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Abstract: Legged robots can travel through complex scenes via dynamic foothold adaptation. How-
ever, it remains a challenging task to efficiently utilize the dynamics of robots in cluttered environ-
ments and to achieve efficient navigation. We present a novel hierarchical vision navigation system
combining foothold adaptation policy with locomotion control of the quadruped robots. The high-
level policy trains an end-to-end navigation policy, generating an optimal path to approach the target
with obstacle avoidance. Meanwhile, the low-level policy trains the foothold adaptation network
through auto-annotated supervised learning to adjust the locomotion controller and to provide more
feasible foot placement. Extensive experiments in both simulation and the real world show that
the system achieves efficient navigation against challenges in dynamic and cluttered environments
without prior information.

Keywords: vision system; robot navigation; motion planning

1. Introduction

Recently, legged robots have demonstrated agile locomotion advantages over wheeled
robots, especially when walking in various challenging scenes with obstacles such as
thresholds, steps, furniture, and pedestrians. Quadruped robots can perform various
motions [1] and undertake various dangerous and dirty tasks such as disaster relief and
mine exploration [2]. Thus safe and efficient navigation is promising in the study of
quadruped robots. Navigation on quadruped robots aims at reaching the target with few
collisions [3]. The task is usually decoupled into two parts: A navigation policy planning the
desired path that provides the Center of Mass (COM) velocity, and a low-level locomotion
controller generating the appropriate joint torque and optimal leg swing trajectory for
each step.

Traditionally, navigation policies construct maps through comprehensive visual per-
ception [4–6], causing the navigation performance to fluctuate with different vision systems.
Moreover, errors will be accumulated when constructing maps without prior knowledge
in unknown environments [7]. Therefore, end-to-end learning policies that directly use
egocentric vision have been implemented in robot navigation [8], minimizing the interme-
diate steps between environment perception and locomotion control. Once the optimal
path is generated, practical navigation tasks require the robot to follow the planned tra-
jectory. However, traditional navigation policies replace the accurate robot model with an
idealized cylindrical agent (ICA) when planning COM motion [8]. Since these policies do
not take the dynamic characteristics of the robot into account, they fail to control a specific
robot smoothly to follow the planned trajectory in cluttered scenes [9]. Thus, successful
navigation requires the combination of the low-level locomotion controller.

A proliferation of works has developed locomotion controllers for robot navigation.
Traditional legged controllers [10–12] based on proprioception optimization lack knowledge
of the environment. Thus, the robot is unable to traverse dynamic scenes. Therefore, recent
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works have introduced external visual feedback into the locomotion controller and have
made continuous foothold adaptation based on local observation [13–16]. As heuristic
methods require prior information on the terrain, learning-based adaptation policies with
onboard sensors have shown greater potential. However, existing perception methods of
mobile robots seldom consider dynamic foothold adaptation while navigating in cluttered
environments. As shown in Figure 1, the robot gets stuck at challenging obstacles, while
the vision sensors in the moving direction are not aware. Therefore, designing a vision
acquisition system to tackle difficult locomotion tasks such as navigation in cluttered scenes
is a great challenge.

Figure 1. Challenges for quadruped robot navigation in cluttered environments: (a) Traditional front
observation captures obstacles at the front and plans avoidance. (b) Since the forward-facing camera
has no perception of obstacles around the foothold, the locomotion control may fail when the leg
becomes stuck. (c) The obstacles can be spotted with foothold observation.

In this paper, we propose a novel hierarchical vision system to navigate a quadruped
robot in indoor scenarios with challenging obstacles. More specifically, the system is
composed of a Front Camera receiving forward-facing depth information and a Foothold
Camera receiving gray-scale foothold observation. Based on the Front Camera, the high-
level navigation policy plans an optimal path toward the goal and generates COM velocity
commands. Based on the Foothold Camera, the low-level policy trains the foothold adapta-
tion policy through auto-annotated supervised learning to inform the locomotion controller
of the appropriate foothold. Furthermore, based on the small-scale quadruped robot (MIT
mini-cheetah), we implement the practical hierarchical vision system on a hardware plat-
form, including visual perception and onboard computing devices. Extensive experiments
in both simulation and the real-world show that the system achieves efficient navigation
against the challenges in dynamic and cluttered environments without prior information.
The videos can be found in Supplementary Materials Section.

The main contributions can be summarized as follows:

(1) The proposed hierarchical vision system combines high-level navigation policy with
vision-based locomotion control, resulting in a data-efficient and concise embodied
system with increased practical applicability for legged robots.

