enhance the model detection effect.
The classroom behavior detection requirements using video in a classroom environment
can be satisfied using MSTA-SlowFast.

6. Discussion

The MSTA-SlowFast model proposed in this paper detects classroom behaviors of in-
structional video species with practical applications. The analysis of the detected behaviors
can be used to achieve the assessment of students’ classroom concentration. Meanwhile,
our study can help teachers and school administrators to understand students’ behaviors
in time for intervention and management.

Compared with existing studies related to classroom behavior detection, our work im-
plements video-based classroom behavior detection and creates a spatio-temporal-oriented
classroom behavior detection dataset. However, our study still has shortcomings. Since
SlowFast is implemented using 3D CNN convolution, its detection speed needs to be im-
proved. Moreover, classroom behavior detection is not satisfactory when the video species
is more rear-rowed and heavily occluded. As our next step, we will make improvements
toward these two aspects.
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