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Abstract: The core of eLoran ground-based timing navigation systems is the accurate measurement
of groundwave propagation delay. However, meteorological changes will disturb the conductive
characteristic factors along the groundwave propagation path, especially for a complex terrestrial
propagation environment, and may even lead to microsecond-level propagation delay fluctuation,
seriously affecting the timing accuracy of the system. Aiming at this problem, this paper proposes
a propagation delay prediction model based on a Back-Propagation neural network (BPNN) for a
complex meteorological environment, which realizes the function of directly mapping propagation
delay fluctuation through meteorological factors. First, the theoretical influence of meteorological
factors on each component of propagation delay is analyzed based on calculation parameters. Then,
through the correlation analysis of the measured data, the complex relationship between the seven
main meteorological factors and the propagation delay, as well as their regional differences, are
demonstrated. Finally, a BPNN prediction model considering regional changes of multiple meteo-
rological factors is proposed, and the validity of the model is verified by long-term collected data.
Experimental results show that the proposed model can effectively predict the propagation delay
fluctuation in the next few days, and its overall performance is significantly improved compared
with that of the existing linear model and simple neural network model.

Keywords: eLoran; meteorological factor; propagation delay prediction model; Back-Propagation
neural network

1. Introduction

The Loran-C system is a low-frequency (LF) ground-based navigation system devel-
oped by the US Navy for military purposes in the 1950s based on the hyperbolic positioning
principle [1,2]. The enhanced Loran (eLoran) system is an upgraded version of the Loran-C
system. With many advantages such as wide coverage, high stability and strong anti-
interference ability, the eLoran system has become a reliable backup for global navigation
satellite systems (GNSS) and will be combined with GNSS to further improve the national
satellite-terrestrial integrated positioning, navigation and timing (PNT) system [3,4].

In order to improve the timing accuracy of the eLoran system, it is necessary to
accurately measure the propagation delay. However, the propagation delay is time-varying,
which will be analyzed in detail in the following sections. Currently, the most effective
method is to aggregate the fluctuations caused by various factors into the ASF fluctuation
term, develop a high-precision ASF grid map and provide delay correction services for
users through ASF interpolation [5,6]. The basis of this method is the precise prediction of
the signal propagation delay and ASF correction values of grid vertices. Fluctuations of
various meteorological factors such as temperature, humidity, precipitation, etc. will cause
different changes in conductive characteristics along the propagation path and may lead
to accumulated propagation delay measurement errors, even up to the microsecond level,
seriously affecting the accuracy of ASF correction [7]. Therefore, studying the impact of
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various meteorological factors on eLoran signal propagation delay fluctuation is the key to
accurately establishing a propagation delay prediction model, which is of great significance
for improving the service quality of the eLoran system.

In this study, the accuracy of meteorological data acquisition is the basis of propaga-
tion delay prediction, and the development of remote sensing technology is the core of
meteorological element data acquisition. John Houghton, a climatologist and pioneer in the
field, has made outstanding contributions to the study of climate change and the physical
sciences of the atmosphere. Sir Houghton cut his teeth in the 1970s designing instruments
for measuring the atmospheric temperature and composition for NASA’s four rain-cloud
satellites and went on to lead his team in developing a range of remote sensing instruments
for ocean climate measurements. His contributions include, but are not limited to, the
foundation of remote sensing, especially in early satellite technology, the selective chopper
radiometer, the atmospheric sounding, the clouds classification, the weather satellites and
the radiative interaction of the land and the atmosphere. These works have profound
significance for the development of meteorological measurement technology today [8]. In
addition, Sir Houghton made a significant contribution to the establishment and expansion
of the United Nations Intergovernmental Panel on Climate Change (IPCC). Under his
guidance, from its inception in 1988 until 2002, the IPCC did an unrivalled job of integrat-
ing the science, issuing warnings about dangerous climate risks and making the case for
immediate action. The organization won the 2007 Nobel Peace Prize for its efforts. Rainfall
is extremely important for the prediction accuracy of propagation delay, and its temporal
and spatial variations often have some nonlinear correlations, which is very worthy of
attention. In 2022, Varotsos et al. have made some novel studies on the shape of rain and
clouds. Based on the concept of “nature rank”, the relationship between cloud area and
circumference and rainfall can be obtained by studying the relationship between cloud area
and circumference [9]. This is of great significance for accurate meteorological prediction
and can also provide certain explanations for the uncertain time-lag relationship between
ground water content and precipitation.

In the research field of long-wave propagation delay, it is mainly divided into the
study of the calculation model of propagation delay from the terrain and the exploration of
the time-varying characteristic and correction method of the ASF value from the time.

The early theoretical calculation of LF groundwave propagation was based on the
smooth flat ground channel model [10–18]. In 1909, Sommerfeld deduced an expression
for the field integral of a vertical electric dipole on a uniform flat surface [10]. Based on
this theory, scholars from all over the world have carried out a lot of relevant studies over
the years. In 1945, Fock transformed and approximated the spherical harmonic series
expression of the spherical groundwave field derived by Watson [11], which improved
the convergence rate of the series and was more suitable for engineering applications,
namely, the Fock diffraction formula [12]. For smooth segmented uneven ground, the main
methods include the Wait integral formula [13], wave-mode conversion method [14] and
Millington empirical formula widely used in engineering calculations [15]. For irregular
and uneven ground, the evolutionary calculation methods mainly include the parabolic
equation (PE) method [16], integral equation method [17] and finite different time domain
(FDTD) algorithm [18]. The above methods all have their important theoretical guidance
and practical application value in different applicable environments.

In terms of the time-varying characteristics of propagation delay, as early as 1985,
McCollough et al. first discovered the seasonal variation of propagation delay through
Loran-C observation data in the Gulf of Mexico, and preliminarily discussed its impact [19].
In 1986, Ma made a study on the seasonal variation in ground conductivity in different
regions of China and its influence on LF groundwave propagation [20]. In 1991, Ren
analyzed the influence of meteorology on the prediction of signal propagation in the
Northeast Sea working area of Loran-C [21].

In recent years, with the increasing demand for the timing and positioning accuracy of
eLoran systems in various countries, a lot of research work has emerged on the time-varying
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characteristics of propagation delay and the ASF correction method. Yang et al. analyzed
the correlation between daily variations in temperature and humidity and propagation
delay and proposed a compensation scheme based on temperature for delay correction [22].
Hwang et al. studied the influence of temperature and ground conductivity on the eLoran
propagation delay and corrected the ASF by establishing a linear temperature model [23].
Li et al. and Yang et al., respectively, compared the measured propagation delay before and
after heavy snow and rain and concluded that abrupt changes in meteorological factors
such as temperature, humidity and precipitation are the key reasons for drastic changes in
ASF. [24,25]. Pu et al. and Feng et al. analyzed from the perspective of the atmospheric
refractive index and soil moisture content, respectively, and concluded that each factor is
closely related to the propagation delay changes [26,27]. Jia et al. obtained a conclusion that
the groundwave propagation delay is larger in the day than at night, and the fluctuation
increases with distance [28].

In 2019, Yang conducted a preliminary prediction modeling study on the short-term
time-varying changes of short distance propagation delay and the fluctuations of various
meteorological factors through the neural network principle [29], which broke through
the common linear correction model and was an innovative concept but did not consider
the regional changes of meteorological factors. In 2020, Wang et al. gridded the long-
wave signal region and proposed a correction method based on a neural network (ground
conductivity, refractive index of light, temperature and humidity as inputs) [30], which
achieved certain effects but took fewer meteorological factors into account.