(2) We design an auto-annotated supervised training approach for a foothold adaptation
policy that optimizes a visual-based controller without complex reward designs or
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extensive training; the policy establishes a direct correlation between foot observation
and successful obstacle avoidance.

2. Related Work

We develop the original hierarchical vision navigation system based on recent progress
in quadruped navigation and locomotion control. This section introduces the related
literature in this area.

2.1. Vision Sensors for Robot Navigation

The ability to perceive visual cues is essential for quadruped robots to accomplish
optimal obstacle avoidance and successful navigation. Conventional navigation algorithms
rely on visual sensors such as laser radars and front cameras to construct a map of the
environment, and then employ path planning algorithms such as A* and DWA based on
the map [17–20]. However, such vision systems are often characterized by significant blind
spots, particularly for robots with intricate mechanical structures. Although other vision
systems such as spinning radar [21] or multi-camera arrays surrounding the robot [22] have
been proposed, they are either insufficient for quadruped robots, as they fail to capture the
critical observation of footholds necessary for safe locomotion, or seem redundant when
considering an efficient visual system.

To make more efficient use of the external visual information necessary for successful
navigation in common indoor environments, we propose a novel hierarchical vision system
that provides simultaneous forward and local foothold views.

2.2. Quadruped Robots Navigation Policy

Map-based navigation policy finds the optimal path through heuristic search, where
an efficient SLAM algorithm is usually required when constructing the map for path
planning [4,23–26]. Other approaches such as Deep Reinforcement Learning (DRL) directly
generate velocity commands through state representation and combine the state with pixels
from onboard visual sensors [27–29].

The generic navigation methods assume the agents to follow the planned path per-
fectly [30,31]. However, various robots act differently upon receiving the same COM
velocity command [32]. Therefore, specific adaptation to the COM velocity command is
required for quadruped robot navigation. Some works decouple the navigation policy
and the low-level locomotion controller [33], while combined frameworks have also been
proposed, such as introducing specific embeddings [8] and coupling vision state with
proprioception [34].

Different from previous works, we combine the end-to-end navigation policy with
an active foothold adaptation mechanism. The combined navigation framework receives
external perception information from the proposed hierarchical vision system, improving
the performance of the quadruped robot to follow the navigation COM velocity commands.

2.3. Quadruped Robots Foothold Adaptation

In earlier works, quadruped robots have achieved stable locomotion capabilities
through the exploration of proprioceptive states such as Model Predictive Control (MPC)
and Whole Body Control (WBC) [35]. These methods calculate foothold by optimizing the
ground contact force. Vision input has also been leveraged into the locomotion controller for
feasible foothold selection, where various visual caption systems have been proposed. Tra-
ditional approaches mount onboard radar and stereo cameras to build a terrain heightmap
locally and to select a traversable foothold through potential search [36,37].

Recently, reinforcement learning (RL) has been widely developed in leading-edge
works to build learning-based controllers [38–40] or to make foothold adaptations based on
a model-based controller [14,41]. However, RL has limitations that remain unsolved, such
as the difficult and time-consuming process of designing appropriate reward functions,
extensive training requirements, and high computational costs. Furthermore, transferring
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RL learned policies to real robots is a new challenge, requiring additional modules such as
knowledge distillation [42,43] or imitation learning [44]. Unlike prior works that use RL
to predict feasible foothold adaptations, our adaptation policy is developed by learning
a network trained through auto-annotated supervised learning, which can be optimized
using automatically labeled lightweight data. Additionally, our adaptation policy directly
takes egocentric images as input, in contrast to state-of-the-art approaches that build local
heightmaps [13,14,34] as an intermediate step.

3. Hierarchical Vision Navigation System

Herein, we introduce our hierarchical vision navigation system, which synergistically
combines active foothold adaptation and end-to-end navigation policy for optimal perfor-
mance in cluttered indoor scenes. For task observation, the robot is only provided with
the location of the target point and the perception of its locomotion state from an onboard
ego-motion estimator. For environment observation, the Front Camera and the Foothold
Camera offer egocentric visual feedback from two perspectives. The overall framework of
the novel-designed navigation system is illustrated in Figure 2.

Figure 2. Overview of the proposed navigation framework. The navigation policy is trained with the
abstract model of the robot in the cluttered indoor environment. The navigation policy generates
velocity commands to the robot concrete model to approach the target point. Based on the Foothold
observation, we combine the low-level locomotion controller with a foothold adaptation policy to
control the robot’s following the optimized velocity commands smoothly.

The high-level policy receives depth information from the front and task observation.
A convolutional encoder is used to extract the visual features ldepth, which are merged with
ltask and passed into a multilayer perceptron (MLP). The MLP then generates COM velocity
from St. The navigation policy is learned using reinforcement learning. Rewards are ob-
tained through each step of policy optimization, among which the potential reward requires
information from the global map. The velocity commands control an abstract model of the
robot to interact with the cluttered indoor scene to update the navigation policy.

