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Abstract: It is becoming increasingly attractive to detect human emotions using electroencephalog-
raphy (EEG) brain signals. EEG is a reliable and cost-effective technology used to measure brain
activities. This paper proposes an original framework for usability testing based on emotion detection
using EEG signals, which can significantly affect software production and user satisfaction. This
approach can provide an in-depth understanding of user satisfaction accurately and precisely, making
it a valuable tool in software development. The proposed framework includes a recurrent neural
network algorithm as a classifier, a feature extraction algorithm based on event-related desynchro-
nization and event-related synchronization analysis, and a new method for selecting EEG sources
adaptively for emotion recognition. The framework results are promising, achieving 92.13%, 92.67%,
and 92.24% for the valence–arousal–dominance dimensions, respectively.

Keywords: usability testing; emotion detection; Brain-Computer Interface; channel selection; EEG
signal processing; Deep-learning; recurrent neural network

1. Introduction

Usability testing is a crucial aspect of software development that aims to test software’s
ease of use and improve the design and development processes [1]. It is a non-functional
software testing requirement, as defined in ISO 9241. It covers three main topics: effec-
tiveness, which consists of testing the achievement of the system functional goals and
measuring the accuracy of the system; efficiency, which focuses on resource consumption;
and satisfaction, which measures the user experience [2]. Another important aspect of
software testing is reliability testing. This is a complement of the above measurements, and
involves evaluating the reliability of the system features and, at the same time, determining
whether they meet the user’s satisfaction.

User experience (UX) assesses the internal state of the user when using a system
by examining how the features, design, functions, complexity, and other aspects of the
system affect the mental state of the user while using the system [3]. UX consists of several
elements, as stated in [4]. One of the main components of UX is emotions. Several methods
have been developed to study emotions in the context of usability testing. However, it
is important to acknowledge that traditional approaches, which heavily rely on surveys,
technical interviews, and questionnaires, have certain limitations when it comes to accu-
rately distinguishing between different emotional states. These conventional methods
often rely on subjective self-report measures, which are susceptible to biases, recall errors,
and varying interpretations. Recognizing the shortcomings of these traditional approaches,
researchers have sought alternative methods that can provide a more objective and reliable
assessment of emotional states. One such promising approach is the utilization of facial
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expressions, speech, text, or body posture [5,6], and electroencephalography (EEG) sig-
nals [3,7]. EEG is a reliable and cost-effective technology used to measure brain activities
associated with different emotional responses. By capturing the electrical activity of the
brain, EEG provides valuable insights into the neural processes underlying emotions.

Two main approaches have been developed to analyze and classify emotions. The first
approach assumes that there is a specific brain behavior and pattern for every emotion.
Conversely, the second approach allows for the study of emotions based on broader aspects.
It defines several dimensions to create an effective framework for studying emotions instead
of studying groups of discrete emotions. There is no limitation to the number of dimensions.
However, there are three dimensions used in most previous studies. This is called the
valence–arousal–dominance (VAD) model. The dimension valence reflects whether the
emotional state correspond to a pleasant state or not. The dimension arousal determines
the degree of excitement during the emotion. The dimension dominance represents how
much the excitement is controlled.

Few studies have analyzed emotions in usability testing using EEG signals. EEG
signals correspond to involuntary brain activity, which reflects the real mental state of a
person [8]. The analysis of EEG signals may help in identifying the emotional state in every
testing time period with a high accuracy rate [8,9]. For example, in [10], the researchers
classified emotions as positive or negative during usability testing. The study sought to
determine whether a low-quality user interface could stimulate negative emotions and
evaluate whether brain activity analysis could be used to detect the level of usability. The re-
searchers embedded usability tasks in web pages and used the results of a self-assessment
questionnaire. The system was validated on 21 participants, after which discrete wavelet
transform (DWT) was applied to extract alpha and beta signals from the recorded EEG
signals. The DWT algorithm classified emotions with an accuracy of 85.6%.
Another study undertaken in [9] showed promising results when the difficulty level associ-
ated with using an interface was analyzed based on brain activity. The researchers classified
a user’s perceptions from ‘difficult’ to ‘easy’ when using the Facebook interface. In the
study, the features were extracted from 13 electrodes fixed on the scalp and positioned
across various regions to capture brain activity. In turn, linear discriminant analysis (LDA)
and a support vector machine (SVM) were used to classify the difficulty level. The accuracy
was 63% for LDA and 65% for the SVM.