In summary, the current research on the theoretical calculation methods of LF ground-
wave signal propagation delay has been relatively mature. However, the research on the
time-varying characteristics of propagation delay is still limited, mostly focusing on the
analysis of the relationship between weather and propagation delay, and the correction
methods are mainly linear models, while the learning algorithms such as neural network
models are in their infancy. Aiming at the above deficiencies, this paper makes an in-depth
study, and the main contributions of our study are as follows:

1. The influence of meteorological factors on different components of long-wave prop-
agation delay (PF, SF, ASF) is theoretically analyzed quantitatively or qualitatively.
Through the correlation analysis of long-term measured data and theoretical anal-
ysis, seven relatively important meteorological influence factors are determined as
modeling parameters.

2. Considering multiple meteorological factors and their regional changes, the prediction
model based on the Back-Propagation neural network (BPNN) is established, which
significantly improves the accuracy of propagation delay prediction.

3. The 17 Sustainable Development Goals set out in the UN 2030 Agenda to address
major global challenges, including poverty, inequality, climate change, environmental
degradation, peace and justice, are set to be achieved by 2030 [31]. The successful
realization of the forward prediction of meteorological propagation delay has theo-
retical reference value for the research on the inversion of meteorological elements,
especially the prediction of disaster weather, through long-wave propagation delay in
the next project plan and has far-reaching significance for the prevention of poverty,
environmental degradation and other challenges.

2. Background Principles

Each Loran-C station chain consists of a main station and two to four sub-stations and
has a special group repetition interval (GRI). The stations broadcast in cycles according
to GRI in a certain time sequence to ensure a fixed receiving sequence within the signal
coverage area [32]. Loran-C signals are transmitted in the form of pulse groups, with nine
pulses in each pulse group of the main station and eight pulses in each pulse group of each
sub-station. The interval of the first eight pulses in each group is 1 ms, while the interval
of the ninth and eighth pulses in the main station is 2 ms [33]. The main improvement of
the eLoran system on Loran-C is to adopt Eurofix data link technology to perform three
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state pulse position modulation (PPM) on the third to eighth pulses of each pulse group to
achieve the data information transmission function [34–36]. The time domain waveform
of the standard Loran-C pulse is expressed by Formula (1) [37], and the waveforms of the
standard Loran-C pulse and main station pulse group are shown in Figure 1. below.

s(t) =

{
A(t− τ)2 exp

(
−2 (t−τ)

65

)
sin[2π fct + Pc], τ � t� 65 + τ

0, t < τ
(1)

where t is the time in µs; A is a normalization constant related to the peak amplitude; τ
is the envelope-to-cycle difference (ECD) in µs; fc = 100 kHz is the carrier frequency and
Pc = 0 or π is the phase code parameter in radians.
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The autonomous timing function of the eLoran system is the process of synchronizing
the local 1PPS signal of the receiver with the 1PPS signal of Universal Time Coordinated
(UTC). The basic principle of autonomous timing is shown in Figure 2.
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According to the time axis relationship shown in Figure 2, the process of autonomous
timing is the process of calculating ∆T, which can be expressed by the following formula:

∆T = Tm + TOA− Td = Tm + Tp + Tr − Td (2)

where Tm is the deviation between the transmit pulse and 1PPS (UTC); Tp is the absolute
propagation delay of the eLoran groundwave signal from the transmitting antenna to the
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receiving antenna; Tr is the delay of the receiving system; Td is the time deviation between
the receiver’s local 1PPS time and the Group Trigger Pulse (GTP) time [38].

The GTP time corresponds to the standard zero crossing of the first pulse signal of
the eLoran pulse group. Through the period identification process, the eLoran receiver
determines the GTP time and tracks the phase of the standard zero-crossing point; then, it
accurately measures the TOA of the groundwave signal and finally realizes the timing and
position service functions. According to Formula (2), TOA is composed of two parts of Tp
and Tr [39], where Tr can be obtained by calibration. In addition, Tm in the formula can be
calculated by demodulating the time-code information, and Td can also be measured by
the internal counter of the receiver. Therefore, it can be said that the core of calculating ∆T
and realizing accurate autonomous timing is the accurate estimation of propagation delay
Tp. The expression of Tp is as follows [39,40]:

Tp = PF + SF + ASF (3)

where PF is the primary factor; SF is the secondary factor; ASF is the additional secondary
factor. The above parameters all have their characteristics and estimation methods, which
will be discussed in Section 3. Among them, since the calculation of Tp components only
considers the topographic factors, the Tp measurement results of the fixed broadcasting
stations at the same test site should be a fluctuation with a horizontal trend, taking into
account the influence of some random noise or sudden jump interference.

However, through the analysis of long-term fixed-point observation data, it is found
that the Tp values present a real-time fluctuation trend. Figure 3 displays the curve of
Tp data collected at the Lintong BPL long-wave monitoring station within the 184-day
interval (1 July to 31 December 2021) after the processing of outlier removal and mean
value removal. It should be noted that all the Tp data used in this paper are derived from
eLoran groundwave signals broadcast by a BPL long-wave timing station.
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Figure 3. Long-term measurement value of propagation delay at the Lintong monitoring station.

As can be seen from the Tp curve in Figure 3, the measured values collected at the
Lintong monitoring Station (71.4 km) have a slow seasonal change process of nearly
150 ns in half a year, and there also seems to be some regular fluctuation in the diurnal
trend. However, the measurement results of the antenna bottom current loop obtained
from the monitoring station in Pucheng show that the transmitting second signal is in a
long-term stable state, the maximum jitter deviation fluctuates around ±20 ns and the
standard deviation is less than 11 ns. Therefore, it can be preliminarily judged that the
measured value fluctuation of propagation delay has a certain correlation with the change in
propagation medium characteristics on the fixed propagation path. In this paper, parameter
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∆Tp will be used to characterize the total relative fluctuation of such propagation delay Tp
and as the core research object of this paper.

3. Correlation Analysis

The navigation and positioning functions of the eLoran system are based on the Tp
measurement of groundwave signals. Many previous studies have found that, on the
relatively fixed groundwave propagation path, the main factors affecting the trend of ∆Tp
are various meteorological changes, including temperature, relative humidity, atmospheric
pressure, etc., which may disturb the characteristics of the propagation medium [19–30].
Indirectly, the Tp value also changes.

The following will discuss the theoretical influence of meteorological fluctuations on
PF, SF and ASF, which will be demonstrated separately in the following sections, and the
complex correlations between various meteorological factors and ∆Tp will be demonstrated
through sufficient measured data.

3.1. Theoretical Influence of Meteorological Factors
3.1.1. PF

The primary factor, also known as the basic time delay, refers to the signal propagation
delay under the assumption of a uniform air medium, which can be calculated by Formula
(4). In order to reflect the spatial difference of the upper atmospheric refraction index in
more detail, including the influence of altitude, temperature and humidity differences in
different regions, and improve the estimation accuracy, Formula (4) can also be changed
to Formula (5).

PF =
n0s
c

(4)

PF =
∫ ns

c
ds (5)

where s is the great-circle distance of the propagation path in km; c is the speed of light
in vacuum, which is 299,792.458 km/s; n0 is the standard atmospheric refraction index,
which takes n0 = 1.000315 in China’s electromagnetic industry standard; ns is the piecewise
atmospheric refractive index related to the spatial inconsistency of the propagation path.