On the level of foothold adaptation, different from previous research on legged control
with terrain information [14,37], our proposed system leverages foothold observations us-
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ing auto-annotated supervised learning to train a classification policy. This policy enables
the robot to identify safe footholds, improving its ability to follow the centroid velocity
output of the high-level navigation policy. Besides foothold observation, the enhanced loco-
motion controller receives the robot locomotion states (joint position and joint velocity) and
the IMU sensor feedback to calculate the desired joint position. The locomotion controller
and adaptation policy interact with the robot concrete model in both the simulation and
the real world.

Our proposed system enables efficient navigation through indoor environments by
selecting appropriate footholds to avoid obstacles, rather than requiring detours. To evalu-
ate its performance, we use point-goal navigation, which involves navigating towards a
specific goal location while avoiding obstacles [45]. We incorporate a variety of small indoor
obstacles into the scenes using existing navigation datasets [46] to simulate challenging
realistic navigation conditions.

3.1. Navigation Policy

Our high-level navigation policy implements the approach in [46] on the quadruped
robot. To optimize the navigation policy for the quadruped robot, we employ the use of an
abstract model to interact with the environment. Rather than relying on the idealized cylin-
drical agent (ICA), this approach allows for more efficient training of the robot’s navigation
policy. The end-to-end policy is trained through reinforcement learning to receive egocen-
tric visual feedback. The Front Camera captures depth frames at a resolution of 128× 128
to extract obstacles observation. The camera has a field angle (FOV) of 60 degrees to detect
distance clipped at [0.5 m, 5 m]. We build up the action space to keep the robot moving in a
consistent direction with the Front Camera. The discrete action space includes linear velocities
vcom (forward or backward) in the range of [−0.3 m/s, 0.3 m/s], and angular velocities θcom
(clockwise and counterclockwise) in the range of [−π

6 rad/s, π
6 rad/s]. The robot has to turn

to the new heading and then move forward when moving laterally.
For task observation (vcur, θcur, xloc), we combine the robot base velocity with the

relative target location, where xloc is the relative displacements between the robot and the
target point. All of the task observation is calculated through the state estimator from the
original IMU output obtained directly from the onboard inertial measurement unit (IMU).

The high-level policy is trained through Deep Reinforcement Learning (DRL). We use
PPO [47] as the training approach of the COM velocity predictor. The action is predicted
as a 2-dimensional vector (vcom, θcom). We transfer the standard reinforcement learning
framework provided by RLlib [48] to implement the DRL training.

Without any artificial design, we set dense rewards to guide the robot in planning
the optimal path from the observation space. The dense rewards consist of two parts:
the potential reward, which measures the distance from the current location to the target,
and the collision reward, which evaluates the safety of the navigation policy. A success
reward is also obtained after each episode if the robot reaches the goal:

rt = rpotential + rsuccess + rcollision, (1)

rpotential = ω0 × (dt − dt−1), (2)

rcollision = ω1 × ncollision, (3)

where rsuccess is the success reward obtained when reaching the target point; rcollision is
the collision reward used as the penalty for the robot after a collision with the obstacles.
rpotential is the potential reward, examining the shortest path length of the robot to reach
the target point from the current location. dt is the distance from the current location of the
robot to the target point at time t.

ω0 and ω1 regularize each of the reward terms. Given the premise of ω0 < 0 and
dt < dt−1, we see rpotential > 0, which indicates that the robot moves closer to the target
point. Meanwhile, to obtain the collision reward in the training process, we replace the
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idealized cylindrical agent (ICA) with a rectangle model of (0.485 m, 0.275 m, 0.3 m), which
is the size of the bounding box of the quadruped robot.

3.2. Controller with Foothold Adaptation

The implemented navigation policy enables the quadruped to find an optimal path to
the target. Since the Front Camera is installed on the quadruped robot in a fixed orientation,
the robot’s locomotion could be impeded when the foot is locked by the tiny obstacles
around. To address this issue, our proposed system incorporates a Foothold Camera that
captures the visual data of small obstacles in the blind areas of the Front Camera. The COM
velocity generated from the high-level navigation policy is converted into the desired
foothold, where our foothold adaptation module provides dynamical modification.

We mount the foothold Camera with a tilt angle to allow for effective observation
of footholds during the navigation task. The policy was trained through auto-annotated
supervised learning techniques that leverage the robot’s interaction with the cluttered
indoor scenes. Specifically, the adaptation action and their effects were used to generate
training data without the need for manual annotation or external supervision. With the
adapted foothold, the robot then generates desired leg swing trajectory by considering the
foothold as the end point of the trajectory and calculates the desired joint torque.