Another study examined in the same context the usability of the Facebook interface
with emotion recognition [11]. The researchers built an automatic emotion recognition
system, and its results were compared to those of self-assessment manikin data regarding
the Facebook interface. The study involved the use of 16 electrodes situated in different
brain regions. The researchers applied independent component analysis (ICA) on EEG
sources, and power spectrum density (PSD) features were used to calculate valence and
arousal values. Finally, the researchers compared the results from the SAM data and the
mapped emotional state from valence and arousal. The results indicate that non-Facebook
users experienced different emotional states compared to Facebook users [11].

This paper introduces an original framework for usability testing by leveraging elec-
troencephalography (EEG) brain signals for emotion detection. With EEG being a reliable
and cost-effective technology for measuring brain activities, this framework holds great
potential for impacting software production and enhancing user satisfaction [12]. The pro-
posed approach offers a comprehensive understanding of user satisfaction with high
accuracy and precision, making it a valuable tool in software development. The framework
incorporates a recurrent neural network algorithm as a classifier, a feature extraction algo-
rithm based on event-related desynchronization and event-related synchronization analysis,
and a novel method for the adaptive selection of EEG sources for emotion recognition.

The remainder of this paper is organized as follows. Section 2 introduces the method-
ology and describes the proposed framework and the signal processing chain. Section 3
presents the experimental results and the evaluation criteria of the proposed system.
Section 4 discusses the obtained results and two experimental approaches applied during
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the user experience using emotions. Finally, Section 5 provides concluding remarks and the
possible future research directions on usability testing based on emotion detection using
the EEG signals.

2. Methods

A generic framework is proposed for the assessment of software usability based on
the brain–computer interface (BCI). Figure 1 presents the proposed framework for usability
testing with emotion recognition. It relies on detecting a user’s emotions while performing
tasks related to a given software system in serial sessions. The emotions are detected and
classified in each session using the valence–arousal–dominance (VAD) model. Valence
and arousal levels can be used as indicators to predict a user’s satisfaction during their
experience with a system. These levels can indicate whether a system causes boredom,
stress, anger, or relief, as well as many other emotional states [13]. Building this framework
involves the following phases as described in Figure 1: preparation, training, testing,
and reporting the usability aspects and linking them with the recognized emotions.

1. Preparing framework

• Hardware 
• Stimuli

2. Training 

• Emotion 
• Recognition training 
• CPT

3. Usability testing 

• EEG recordings 
• Feature extraction
• Classification

4. Linking and reporting

• Effectiveness
• Efficiency
• Satisfaction

Figure 1. Proposed framework for usability testing with emotion recognition [12].

2.1. Preparation

The proposed framework is an interface of different choices of web-based systems.
EEG acquisition hardware is required to record brain activity in the training phase and
for usability testing. Many acquisition systems exist in the market, such as GreenTek [14],
OpenBCI [15], Gtech [16], to name a few. Such devices produce high-quality signals, are
easy to set up, and are easy to use. The acquired EEG signals are processed, extracted,
and then classified using deep learning algorithms. The second factor involved in the
experiment is the emotion stimuli. The emotional stimulus in this work was the DEAP
dataset [17]. This is consistent with the proposed method; 40 videos were used in the
experiment under the same setting.

2.2. Training Phase

The training phase of this proposed algorithm consists of two parts: emotion recogni-
tion training and continuous performance test (CPT).

2.2.1. Emotion Recognition Training

This phase aims to train the proposed algorithm on the brain activities of the subjects
who are enrolled in the experiment. The videos used in the chosen dataset were applied for
the subjects in this phase under the appropriate setting. In this stage, either the locationist or
VAD models can be applied. In turn, a self-assessment questionnaire can be used to specify
the emotion of the participant (either discrete status or valence–arousal–dominance status).
In the last one, we can follow the same setting as that described in [17]. Furthermore,
valence and arousal levels can be specified using the validated formulas given in [18].
The latter criteria should be studied more with the proposed method because they involve
the selection of specific electrodes from specific frequency bands [18]. However, they
are applicable.

2.2.2. Continuous Performance Test

Continuous performance test (CPT) method assists in specifying the response time
for each subject, which reflects the first impression period. It is an important factor for
recognizing the emotion that arises in the first impression period, and so it plays an essential
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role in studying the satisfaction of each user during usability testing [19]. CPT measures
the response of clicking the ’space’ key when any character appears on the screen, except for
the ’X’ character. The response time is the first impression time for a given user [19].

2.3. Usability Testing Phase

In this phase, the user chooses a website to test its usability. The procedure is divided
into multiple ‘to-do’ tasks. Each task has a time where it begins and a time where it ends,
and the user attempts to complete the task in the defined period. This phase can be divided
into two implicit sessions:

1. First-impression testing: As we previously measured CPT for each subject, this period is
analyzed later to determine the user’s first impression of the website at the beginning,
as well as for each task.