It can be seen from the above introduction that for fixed eLoran signal receiving points,
the theoretical calculated value of PF should be a definite value. However, considering that
the atmospheric refraction index n is a time-varying parameter in the real environment, the
real-time fluctuation and compensation of PF must be a problem worth studying. In order
to facilitate the analysis, another parameter, N (unit: N), is commonly quoted to replace the
atmospheric refractive index n, and it can be expressed as

N = (n− 1)·106 (6)

According to the international standard atmosphere, the standard value of param-
eter N0 = 315 (n0 = 1.000315) is adopted in the electromagnetic industry in China, while
N0 = 338 (n0 = 1.000338) is adopted in the United States. This value deviation also reflects
the great differences in geological types and climate characteristics between different coun-
tries. Considering that the relative permeability in the air is approximately equal to 1, the
relative dielectric constant εA, electric polarization χe and parameter N of the atmosphere
are related as follows [41]:

N ≈
(
n2 − 1

)
2

·106 (7)

χe = εA − 1 =
155.2× 10−6·P

T
+

7.645× 10−1ew

T2 (8)

where P is the atmospheric pressure in hPa; ew is the water vapor pressure in hPa; T is the
temperature in K. In addition, when the frequency of radio waves is below the UHF band,
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especially in the LF band, the transformation relation of εA = n2 can be established [42]. By
combining this equation with Equations (7) and (8), the approximate calculation formula of
N can be obtained [43]:

N ≈ 77.6
P
T
+ 3.73× 105 ew

T2 (9)

Table 1 shows the seasonal variation in parameter N in different regions of China [41].
The statistics show that the distribution of parameter N varies greatly in different regions,
and its value fluctuation is also very different; especially, it is extremely sensitive to
humidity changes. Due to the strong seasonal variation in humidity and temperature in
the coastal and middle reaches of the Yangtze River, the value of N fluctuates obviously.
However, Xinjiang, Xizang and other regions have relatively stable fluctuations of N due to
the dry climate, less precipitation and little change in atmospheric humidity.

Table 1. Seasonal variation of refractive index value (unit: N) in different regions of China.

Region January April July October Annual Average Annual Range

Guangzhou 323 362 380 353 353 57
Shanghai 316 333 383 342 343 67
Wuhan 314 334 383 337 342 69
Beijing 301 301 361 311 320 60

Chengdu 303 320 351 320 320 48
Urumqi 292 281 290 285 285 11

Kunming 259 270 299 280 279 40
Lanzhou 253 246 272 265 278 26
Hohhot 277 260 292 272 272 32
Lhasa 192 194 220 202 202 28

At the same time, the research shows that the diurnal variation in parameter N also
has obvious regularity. Generally, in the early and late hours of every day, the temperature
is low and the humidity is high; in the afternoon, as the temperature rises, the humidity
decreases accordingly. Therefore, the value of N is larger in the morning and evening and
reaches its minimum around 14 pm. Generally speaking, the diurnal variation range of
N in most regions is 10~20 N under the normal weather environment [44]. According to
Formula (4), it can be calculated that for parameter N, the calculation error of PF brought
by the fluctuation of 1 N is 3.3 ps/km. Therefore, at 1000 km, the PF term may fluctuate by
about 67 ns due to a variation of 20 N, while in the case of meteorological anomalies, the
influence caused by the short and drastic variation in N may even reach 200 ns.

3.1.2. SF and ASF

SF refers to the additional influence of the seawater medium on signal propagation
delay. ASF refers to the additional influence of the difference in conduction characteristics
of signals in land and seawater media on the propagation delay, which is the disturbance
compensation of different media based on the secondary time delay. The two parameters
are essentially the same, that is, to calculate the groundwave attenuation function. The
logical expression of SF + ASF can be described here as follows:

SF + ASF =
106

ω
arg(W) (10)

where ω is the central angular frequency of the signal, and W is the groundwave attenuation
function, which varies with distance s and is also the core of delay measurement accuracy.
When the signal propagation distance s is relatively short, W is generally calculated with
a flat ground model, while when s > 70 km, the influence of the spherical curvature of
the ground on signal propagation needs to be considered [5,45]. The calculation formula
of W is very complex, which is related to coefficients such as d and normalized surface
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impedance q and corresponds to different expressions, respectively. For details, refer to the
literature [46,47], where only the calculation formula of q is given directly:

q = −i
(

K1ae

2

) 1
3 n
√

ε−n2−i60λσ

ε−i60λσ
(11)

where ε is the ground relative dielectric constant of the propagation path; σ is the ground
conductivity; K1 is the wave number in the air; ae is the equivalent earth coefficient; λ is
the wavelength in vacuum.

According to Formula (11) and the description in reference [47], except for the fixed
parameters, the normalized surface impedance q is the function of ε, σ and n, in which the
influence of n is small, and the constant 1 is generally taken in calculations. Especially for
eLoran signals in the LF band, the ground conductivity is the dominant factor affecting the
propagation characteristics of the groundwave. Therefore, in the theoretical analysis, the
attenuation function W in Formula (10) can also be recorded as W(σ, ε, s).

Different geological types have different effects on the absorption, refraction and
reflection of signal propagation. Therefore, the finer the regional division of ground
conductivity and the relative dielectric constant is, the more accurate the measurement of
SF (ASF) will be. At present, there are several works of research on electronic digital maps
of ground conductivities [48,49], which are crucial to the refinement correction of Tp, but
they do not fully consider the real-time changes in σ and ε.

The factors determining the value of σ and ε mainly include: (1) geological structure;
(2) ground vegetation; (3) underground layered structure; (4) electromagnetic wave fre-
quency. The latter three items are generally stable, while the conductivity of the geological
structure fluctuates relatively easily due to the soil moisture and salinity caused by real-time
environmental changes such as precipitation and temperature fluctuation. The research
conclusion of the literature [50] points out that there is a strong positive correlation between
the soil water content and dielectric constant. Seasonal changes in climate and diurnal
temperature variation will cause the change in soil moisture. Especially in one day, due to
the low temperature in the morning and evening, there is more water in the soil, and the
value of ε is larger. At noon, as the temperature rises and the water vapor evaporates, the
soil will be slightly dry, and the value of ε will decrease accordingly.

Table 2 shows the conductivity characteristics of nine typical ground types, respectively.
It can be seen that σ and ε of different geological characteristics are very different, and
their time-varying characteristics will also affect the selection of equivalent earth radius
parameters in the calculation formula, which will inevitably bring calculation errors and
together lead to drastic changes in the calculated values of ASF.

Table 2. Conductivity parameter values of nine typical ground types.

Reference Ground Type ε Nominal Value of σ (S/m) Variation Range of σ (S/m) Equivalent Earth Radius Coefficient

Average seawater 70 5 7~3 1.14
Conductive ground 40 3 × 10−2 5.5 × 10−2~1.7 × 10−2 1.13

Wet ground 30 1 × 10−2 1.7 × 10−2~5.5 × 10−3 1.11
Average ground 22 3 × 10−3 5.5 × 10−3~1.7 × 10−3 1.08
Sub dry ground 15 1 × 10−3 1.7 × 10−3~5.5 × 10−4 1.06

Dry ground 7 3 × 10−4 5.5 × 10−4~1.7 × 10−4 1.05
Very dry ground 3 1 × 10−4 1.7 × 10−4~5.5 × 10−5 1.06

−1 ◦C Fresh water ice 3 3 × 10−5 5.5 × 10−5~1.7 × 10−5 1.06
−10 ◦C Fresh water ice 3 1 × 10−5 1.7 × 10−5~5.5 × 10−6 1.07