4. Foothold Adaptation Learning

In this section, we introduce the proposed foothold adaptation policy in detail. Our
method utilizes exteroceptive information in the locomotion controller in a different way
from VisionMPC [36]. Since VisionMPC requires the heightmap construction, our adapta-
tion policy combines the locomotion controller with an auto-annotated supervised advisor
that generates foothold adaptation commands directly. As shown in Figure 3, the proposed
foothold adaptation policy adapts the original footholds computed by the MPC controller
using predictions from the adaptation policy to generate desired footholds. The locomotion
controller then utilizes these desired footholds to calculate the joint torque of each leg.
Once a successful control step is finished (we define a step without collision as a successful
step), the adaptation policy records the label and is updated automatically, while the failed
adaptation actions are dropped. The enhanced controller enables the robot to traverse
cluttered and dynamic environments without any prior information.

Figure 3. The foothold adaptation policy records successful adaptation actions and their corre-
sponding observations into an experience buffer, which is then utilized to generate labels for the
adaptation predictor.
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The quadruped robot applies MPC and WBC within the low-level locomotion con-
troller [35]. Under the assumption that the legs contact the ground with a fixed period,
these controllers optimize the ground contact force and calculate the joint torques through
inverse kinematics. To overcome the challenge of unexpected obstacles in cluttered envi-
ronments that can lead to a deviation between the assumed and actual situations, causing
locomotion failure, the proposed foothold adaptation policy utilizes observations around
foot placement to minimize leg contact with obstacles.

4.1. Observation System and Adaptation Action

Since the Front Camera lacks observation of the foot placement, the proposed hier-
archical vision system introduces the Foothold Camera to capture information around
the footholds, which is shown in Figure 4. This is different from previous work, which
implements two cameras to observe both the hind and front foothold [41], or constructs a
terrain map with rotating sensors [16]. We have observed that the safe foothold planned
by the front leg remains safe for the rear leg (see Figure 5) in a typical navigation scenario.
Thus, we propose adjusting the hind foothold by imitating the action of the front, based on
the observed similarities in safe foothold planning between the two legs. The low control
frequency of the foothold adaptation policy justifies this approximation. Based on the
above discussion, we have streamlined our system by mounting a single camera to capture
the observation of the front foothold.

Figure 4. The designed hierarchical vision system captures foothold and front observation simultane-
ously. Challenging obstacles are in sight of the Foothold Camera.



Sensors 2023, 23, 5194 8 of 19

Figure 5. (left): Foothold trajectories of the four legs. The trajectory of the hind foot approximately
follows the front foot. (right): Corresponding trajectory for the quadruped robot’s navigation in the
simulation, in indoor scenes.

While map-based foothold adaptation methods rely on constructing heightmaps and
searching neighboring grid locations to find feasible footholds in cluttered scenes [36,49],
our proposed policy employs a different approach. Instead, we train a foothold adaptation
policy without constructing a heightmap, and we design adaptation actions for the four
legs as relative displacements from the foothold generated using MPC (Original Foothold).
For each leg, the displacement At is a vector with different orientations. The lengths of
these vectors are limited to 0.1 m in the XY plane and 0.03 m in the z-component.

4.2. Policy Learning

We construct the adaptation policy with a classification network. To more effectively
obtain successful foothold adaptation, we alternate between data collection and network
updates. More specifically, auto-annotated supervised learning is conducted in an ε-greedy
manner. The robot applies random footholds under the probability of ε and applies current
policy output under the probability of 1− ε. A new data sample is added if the current
step has no collision with the obstacles, and the network is updated once a certain amount
of samples have been added (Algorithm 1). In addition, we constantly modify the cluttered
environment with different challenging obstacles during simulation training, enabling the
robot to adapt to different types of complex scenarios. It should be noted that during data
collection, the robot was allowed to freely select At in the area of ([−0.1, 0.1], [−0.1, 0.1],
[0, 0.3]). However, to fit the data into the classification network, we discretized the action
space uniformly into eight label positions for each of the front foot. We used the nearest
neighbor principle to find the label position that was closest to the acted At . This approach
ensured that the adaptation labels were recorded accurately and efficiently.
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Algorithm 1 Adaptation Policy Routine

Require: adaptation action library A, greedy factor ε
1: Initialize: adaptation policy π, experience data buffer B

Learning Process
2: for epoch i = 0, 1, ..., N do
3: while not Success and not Done do
4: collect gray-scale image It
5: if (random([0, 1]) < ε) then
6: random choose At from the action library A
7: else
8: At = π(It)
9: end if

10: if (no collision) then
11: // record successful adaptations
12: append current data (At, It) into B
13: end if
14: end while
15: // UPDATE POLICY
16: update π with updated experience data buffer B
17: end for
18: return π

4.3. Combination with Locomotion Controller

We integrate the learned policy with the MPC locomotion controller [22] of the
quadruped robot, converting the adaptation commands into the desired foothold location.
The combined low-level controller also achieves stable results in the real world.

With the desired COM velocity (vcom, θcom), the locomotion controller generates a set
of coordinates of the foothold without exteroceptive information, which can maintain a
stable attitude and follow the desired velocity on flat terrain. However, in cluttered indoor
scenes, the original footholds cause the robot to collide with the obstacles, and the desired
velocity cannot be followed. We add the adaptation policy outputs to the static coordinates
to calculate the adjusted foothold:

x f = xpre + v∆t + Rz(ψ)(At + dl), (4)

where x f is the desired foothold location with respect to the world frame. v is the current
velocity vector calculated from (vcom, θcom) and xpre + v∆t calculates the updated COM
location. dl is the original foothold location with respect to the robot COM location and
At is the adaptation action referring to the displacement vector. Rz(ψ) is a rotation matrix
translating angular velocity θcom in the global frame.

5. Experiment

Based on a small-scale quadruped robot, we evaluate the effectiveness of the designed
vision navigation system in both simulation and the real world. Experiments show that the
hierarchical vision system outperforms baselines [36,41,46] from the literature in completing
target point navigation tasks with challenging obstacles.

5.1. Experimental Setup
5.1.1. Simulation Setup

We implement a mini-cheetah URDF (Unified Robot Description Format) model
with the proposed hierarchical vision system into the iGibson [46] environment in the
Pybullet [50] physics engine. The locomotion controller and physics engine operate at
a synchronized frequency of 500 Hz. The high-level navigation policy has an average
inference time of 12 ms, while the foothold adaptation policy has an average inference time
of 8 ms. These two networks run in parallel and jointly provide output to the locomotion
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controller at a frequency of 13 Hz. The locations of the robot and the target point are
randomly generated for each episode, and the initial distance is limited to [3 m, 7 m]. Apart
from the common furniture obstacles included in the dataset, we set five YCB objects [51]
on the floor. As long as the robot moves 1 m, the YCB objects and the target point will
randomly update their location within 1 m from the robot. In dynamic scenes, the YCB
objects and target move at a maximum speed of 0.3 m/s.

5.1.2. Physical Hardware

The quadruped robot platform is a fork of the MIT mini-cheetah, which contains
three joint motors for each of the four legs. An IMU sensor at the center of the robot body
provides the original proprioception state . The proprioception state is used to calculate the
task observation for high-level navigation policy, and the feedback for low-level locomotion
control. We deploy our hierarchical vision system on the robot with two Intel Realsense
D435i cameras which have RGB and depth channels, as shown in Figure 6. An NVIDIA
Jetson TX2 powered by an onboard supply is mounted on the robot as the computing host,
which is used for image processing and the inference of the neural network. The Upboard
computer is mounted as the locomotion host receiving the proprioception state and sending
commands to the motors. The TX2 performs inferences with an average time of 47 ms and
36 ms for the two networks, respectively, and sends the results to Upboard at 8 Hz through
LCM (Lightweight Communications and Marshalling). The proposed policies demonstrate
real-time performance on the embodied system without significant delay.

Figure 6. Onboard sensing and computation platform for the real-world implementation of the
designed hierarchical vision system. Two D435i cameras are used as Front Camera and Foothold
Camera. An NVIDIA Jetson TX2 powered by onboard supply is mounted for inference of the neural
network (computing host). An Upboard computer is used for locomotion control of the robot.
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5.1.3. Baseline and Metrics

To evaluate the navigation performance with the hierarchical vision system, we com-
pare our method with three baselines:

(1) End-to-end navigation policy (Base-Nav) [46]: We deploy the navigation policy directly
on the quadruped robot.

(2) Heuristic foot placement policy (Heuristic) [36]: Among recent foothold adaptation
methods that use potential search [16,36,37], we choose to compare our method
with [36] as it shares the same motion controllers with our approach. To implement
this baseline, we construct a heightmap using the initial obstacle positions, and the
robot autonomously chooses foothold positions with a height below 0.03 m.