The attenuation function W can be calculated using the integral equation method, and
the SF (ASF) change curve can also be obtained, as shown in Figure 4. Changes in SF + ASF
under different ground types clearly show the huge differences in the attenuation function
estimation caused by the characteristics of different conductive media. The numerical
difference between the two points A and B indicates that the difference in ASF values
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between the two different ground types of average land and wet ground is more than
1 µs over the propagation path of 400 km. In the real environment, heavy precipitation and
other reasons are also the main reasons for real-time changes in ground conductivity and
the occurrence of such delay deviations, which is unlikely to be corrected by the real-time
measurement of ground conductivity. It can be said that the fluctuation of ASF is also the
most important component of the overall ∆Tp.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 25 
 

 

The attenuation function W can be calculated using the integral equation method, 

and the SF (ASF) change curve can also be obtained, as shown in Figure 4. Changes in SF 

+ ASF under different ground types clearly show the huge differences in the attenuation 

function estimation caused by the characteristics of different conductive media. The nu-

merical difference between the two points A and B indicates that the difference in ASF 

values between the two different ground types of average land and wet ground is more 

than 1 μs over the propagation path of 400 km. In the real environment, heavy precipita-

tion and other reasons are also the main reasons for real-time changes in ground conduc-

tivity and the occurrence of such delay deviations, which is unlikely to be corrected by the 

real-time measurement of ground conductivity. It can be said that the fluctuation of ASF 

is also the most important component of the overall ∆Tp. 

 

Figure 4. Changes in SF + ASF under different ground types. 

3.2. Anaylsis of Measured Data 

There are many types of meteorological factors, which may have different effects on 

signal propagation. Therefore, it is necessary to first understand whether a certain param-

eter has an impact on Tp and the magnitude of the impact. In the multivariate analysis of 

vectors of different types, a correlation coefficient is generally needed. The three com-

monly used correlation coefficients in statistics are the Pearson, Kendall and Spearman 

correlation coefficients [51], all of which reflect the consistency and similarity of variation 

trends among different variables and have the same value range (−1~1) but also differ in 

application scopes and characteristics. 

The Pearson correlation coefficient (PCC) is a method for measuring the degree of 

linear correlation between variables. It is defined as the quotient of the covariance and 

standard deviation of the two variables X and Y, which is often expressed by the Greek 

letter 𝜌𝑋𝑌. In large-sample statistics, the expected value can be replaced by the sample 

mean according to the sample number m, and Formula (12) can be used for approximate 

calculation. 

The principle of the Spearman correlation coefficient is to use the rank of two varia-

bles for linear correlation analysis, usually expressed by the Greek letter 𝜌𝑠. When calcu-

lating 𝜌𝑠, it is necessary to sort the original data groups respectively by size to obtain the 

corresponding rank difference 𝑑𝑖, and then calculate according to Formula (13). 

Similar to 𝜌𝑠, the Kendall correlation coefficient also depends on rank and has the 

same requirements on data conditions. Generally, it is expressed by the Greek letter 𝜏, 

which is used to reflect the correlation of classification variables. According to the number 

of harmonious and disharmonious pairs C and D of data groups X and Y, 𝜏 can be defined 

as the ratio of the difference between the two numbers and the total pairs as Formula (14). 

𝜌𝑋𝑌 =
𝑚 ∑ 𝑋𝑖𝑌𝑖

𝑚
𝑖=1 − ∑ 𝑋𝑖

𝑚
𝑖=1 ∑ 𝑌𝑖

𝑚
𝑖=1

√𝑚 ∑ 𝑋𝑖
2𝑚

𝑖=1 − (∑ 𝑋𝑖
𝑚
𝑖=1 )2√𝑚 ∑ 𝑌𝑖

2𝑚
𝑖=1 − (∑ 𝑌𝑖

𝑚
𝑖=1 )2

 
(12) 

Figure 4. Changes in SF + ASF under different ground types.

3.2. Anaylsis of Measured Data

There are many types of meteorological factors, which may have different effects
on signal propagation. Therefore, it is necessary to first understand whether a certain
parameter has an impact on Tp and the magnitude of the impact. In the multivariate
analysis of vectors of different types, a correlation coefficient is generally needed. The three
commonly used correlation coefficients in statistics are the Pearson, Kendall and Spearman
correlation coefficients [51], all of which reflect the consistency and similarity of variation
trends among different variables and have the same value range (−1~1) but also differ in
application scopes and characteristics.

The Pearson correlation coefficient (PCC) is a method for measuring the degree
of linear correlation between variables. It is defined as the quotient of the covariance
and standard deviation of the two variables X and Y, which is often expressed by the
Greek letter ρXY. In large-sample statistics, the expected value can be replaced by the
sample mean according to the sample number m, and Formula (12) can be used for
approximate calculation.

The principle of the Spearman correlation coefficient is to use the rank of two variables
for linear correlation analysis, usually expressed by the Greek letter ρs. When calculat-
ing ρs, it is necessary to sort the original data groups respectively by size to obtain the
corresponding rank difference di, and then calculate according to Formula (13).

Similar to ρs, the Kendall correlation coefficient also depends on rank and has the
same requirements on data conditions. Generally, it is expressed by the Greek letter τ,
which is used to reflect the correlation of classification variables. According to the number
of harmonious and disharmonious pairs C and D of data groups X and Y, τ can be defined
as the ratio of the difference between the two numbers and the total pairs as Formula (14).

ρXY =
m ∑m

i=1 XiYi −∑m
i=1 Xi ∑m

i=1 Yi√
m ∑m

i=1 Xi
2 − (∑m

i=1 Xi)
2
√

m ∑m
i=1 Yi

2 − (∑m
i=1 Yi)

2
(12)

ρs = 1− 6 ∑m
i=1 di

2

m(m2 − 1)
(13)
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τ =
C− D√(

1
2 m(m− 1)− 1

2 ∑s
u=1 Uu(Uu − 1)

)(
1
2 m(m− 1)− 1

2 ∑t
v=1 Vv(Vv − 1)

) (14)

Among the three types of analysis methods, PCC measures the linear relationship
between variables and is very sensitive to extreme outliers. The Spearman and Kendall
correlation coefficients, as nonparametric methods, are both based on the rank and relative
size of the observed value. They have a stronger tolerance to outliers, mainly measure the
relationship between variables and can describe nonlinear correlation to a certain extent;
therefore, they are more widely applicable than PCC. Due to the complex relationship
between the measured Tp and various meteorological factors, it cannot fully meet the
applicable conditions of any of the above methods, and only using a certain correlation
analysis method may lead to the error of ignoring the impact factors due to the possible low
correlation coefficient. Therefore, in our study, the three correlation analysis methods were
simultaneously used to conduct the joint analysis and mutual verification of the long-term
and short-term correlation between meteorological factors and propagation delay so as to
find out more meteorological factors causing ∆Tp as much as possible.

3.2.1. Seasonal Correlation

According to the analysis in Section 3.1, changes in meteorological factors such as
temperature, relative humidity and atmospheric pressure will affect the calculation factors
of Tp and indirectly lead to its fluctuation, which is verified by the measured data below.

Figure 5a shows the curve of the long-term monitoring Tp data in Figure 3 after
pre-processing such as smooth filtering, outlier removal, down-sampling and mean re-
moval. Meanwhile, Figure 5b shows the curve of meteorological data collected by the
meteorological station (Weinan) on the corresponding signal propagation path in the
same period.
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It can be seen intuitively from Figure 5 that the seasonal change in Tp has a strong
linear correlation with the temperature and atmospheric pressure. The statistical data
under different correlation analysis methods in Table 3 also verify this conclusion. The PCC
values of temperature and atmospheric pressure can reach 0.8 and −0.7 respectively. It can
be seen that within a propagation distance of about 80 km, the temperature difference of
more than 40 ◦C leads to the peak-to-peak ∆Tp exceeding 150 ns. This result also verifies
the theoretical analysis in Section 3.1 regarding the disturbance of meteorological factors in
the calculation of Tp and the conclusions of previous relevant studies.
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Table 3. Correlation coefficients between long-term Tp and meteorological factors.