(3) RL learned foothold adaptation policy (RL) [41]: We train a foothold adaptation
policy using reinforcement learning as a baseline for comparison. Because we use the
egocentric image input as well, we mainly replicate the RL method of [41] instead
of [14] for comparison. In addition to the foothold observation, we incorporated the
robot’s joint states, base velocity, and body height as inputs. For reward shaping, we
incentivized speed following and penalized collisions with obstacles.

Both the Heuristic and RL policies are combined with the high-level navigation policy
for evaluation.

Our metrics include:

(1) Success weighted by Path Length (SPL) [45], which evaluates the efficiency of the
navigation (static target only).

(2) Success Rate (Success), which indicates the performance of the proposed system to
complete the task. We consider a successful navigation to have occurred when the
robot reaches the target location within twice the agent’s width (2× 0.4875) [45].

(3) Crash Rate (Crashes), which is used to represent the probability that the robot will
collide with the environment and cause the task to fail.

(4) Average Collisions (Collisions), which is the average number of collision points be-
tween robots and obstacles per step. The Average Collision evaluates the obstacle
avoidance capability of the navigation system.

5.2. Implementation Details
5.2.1. Network Structure

The navigation policy of our proposed system processes depth observation using a
2-D CNN to obtain ldepth. The layer configurations include input channel number, output
channel number, kernel size, and stride of (1, 32, 8, 4), (32, 64, 4, 2), and (64, 64, 3, 1), with a
zero-padding of (2, 2, 2, 2) and (1, 1, 1, 1) for the first two layers. Task observation is
processed using a 2-layer MLP with (3, 256) and (256, 256), resulting in ltask. The flattened
ldepth is merged with ltask and passed through a final MLP with three fully connected
layers (128, 128); all the networks mentioned in the navigation policy are optimized us-
ing reinforcement learning. For the foothold adaptation policy, we adopt the ResNet34
structure [52] directly.

5.2.2. Training Details

The navigation policy is trained using PPO in eight parallel processes on RLib [48] for
1200 episodes. Then, the foothold adaptation module is trained using supervised learning
with on-policy data using the greedy strategy. In the training of the adaptation policy,
we first collect a dataset of size 1000 without updating the network; this allows us to
explore the distribution of labels in the collected data. Then, we select four successful
adaptations (Atright , Atle f t) with the highest frequency of occurrence as the final category
labels. Next, whenever 100 successful adaptations are observed, the foothold adaptation
policy is updated for 100 epochs. The training process continues until a total of 2000 data
samples are collected, which takes approximately four hours. All the policies mentioned



Sensors 2023, 23, 5194 12 of 19

are trained on a desktop computer with 12 Intel Xeon processors clocked at 2.4 GHz and an
NVIDIA TITAN X graphics card. Other hyperparameters are listed in Table 1.

Table 1. Implementation Hyperparameters.

Policy Parameter Value

High-Level Navigation

Discount factor γ 0.99
Learning rate 1 × 10−4

Batch size 4096
GAE λ 0.9

max steps per iter 500

Foothold Adaptation

Pretrained True
Greedy factor ε 0.75
Learning Rate 1 × 10−4

Batch Size 32

Motion Controller
Control Frequency 500

Sim [kp, kd] [3, 1]
Real [kp, kd] [10, 0.2]

5.3. Simulation Experiments

We present experiments with dynamic and static scenes separately. The dynamic
scenes include dynamic targets and dynamic obstacles. For all of the evaluated approaches,
the robot conducts 500 PointNav tasks in five indoor scenes according to the settings above.
All the test scenes are different from the scenes used for training.

The results of the static targets are shown in Table 2. With both the static and dynamic
obstacles, the proposed navigation system significantly outperforms Base-Nav, indicating
that correct foothold adaptation can significantly improve the robot’s performance to avoid
obstacles. Since Base-Nav is trained for sampling an optimal path with an idealized cylinder
agent (ICA), the quadruped robot becomes stuck as long as it encounters obstacles beyond
the view of the Front Camera. The results also demonstrate the difficulty of navigating a
robot without consideration of the robot dynamics.

Table 2. Hierarchical Vision Navigation System Evaluation. Bold values indicate best results.

Scene Policy 1 SPL Success Collisions

Static

Base-Nav [46] 0.27 0.29 0.63
Heuristic [36] 0.64 0.71 0.39

RL [41] 0.41 0.47 0.44
Ours 0.65 0.72 0.35

Dynamic

Base-Nav [46] 0.26 0.28 0.63
Heuristic [36] 0.45 0.50 0.51

RL [41] 0.45 0.49 0.48
Ours 0.57 0.65 0.39

1 We implement the baseline methods in the same experimental environments for comparison.

Compared with the heuristic foot placement approach (Heuristic), our approach is able
to achieve a higher SPL and Success Rate along with lower Average Collisions. In dynamic
scenes, the performance improvements are even more significant because our low-level
controller offers foothold adaptation advice directly from real-time visual feedback with
lower time latency. Since the heuristic foot placement approach requires a more complex
vision system for map construction, we again observe that our hierarchical vision system
achieves better timeliness and reliability with minimal hardware systems.