CT TEMP RH AP

Pearson 0.8119 −0.0051 −0.7087
Spearman 0.7939 −0.0119 −0.7218
Kendall 0.5892 −0.0023 −0.4881

CT = correlation type; TEMP = temperature; RH = relative humidity; AP = atmospheric pressure.

3.2.2. Diurnal Correlation

According to the analysis results of seasonal correlation, it is not difficult to speculate
that the short-term diurnal variation in Tp should also be very strong because the tem-
perature difference, rainfall, snowfall and other meteorological factors will also fluctuate
dramatically within a day. Figures 6 and 7 show the curves of short-term Tp data collected at
different test sites within 10 days and the meteorological data curves of the corresponding
meteorological station, including Jingyang (9 January 2021~18 January 2021, 70 km) and
Meixian (30 September 2018~9 October 2018, 184 km). Among them, the Tp data in the
figure were pre-processed in the same way as in Figure 5a.
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The curve in the figures indicated that the ∆Tp of different test locations vary dramati-
cally within a day. In Meixian, where the propagation path is relatively long, the fluctuation
of some days even exceeds 200 ns. In addition, the daily variation trend of Tp is similar to
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a certain extent, generally reaching the peak value around 14:00 to 15:00 and reaching the
minimum value in the early morning, which has a strong consistency with the variation
trend of temperature and relative humidity.

Table 4 shows the correlation coefficient between the daily measured Tp and the three
factors of temperature, relative humidity and atmospheric pressure, respectively. Due
to the large amount of data, only the PCC values are listed in the tables, while the other
two types of unlisted correlation values have little difference. Among them, the linear
correlation between temperature and Tp is extremely high. Due to the close distance
between Jingyang and the BPL station and the little change in the propagation path, the
average PCC of temperature even exceeds 0.91, while the PCC of humidity reaches −0.89,
and the correlation of atmospheric pressure also reaches a very high level.

Table 4. PCC between measured diurnal Tp and meteorological factors (Jingyang and Meixian).

Test Time
Jingyang Meixian

TEMP RH AP TEMP RH AP

Day 1 0.9206 −0.7002 0.3093 0.0042 0.0188 −0.1449
Day 2 0.8996 −0.8645 −0.8277 0.7394 −0.6554 −0.7025
Day 3 0.9354 −0.9065 0.3300 0.7136 −0.6240 −0.7472
Day 4 0.9501 −0.9330 −0.4682 0.7292 −0.6936 −0.7937
Day 5 0.9539 −0.9512 −0.6129 0.8416 −0.7745 −0.7364
Day 6 0.8771 −0.8401 0.0435 0.7487 −0.6551 −0.7997
Day 7 0.9072 −0.9134 −0.8320 −0.5730 0.4745 0.1897
Day 8 0.9082 −0.9187 −0.0688 0.0790 0.1443 −0.5147
Day 9 0.9523 −0.9409 −0.5955 0.7092 −0.7936 −0.3584

Day 10 0.8864 −0.9143 −0.5088 0.8374 −0.8578 0.3577

Mean Value 0.9191 −0.8883 −0.3231 0.4829 −0.4416 −0.4250
TEMP = temperature; RH = relative humidity; AP = atmospheric pressure.

At the same time, it can be seen that the PCC values of temperature and humidity
decreased significantly at the far away test site in Meixian. On the one hand, on the first,
seventh and eighth days, the receiver or the antenna failed, respectively, resulting in the
measurement error of Tp and the abnormal value of the correlation coefficient, which also
affected the mean value. On the other hand, due to the longer propagation path, the
meteorological changes in other parts of the path and other unconsidered meteorological
factors may also affect the signal propagation characteristics, resulting in a lower correlation
coefficient when the equipment is normal.

In order to identify more meteorological factors that may cause the ∆Tp, while fully
considering their regional changes, this paper applied different correlation analysis methods
to jointly analyze the 60-day (January to March, 2022) continuous Tp data collected at
the Jingyang test set and different meteorological factors from multiple meteorological
observation stations on the same propagation path. Then, seven main meteorological factors
including temperature, relative humidity, atmospheric pressure, water vapor pressure,
wind speed, wind direction and precipitation with a relatively strong correlation were
identified. The correlation coefficient statistics are shown in Table 5.

As can be seen from the data in Table 5, there are obvious differences in the degree of
correlation between different meteorological factors, and the same factor also has certain
regional differences. For different correlation analysis types, the correlation characteristics
of each meteorological factor are consistent, which also achieves the effect of mutual
verification. In general, temperature and relative humidity have the greatest impact on Tp,
but other meteorological factors in the table also have non-negligible influence.
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Table 5. Correlation coefficient between Tp and various meteorological factors of each meteorological
station along the propagation path.

MS
(Number) CT TEMP RH AP VP AoP WS WD

Pucheng
(53948)

ρXY 0.6225 −0.6005 −0.1822 −0.2109 0.0929 0.2025 −0.1002
ρs 0.5872 −0.5912 −0.1573 −0.1762 0.1578 0.2118 −0.1061
τ 0.4691 −0.4621 −0.1298 −0.1446 0.1205 0.1444 −0.0739

Fuping
(57042)

ρXY 0.6145 −0.5970 −0.1802 −0.2342 0.1177 0.1232 −0.2123
ρs 0.5845 −0.5738 −0.1597 −0.1783 0.1161 0.1134 −0.1801
τ 0.4638 −0.4428 −0.1311 −0.1447 0.0858 0.0734 −0.1194

Sanyuan
(57041)

ρXY 0.6256 −0.6222 −0.1880 −0.2219 0.1428 0.1372 −0.2939
ρs 0.5931 −0.5918 −0.1627 −0.1840 0.1143 0.0980 −0.2671
τ 0.4724 −0.4621 −0.1325 −0.1483 0.0819 0.0647 −0.1804

Jingyang
(57033)

ρXY 0.6201 −0.5681 −0.1863 −0.2125 0.0696 0.2747 −0.1249
ρs 0.6001 −0.5505 −0.1582 −0.1760 0.0516 0.2577 −0.1261
τ 0.4786 −0.4318 −0.1293 −0.1463 0.0395 0.1797 −0.0877

MS = meteorological station; CT = correlation type; TEMP = temperature; RH = relative humidity;
AP = atmospheric pressure; VP = vapor pressure; AoP = amount of precipitation.

3.3. Correlation Discussion

The above theoretical analysis indicates that the real-time mutation of the three pa-
rameters of atmospheric refractive index n, ground conductivity σ and relative dielectric
constant ε will cause the calculation deviation of PF, SF and ASF, which is also the quantita-
tive reflection of the influence of time-varying meteorological factors on Tp. The maximum
fluctuation range of ∆Tp even reaches the microsecond level.

First, the fluctuation of PF is mainly affected by the time-varying characteristics of the
atmospheric refractive index n, and the maximum fluctuation range within the coverage
of the eLoran signal is generally in the order of 100 ns. At present, there have been some
compensation models based on temperature, pressure factors [52], which can partially
correct some delay fluctuation errors. However, the applicable environment is mainly the
sea area, and the impact of ASF fluctuation caused by changes in a ground conductive
environment is not fully considered.

Second, the fluctuation of SF and ASF is mainly affected by the time-varying charac-
teristics of σ and ε, and the maximum variation range may reach the order of microseconds,
which is the core component of ∆Tp. From the spatial dimension, the accuracy of calcu-
lation depends on the precision of the terrain estimation and geodetic conductivity map.
However, from the time dimension, due to the extremely complex correlation between
meteorological disturbance and ground characteristics, there is no accurate compensation
method for the fluctuation error.

Moreover, according to sufficient measurement data and different correlation coef-
ficient analysis methods, it can be found that seven meteorological factors mentioned in
Section 3.2.2 are closely related to the real-time ∆Tp in different degrees. Among them:

1. Temperature and relative humidity have a strong linear correlation with Tp, and are
the leading factors affecting the ∆Tp.

2. The correlation of atmospheric pressure and vapor pressure is relatively stable, which
will indirectly lead to ∆Tp fluctuation by affecting the characteristics of the propagation
medium, but the linearity is limited.

3. Although the linear correlation is not obvious, the wind direction, wind speed and
precipitation may have a complex hidden correlation with the propagation medium.
For example, wind speed and direction will affect the visibility, temperature and
humidity of the atmosphere and also seriously affect the roughness of the sea sur-
face [53,54]. On the other hand, rain and snow can change the ground conductive
properties in non-real time [55].
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4. In addition to the unpredictable and serious impact of the propagation medium
changes analyzed above on the propagation characteristics of electromagnetic waves,
the regional differences in meteorological factors on the propagation path are also
issues that must be considered in the study of propagation delay correction.

The nominal timing accuracy of the eLoran system is 1 µs, and the future realiza-
tion of differential technology requires that the timing accuracy be optimized to within
100 ns in the differential region. The compensation method of ∆Tp caused by meteorological
disturbance is one of the urgent problems to be solved. According to the above analysis, a
variety of meteorological factors have complex correlations with long-term seasonal and
short-term daily changes in Tp that cannot be ignored, which may not be well described by
simple models. Therefore, the nonlinear fitting ability of a BP neural network algorithm is
considered in this paper to explore the complex functional relationship between ∆Tp and
multiple meteorological factors and establish a prediction model of the overall fluctuation
of Tp so as to achieve the accurate correction and prediction function of Tp.

4. Propagation Delay Prediction Model
4.1. Linear Regression Model

Previous studies mainly compensate for ∆Tp by establishing a traditional linear model.
Especially for the Loran-C system applied at sea, the linear correlation between temperature
and Tp is very strong, so the linear temperature model also has stable fitting and prediction
capabilities. The mathematical form of the model is shown in Formula (15).

ŷ = Kx + B (15)

According to the residual between the fitting and the measured value ŷ− y, the mean
square error Eliner of the sample is obtained, and then the partial derivatives of the two
coefficients K and B of the linear model are calculated as

∂Eliner
∂K

=
∂ ∑m

i=1
1
m
(
ŷi − yi)2

∂K
=

2
m

m

∑
i=1

[
xi
(

Kxi + B− yi
)]

(16)

∂Eliner
∂B

=
∂ ∑m

i=1
1
m
(
ŷi − yi)2

∂B
=

2
m

m

∑
i=1

(
Kxi + B− yi

)
(17)

Based on the principle of least squares (LS), Formulas (16) and (17) are set to zero and
solved simultaneously, and the following results can be obtained:

K =
m ∑m

i=1 xiyi −∑m
i=1 xi ∑m

i=1 yi

m ∑m
i=1 xi

2 − (∑m
i=1 xi)

2 (18)

B =
∑m

i=1 x2
i ∑m

i=1 y2
i −∑m

i=1 xi ∑m
i=1 yi

m ∑m
i=1 x2

i − (∑m
i=1 xi)

2 (19)

For a terrestrial environment, the propagation characteristics of the LF signal are
more complex, and the effect of the linear model may be somewhat reduced. However,
considering the high linear correlation of temperature in the above analysis, a temperature-
based linear prediction model of Tp is also established in our study, and its performance
with other models is compared and analyzed in the following text.

4.2. BPNN Model

Machine learning can be understood as the task assigned by a computer, which uses its
high-speed computing power to select customized rules for learning according to limited
data samples so as to obtain human-like intelligence, constantly optimize the mathematical
model, form a complete program and achieve the predetermined task objectives. Traditional
machine learning regression models include the support vector machine (SVR), artificial
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neural network model (ANN), random forest (RF), etc. [56], which are commonly used
for material fatigue damage, residual life and other performance prediction methods. The
applicability of several types of methods varies [57]. Among them:

SVR is a learning method based on regression analysis, which has good generalization
ability and robustness and can obtain good results for small sample problems. SVR are
widely used on datasets that are not too large and have obvious relationships.

The RF model is an integrated learning algorithm for regression problems composed
of sets of different classification or regression trees. During the training, the algorithm
selects samples randomly several times, establishes the decision tree model and returns the
average value of multiple models or most of the results as the final prediction result. The
construction of robust quantitative decision trees is the key to the prediction accuracy of RF
models. RF has a good effect when processing large datasets at a high latitude.

ANN is a highly complex nonlinear model composed of many neurons. In this system,
individual neurons only have relatively simple application functions and type construction.
However, when combined into an entire system, their behavior can be very complex, and
they are often used for highly nonlinear problems. One of the outstanding advantages of
this algorithm is that it has strong self-learning and adaptive ability.

Each of the above methods has its own advantages and has been widely used in many
fields such as medicine, architecture and data processing. In this study, because there
may be various nonlinear relationships between various meteorological factors and eLoran
propagation delay and moderate data scales, we chose the BP neural network, which is
more suitable for a strong nonlinear relationship, for modeling. At the same time, it can also
verify the performance improvement of this research under the same background through
the repetition of previous achievements. In the later deeper study (including high-density
and multi-type meteorological data collection), we will also consider using more prediction
models including the RF model for comparison and optimization studies.

ANN is a mathematical calculation model based on the structure and working princi-
ple of a biological neural network. Its basic constituent structure is the neuron, as shown
in Figure 8a. Its mathematical composition is very simple, including the weight vectorω,
threshold value (bias) θ and activation function f . The activation function is to carry out
the nonlinear transformation of the calculated results so as to improve the mapping ability
of the neural network to deal with nonlinear fitting work. Figure 8 shows three activation
functions commonly used in BP neural networks. After each input vector x enters the
neuron, it outputs the result in the form of y = f

(
ωTx− θ

)
.
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BPNN is the most successful and widely used feedforward neural network learning
algorithm derived from the cross and fusion of multiple neurons. Its main feature is that the
signal propagates forward, while the error propagates backward [58]. The weight value of
the network coefficient is corrected layer by layer through adaptive learning in the inverse
propagation direction so as to reduce the output error of the network as much as possible,
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finally achieving the purpose of training and realizing the nonlinear fitting and prediction
function. The principle of the single-hidden layer BPNN model can be described in the
form in Figure 9b, and the multi-hidden layer is similar [59].
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According to the analysis in Section 3, multiple meteorological factors have direct
or indirect effects on the real-time changes in n, σ, ε and other factors that may affect
the propagation characteristics of electromagnetic waves, and the correlation is extremely
complex to be described by simple mathematical models. Relying on its powerful nonlinear
mapping, fault tolerance and generalization capabilities, this paper considers skipping the
indirect correlation and uses BPNN to establish direct mapping between meteorological
factors and Tp so as to improve the real-time prediction accuracy of ∆Tp.