The RL baseline exhibits inferior performance in navigation metrics (SPL, Success)
compared with both the proposed method and the heuristic baseline. These results suggest
that utilizing successful adaptation labels is a more effective approach than model-free RL
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methods in obstacle avoidance. Compared to the RL baseline, the proposed method can be
smoothly integrated with the high-level navigation policy and the model-based controller.
Meanwhile, the RL baseline shows similar performance in both static and dynamic tasks,
indicating its ability to handle real-time scenarios effectively.

In the experiments with dynamic targets (shown in Table 3), the proposed hierarchical
vision navigation system also achieves the highest success rate compared with the baselines.
However, the success rate declines significantly compared with the result with static
targets, while the collision rate changes little. This is because the robot has to explore
the unknown scenes more and may be unable to find the path to the target. Meanwhile,
the Average Collisions change little compared with the experiments with static targets,
indicating that the robot maintains a good obstacle avoidance performance with our
foothold adaptation method.

Table 3. Dynamic Targets Evaluation. Bold values indicate best results.

Obstacles Policy Success Crashes Collisions

Static

Base-Nav [46] 0.25 0.57 0.63
Heuristic [36] 0.59 0.21 0.41

RL [41] 0.42 0.49 0.46
Ours 0.62 0.20 0.38

Dynamic

Base-Nav [46] 0.29 0.56 0.6
Heuristic [36] 0.45 0.39 0.46

RL [41] 0.42 0.51 0.50
Ours 0.54 0.34 0.41

5.3.1. Improvements with Hierarchical Vision System

We conduct ablation experiments on the proposed hierarchical vision system. We
compare the navigation performance between the proposed system (Foothold-Front) and
the system with a single camera (Front-Only). The result is shown in Figure 7. The Foothold-
Front system significantly outperforms the Front-Only system. The latter either fails at the
challenging obstacles or makes a detour to avoid the obstacles that it could have passed
with dynamic foothold adaptation.

Figure 7. (left): The performances of different visual systems. The Foothold-Front system achieves a
higher Success Rate and SPL, and lower Average Collisions. (right): Center of Mass (COM) trajectories
of the compared systems with the same static environment. Due to the lack of foothold observation,
the Front-Only system falls at challenging obstacles.



Sensors 2023, 23, 5194 14 of 19

5.3.2. Improvements with the Auto-Annotated Supervised Module

This part analyzes the importance of auto-annotated supervised training within the
low-level locomotion controller. To eliminate the effects of the high-level navigation policy,
we set the experiment in a 5 m straight path where the robot moves forward at a constant
velocity of 0.3 m/s. Challenging obstacles are generated in the same way as in the previous
experiment. We compare the performance of the foothold adaptation policy trained through
auto-annotated supervised under five different data volumes (n-step represents the number
of successful steps). As shown in Table 4, the performance improves significantly with
the expansion of the auto-labeled data, and the lightweight policy converges in about
1000 steps.

Table 4. Performance of different steps.

n-Step
Static Dynamic

Success Collisions Success Collision

100 0.19 0.66 0.19 0.59
300 0.19 0.62 0.26 0.55
500 0.50 0.41 0.56 0.29
900 0.79 0.26 0.80 0.18

1500 0.75 0.27 0.79 0.21

5.4. Real-World Experiments

We deploy the proposed system in a variety of real-world experiments and compare
them to the base-nav baseline, which uses the Front Camera only without active foothold
adaptation. We conduct experiments in various settings, with each setting being evaluated
through 10 trials (5 for each method):

(1) A cluttered exhibition hall (Figure 8) with static obstacles and target points [6 m, 2 m].
To mimic the obstacles in the simulation, we manually construct this scene in the real
world. The obstacles include square sofas [0.8 m, 0.4 m, 0.4 m] and YCB objects with
maximum size [0.25 m, 0.15 m, 0.1 m].

(2) A static lab environment (Figure 9) with target point [6.5 m, 2 m]. The obstacles are
common objects that are naturally placed in indoor scenes, including chairs, desks,
the water dispenser, and so on.

(3) A parlor (Figure 10) with target point [5 m, 3 m]. In addition to static obstacles (square
sofas, chairs), we incorporate a dynamic obstacle, where a person walks from the side
of the robot to its front at an approximate speed of 0.5 m/s. This setting allows us to
evaluate the system’s performance in dynamic environments.
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Figure 8. Snapshots of the real robot’s navigation in the cluttered exhibition hall. (a,b) Optimal path
overview in the exhibition hall of different experiments. (c–e) To side-step the challenging obstacles,
the robot selects feasible foot placement locations in different directions from the Original Foothold.

Figure 9. Snapshots of the real robot’s navigation in the static lab environment. (a) Optimal path
overview in the lab environment; the robot takes a detour through the cluttered narrow path. (b,c) The
Front Camera perceives larger obstacles (the cardboard box) and the high-level policy generates
appropriate COM velocity for obstacle avoidance. (d,e) The Foothold Camera perceives small
obstacles (the weight scale) and the foothold adaptation policy generates a feasible foothold for
obstacle avoidance.
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Figure 10. Snapshots of the real robot’s navigation in the parlor with dynamic obstacles; the robot
plans an optimal Path overview in the parlor, and a deliberate deviation from the goal direction is
introduced to enable the robot to avoid oncoming obstacles.

5.4.1. Sim-to-Real Transfer

This part provides a clear description of the techniques that we implemented to ensure
a successful simulation-to-real transfer.

During simulation, the robot receives task observation (vcur, θcur, xloc) directly from the
simulator, which provides ground-truth information. However, for real-world experiments,
the state estimator is used to obtain task observation from the IMU feedback and joint
information. The estimator combines raw acceleration, angular velocity, robot orientation,
joint position, joint velocity, and an estimated foot contact phase to estimate the robot’s
position and velocity. In our work, we use a Kalman Filter-based state estimator [53], which
has an average estimation error of 12.2% in our State Estimator tests for a 10 m walk. Similar
to the simulation evaluation, the success of navigation is defined by the robot reaching the
target point within approximately 1 m. Therefore, we consider this error to be within an
acceptable range.

Moreover, we employ domain randomization in both policies. Specifically, we added
1% Gaussian noise to the inputs and outputs involved in the policies, including propri-
oception states, vision observations, generated COM velocity, and foothold adaptation
actions. Furthermore, we pass the COM velocity through the velocity smoother from the
ROS (Robot Operating System), which helps to improve the velocity tracking performance
of the real robot and prevents sudden motion changes that may cause damage.

5.4.2. Avoiding Static Obstacles

As shown in Table 5, the proposed method achieves a success rate of 0.8 in the cluttered
exhibition experiments. When encountering an obstacle in its foothold observation, it tends
to adjust the foot location of the nearby leg perpendicular to the direction of movement
while preserving the swing trajectories of the other legs. On the other hand, the base-nav
method only had a success rate of 0.2, resulting in collisions with all the small obstacles
it encountered.

Table 5. Success Rate for Real-World Experiments. Bold values indicate best results.

Policy Exhibition Hall
(Static)

Lab Environment
(Static) Parlor (Dynamic)

Base-Nav 0.2 0.6 0

Ours 0.8 1 0.6
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In the static lab environment, the proposed method achieves a success rate of 1.0 and
the base-nav method has a success rate of 0.6. The base-nav is more prone to being tripped
up and failing when encountering small obstacles such as chair legs and weight scales.
The results demonstrate the successful integration of the foothold adaptation policy with the
low-level locomotion controller, leading to stable obstacle avoidance in indoor navigation.

5.4.3. Avoiding Dynamic Obstacles

In the parlor with the dynamic obstacle (walking person), the proposed method has
a success rate of 0.6 (Table 5) while the base-nav fails for all five trails. We find that the
person appearing from the side poses a more challenging obstacle. With base-nav, despite
adjusting COM speed upon detecting the person, the robot still becomes tripped by its leg.
However, the foothold adaptation policy overcomes such obstacles; the robot is able to
react quickly to the upcoming obstacle, and adjust its foothold and COM velocity based on
observations from the proposed vision system.

6. Conclusions

In this work, we proposed a hierarchical vision navigation system for quadruped
robots in cluttered and dynamic scenes. The system is composed of a Front Camera and
a Foothold Camera to simultaneously collect visual data from the front and the foothold.
The system learns an end-to-end navigation policy at the high level, and enhances the
low-level locomotion controller with a foothold adaptation policy through auto-annotated
supervised learning. The proposed system opens up future avenues for designing a vision
acquisition system to improve the performance of legged robot navigation in unstruc-
tured environments.

In future work, we will extend our robot system to tackle challenging environments
such as rough terrain. Additionally, we will explore the integration of advanced sensor
technologies and perception algorithms to improve the system’s ability to handle complex
and dynamic environments, ensuring reliable long-distance navigation, both indoors
and outdoors.
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