For the problems discussed in this paper, the number of hidden layers can be 1~3
according to different input conditions. As shown in Figure 9b, the parameter derivation
and modeling of BPNN with a single-hidden layer structure are carried out as follows:

1. Network Initialization. The cellular samples composed of various meteorological data
and ∆Tp should be divided into a training set and test set in proportion (generally,
7:3~9:1) and normalized to prevent overflow during training. Here, the training set
D =

{(
x1, y1),(xk, yk

)
, · · · , (xn, yn)

}
, xk ∈ Rd, yk ∈ Rl . According to the empirical

Formula (20), the range of the number of hidden layer nodes can be estimated, and
the best value q can be determined by the trial-and-error method. In addition, set
the learning rate and activation function and initialize the connection weights and
activation function thresholds between layers.

p =
√

d + l + M, 1 ≤ M ≤ 10 (20)

2. Input→Hidden→Output. In the network shown in Figure 8b, three layers contain
d, p and l neurons, respectively, and the forms of connection weights of forward
transmission between layers are νih and ωhj respectively. The forms of activation
function thresholds of the hidden and output layer are γh and θj respectively, and
then the corresponding activation function outputs can be expressed as:

bh = f (αh − γh) = f

(
d

∑
i=1

νihxi − γh

)
(21)

ŷj = f
(

β j − θj
)
= f

(
p

∑
h=1

ωhjbh − θj

)
(22)
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3. Iterative Loss Function. For the k-th training example
(

xk, yk
)

, after the activation

function, the output layer obtains yk =
(

yk
1, yk

2, · · · , yk
l

)
. Then, the loss function Ek

can be obtained.

Ek =
1
2

l

∑
j=1

(
yk

j − ŷk
j

)2
(23)

4. Reverse Gradient Calculation. The BPNN algorithm is based on the Stochastic Gradi-
ent Descent (SGD) strategy and updates parameters in the negative gradient direction
of the target. For the iterative error Ek, set the learning rate ηω, ην, calculate the
partial derivatives of the target parameters of each layer in reverse order and then the
corresponding gradient update value can be obtained as follows:

∆ωhj = −ηω
∂Ek

∂ŷk
j
·
∂ŷk

j

∂β j
·

∂β j

∂ωhj
= ηω ·ŷk

j

(
1− ŷk

j

)(
yk

j − ŷk
j

)
·bh = ηωgjbh (24)

∆θj = −ηω
∂Ek
∂θj

= −ηω
∂Ek

∂ŷk
j
·
∂ŷk

j

∂β j
·
∂β j

∂θj
= −ηωgj (25)

∆νih = −ην

l

∑
j=1

∂Ek

∂ŷk
j
·
∂ŷk

j

∂β j
·
∂β j

∂bh
· ∂bh
∂αh
· ∂αh
∂νih

= ην

l

∑
j=1

gj·ωhj·bh(1− bh)·xi = ηνehxi (26)

∆γh = −ηv
∂Ek
∂γh

= −ηv

l

∑
j=1

∂Ek

∂ŷk
j
·
∂ŷk

j

∂β j
·
∂β j

∂bh
· ∂bh
∂αh
· ∂αh
∂γh

= −ηveh (27)

The above derivation process uses the feature of the sigmoid function:
f ′(x) = f (x) f (1− x) and resolves the complex partial derivative operation of each
parameter into a simple form, which greatly facilitates the calculation (similar to other
activation functions).

5. Parameter Update and Iteration Judgment. Judge whether the training process meets
the termination conditions. If not, adjust the parameters according to the calculation
result of the updated values and return to step 2 for the next training.

The above derivation process illustrates the basic framework and execution process of
the BPNN model. Based on this, in view of the environment of multiple meteorological
factors in multiple regions, different BP propagation delay prediction models are established
in this study, and the optimal model is obtained by adjusting the input meteorological factor
type, hidden layer structure, learning rate, gradient overflow range and other parameters
for model modification.

The convergence process of BPNN will be significantly affected by the learning rate.
Too large of a learning rate will lead to overfitting, while too small of a learning rate may
not converge [57]. Considering the similarity between the BPNN and LMS filter, we choose
to use the grid search method and select a traversal range and step size (e.g., 0.01~0.5,
0.01) of the linear ergodic parameter adjustment. The specific parameters and performance
comparisons of all models are analyzed in detail in Section 5.

5. Performance Analysis and Discussion

This section tests and compares different BPNN models and linear models under
a variety of conditions, and the optimal model parameter selection will be uniformly
displayed in Section 5.4.
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5.1. Data Acquisition and Processing

The data used to build the prediction model include the long-term continuous mea-
surements of Tp collected from the Jingyang test site and the statistical values of different
meteorological factors at each meteorological station along the corresponding signal propa-
gation path during the same period. Among them:

a. Propagation delay data

• Broadcasting station: BPL long-wave timing station in Pucheng;
• Acquisition equipment: eLoran timing receiver (KTL-101B), long-wave receiving

electric antenna (KTL-606A), GPS receiver, GPS receiving antenna, counter
(SR620);

• Collection site: Longquan Commune, Jingyang County, Xianyang City;
• Collection period: 60 days (from December 2021 to March 2022, excluding some

days of power failure and equipment failure);
• Sampling rate: one time per second.

After the same preprocessing process as described in Section 3.2.1, such as smooth
filtering, outlier removal, down-sampling and mean value removal, the collected data can
maintain the time corresponding relationship with the meteorological data and clearly
show its fluctuations. The processed data are shown in Figure 10.

b. Meteorological data

• Collection sites: four national meteorological observation stations in Pucheng,
Fuping, Sanyuan and Jingyang;

• Collection period: corresponding to propagation delay;
• Data types: temperature, relative humidity, air pressure, water vapor pressure,

wind speed, wind direction, amount of precipitation;
• Data resolution: one time per hour.
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The red dots in Figure 11 mark the locations of national meteorological stations, four
of which are adjacent to the propagation path (blue line). Due to the long collection period,
during which rain and snow or drastic temperature changes were experienced, the overall
data of the measured Tp are representative to a certain extent.
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5.2. Single-Factor Model

The correlation analysis results in Section 3.2.2 show that temperature and relative
humidity have a strong linear correlation with Tp, with PCC values up to 0.91 and −0.89,
respectively. Therefore, in this section, temperature and relative humidity are used as
network inputs to adjust neural network parameters and train to obtain a single-factor
BPNN prediction model, establishing the linear model for analysis and comparison.

First, 54 days (90%) of observation data were randomly selected to build the training
set, and the other 6 days (10%) of data were used as the test set. Secondly, the tempera-
ture and relative humidity data of the Jingyang meteorological station were used as the
single-factor input, respectively, the number of hidden layers was selected as 1~2 and
the number of hidden layer nodes was selected as 3~12 to build different BPNN models.
Then, according to the principles of minimum root mean square error (RMSE), the optimal
models were obtained, which are called the Jingyang time-delay temperature (single point)
BP neural network (BP-JTT1) and Jingyang time-delay relative humidity (single point) BP
neural network (BP-JTH1), respectively. The test results are shown in Figure 12.
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According to the effect comparison displayed in Figure 12, the model BP-JTT1 estab-
lished based on the temperature factor has a higher fitting degree than BP-JTH1 based on
relative humidity. The RMSE and mean absolute error (MAE) of BP-JTT1 are 9.4467 ns and
10.2120 ns, while those of the BP-JTH1 model are 12.7932 ns and 13.1453 ns.

Both of the models have stable fitting and prediction capabilities for propagation
delay fluctuations, but because of the stronger linear correlation of temperature factors, the
prediction effect is also significantly better. Therefore, a linear prediction model based on
temperature was established for comparative analysis. By substituting the same training
set data above into Formulas (18) and (19), the linear model coefficients K = 2.4065 and
B = 3.3738 can be obtained. Use the test set data to verify the model, and the effect
comparison is shown in Figure 13.
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Data statistics show that the RMSE and MAE of the linear model are 9.2591 ns and
11.2292 ns, and the maximum absolute error (MAXE) is 35.9205 ns. Several indexes are
all slightly inferior to those of the BP-JTT1 model, which also verifies the results and
conclusions of previous studies on the single-factor BP model and linear model [22,23,29].
Especially, when the weather changes abruptly and the temperature is relatively stable, the
meteorological disturbance factors may affect the linearity of the temperature model, so the
uncertainty of the model will increase and the fitting effect will further decline. This is also
the inevitable result of a simple model and too few interference factors taken into account.

5.3. Multi-Factor Model

The single-factor BPNN model BP-JTT1, BP-JTH1 and the linear model introduced in
the previous section have stable fitting and prediction effects, but the accuracy is general.
Therefore, this section took into account the influence of regional changes and the diversity
of meteorological factors to propose the multi-dimensional models.

First, the influence of multiple meteorological regions was considered. According to
the temperature statistics of four meteorological stations along the propagation path from
Pucheng to Jingyang, a variety of BP neural network models with 1~2 hidden layers and
4~13 hidden layer nodes were established, and the optimal model BP-JTT4 was obtained.
According to statistics, the number of hidden layers and nodes of this kind of BP model,
which only considers temperature factors, has little influence on the fitting effect. However,
there may be training overflow errors in a single-hidden layer structure. Therefore, it is
recommended to design the hidden layer as a two-layer structure.

The prediction effect of the optimal BP-JTT4 model is shown in Figure 14. According
to statistics, the RMSE, MAE and MAXE indexes of the BP-JTT4 model are 8.5696 ns,
6.4151 ns and 23.8801 ns, respectively. It can be seen that when considering the joint
influence of multiple related meteorological regions at the same time, the effect of the BP
temperature prediction model is improved to a certain extent compared with the BP-JTT1
model, which can cope with the temperature changes in different regions on a longer
propagation path.
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Although the BP-JTT4 model has been able to achieve good fitting and prediction
results, the impact of more related meteorological factors, especially the recessive or weak
correlation factors, cannot be quantified.

In view of the diversity of relevant meteorological factors, we also proposed the
multi-layer BPNN models with an input layer dimension of 28 on the basis of BP-JTT4
to fit the fluctuation of propagation delay. The data of the network input layer include
seven related meteorological factors such as temperature, relative humidity, atmospheric
pressure, water vapor pressure, wind speed, wind direction and rainfall collected from
four meteorological observation points along the signal transmission path. The number of
hidden layers selected is 1~3, and the number of nodes selected is 7~16, 4~13 and 4~13,
respectively. Then, according to the minimum RMSE principle, the optimal prediction
model, called BP-JTM4, was obtained, and its effect is shown in Figure 15.
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Obviously, when considering a variety of meteorological disturbance factors and their
regional changes, the prediction effect of ∆Tp is excellent. The coincidence degree between
the predicted curve and the measured curve is quite high, and the performance index
also reaches the best value. The RMSE and MAE indexes reach 6.2457 ns and 5.0817 ns,
respectively, and the MAXE value is only 14.8372 ns.

5.4. Comprehensive Performance Analysis

For accurately predicting ∆Tp, the above contents in this section studied and estab-
lished the BPNN prediction models with various input conditions and types of meteo-
rological factors and the temperature linear prediction model. Meanwhile, a statistical
analysis and a comparison of the predicted values of each model with the same test set were
conducted. The performance indexes of each model and the optimal structure composition
of the four types of BPNN models are respectively shown in Tables 6 and 7.

Table 6. Performance indexes of propagation delay prediction models.

Meteorological Data Type Data Scope Model RMSE (ns) MAE (ns) MAXE (ns)

RH Single region BP-JTH1 12.7932 13.1453 30.1544
TEMP Single region BP-JTT1 9.4467 10.2120 28.8836
TEMP Single region Linear 9.2591 11.2292 35.9205
TEMP Full path BP-JTT4 8.5696 6.4151 23.8801

TEMP, RH, AP, VP, AoP,
WS and WD Full path BP-JTM4 6.2457 5.0817 14.8372

TEMP = temperature; RH = relative humidity; AP = atmospheric pressure; VP = vapor pressure;
AoP = amount of precipitation.
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Table 7. Parameters of different BP neural network models.

Model
Number of Activation

Function
Learning Rate Iteration Times

Input Layer Nodes Hidden Layer Hidden Layer Nodes

BP-JTH1 1 1 4 Sigmoid

0.1 5000
BP-JTT1 1 1 4 Sigmoid
BP-JTT4 4 2 10, 4 Sigmoid, Tanh
BP-JTM4 28 2 10, 4 Sigmoid, Tanh

Through the above modeling analysis and performance statistics, the following con-
clusions can be drawn:

1. The three models with a single input factor all have a certain fitting ability, among
which the temperature model performs better than the relative humidity model and
the linear model, which verifies the conclusions of previous studies. The setting of
a single hidden layer is sufficient to achieve the optimal state of the single-factor
BPNN model.

2. BPNN can effectively deal with the problem of the ∆Tp prediction of the eLoran
groundwave, and with the increase in the input layer correlation factor dimension,
the adaptive training ability of the multi-layer network is fully reflected. Com-
pared with the BP-JTT1 model, the fitting stability and accuracy of the BP-JTM4
model are significantly improved, and its RMSE and MAE decreased by 33.88% and
50.24%, respectively.

3. The BP-JTM4 prediction model proposed in this paper considering multi-regional and
multi-meteorological factors has excellent performance. When the model parameters
are optimal, RMSE and MAE can even reach 6.2457 ns and 5.0817 ns, and the MAXE
is less than 15 ns, which fully reflects its superior propagation delay fitting ability. The
modeling method can accurately predict the ∆Tp of ASF grid vertices in the future so
as to meet the Tp correction requirement of the eLoran system.

6. Conclusions

Meteorological change is the key factor affecting the propagation delay fluctuation of
the eLoran groundwave signal. In this paper, the direct and indirect disturbance effects of
meteorological factors on propagation delay and the compensation methods are studied.
First, the theoretical influences of relevant meteorological factors on the calculation of
propagation delay components such as PF, SF and ASF are discussed, respectively. Then,
through the joint correlation analysis of the multi-point measured data, the complex nonlin-
ear relationship between the propagation delay and seven major meteorological factors is
demonstrated. On this basis, the propagation delay prediction model of multi-dimensional
input factors considering the regional changes of multi-meteorological factors is established
based on the BPNN principle. Finally, the performance comparisons of various models
show that the proposed model can effectively predict the fluctuations of propagation delay
days in the future, and its overall performance is significantly improved compared with
other models established in this paper and previous research results.

In addition, the study in this paper still has some limitations and extensibility, which
require long-term exploration and continuous human and financial support in the fu-
ture, which will also contribute to the development of meteorological forecasting and
geological surveying.

1. Support of more detailed modeling conditions, such as a higher sampling rate
of meteorological data, a longer and more complex path environment and more
meteorological factors.

2. Inversion research of geodetic conductivity based on the eLoran propagation time de-
lay fluctuation and the development of the dynamic geodetic conductivity
electronic map.
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