2. The rest of the time is the EEG recording to facilitate emotion recognition for a
particular task.

2.3.1. EEG Signal Processing Chain
Pre-Processing EEG Signals

In order to achieve accurate results from EEG data, it is crucial to utilize precise process-
ing techniques and noise removal methods. In the DEAP dataset [17], the electrooculogram
(EOG) data that produce artifacts resulting from eye movements were removed. To extract
the alpha, beta, theta, and gamma signals for each trial, a fast Fourier transform (FFT) filter
was implemented in conjunction with a common average referencing (CAR) filter and a
high-pass filter. EEGLAB toolbox was used to perform CAR and FFT processing. EEGLAB
is an interactive MATLAB toolbox designed for processing and filtering EEG and MEG
signals [20].

Feature Extraction

This is the main concept in emotion recognition. The quality of extracting features
from EEG signals underpins the accurate recognition of emotions. The brain activities were
acquired using EEG electrodes placed on the scalp, following the international 10–20 system.
Although scalp EEG recordings do not provide precise spatial information about specific
brain regions, it is essential to acknowledge the inter-variability that exists between subjects
and emotions. Effective brain activities associated with different emotions can vary not
only between different emotions but also among individuals. In this respect, sensitive brain
regions for each subject were distinguished [21]. In turn, we selected the EEG channels
with high activity compared to the neutral status of the person individually. Following
this, the channels were selected from the significant regions in order to ensure that an
adaptive channel selection method was used. Finally, the feature vector was constructed
from the values of the ERD/ERS of the chosen electrodes (or from the difference in PSD
between asymmetrical electrodes). In fact, each chosen electrode has an activity in at least
one emotional state. ERD/ERS measures the EEG power for a subject in a certain band
for a group of trials (related to an emotion), as well as its power as a percentage relative
to the power of the trial of a baseline (neutral in this case) of the same band and subject.
In this part, we calculated the ERD/ERS values of all the significant electrodes for all eight
emotional states, as given in Equation (1):

ERD/ERS =
(A − R)

R
, (1)

where A is the active average power and R is a reference average power. The reference is
the state that must be compared to the brain activity. It depends on the study applied [22].
More details about the feature extraction method can be found in [21,23].
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Classification

There are two types of final emotion labels: VAD model labels and distinct labels of
emotional state, as represented by the locationist model. In turn, the results were evaluated
to determine which classifier method outperformed the others. Therefore, this section
focuses on improving the method using a recurrent neural network (RNN) model. An
RNN is a deep learning neural network that processes sequential data on a time axis. It is
an improvement of the convolutional neural network (CNN), which is limited by a fixed
number of inputs and outputs, as well as by the fixed flow of data in the hidden layer.
In an RNN, the number of inputs and outputs is flexible (e.g., one-to-one, one-to-many,
and many-to-many). In addition, RNNs can process data in a loop by passing information
from a layer to the same layer, and information can be memorized from a previous layer.
As a result, RNNs are suitable for sequential and dependent data, which has yielded
valuable applications in text recognition, speech recognition, conversion of a rating to
text (and back again), and sentiment analysis. The structure of an RNN involves a neural
network, which consists of an input layer, hidden layers, and an output layer. The input
and output can be a sequence of data. Each RNN layer is a combination of a number of
hidden layers with the same weights and biases (Figure 2).

a0 a1 a2 at−1

X1 X2 Xt−1 Xt

Waa Waa

at−2
Waa Waa

Waa

Y’

Wax Wax Wax Wax

Figure 2. Architecture of a recurrent neural network

For each timestep t, the activation at and the output yt are expressed as follows:

at = g(Waaat−1 + WaxXt + b), (2)

and
yt = g(Wyaat−1 + b) (3)

where at is the current state of the RNN current layer, at−1 is the previous state of the
previous layer, and X is the input for that RNN layer. Additionally, Waa and Wax are weight
vectors, and b is the bias factor. Furthermore, g represents the activation function, which is
given as ReLU, sigmoid, or hyperbolic tangent. The activation function for this work is as
follows:

g(t) = tanh(t) (4)

An RNN can be used with different error minimization methods, especially for avoid-
ing the vanishing gradient problem. In this research, the Levenberg–Marquardt (LM)
algorithm was used, which solves the non-linear least squares problem [24]. It combines
two methods used in error minimization between function points, namely the gradient
descent method and the Gauss–Newton algorithm. The LM reduces squared errors by
changing the parameters with the steepest-descent direction, which is the same as in the
gradient descent method. If the values are near the optimal value, the parameters of the
squared error are changed by assuming the function is quadratic and then finding the value
of the local quadratic, as in the Gauss–Newton algorithm [24]. The aim of LM is to find
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the best perturbation h to parameter p for minimizing the error value represented by X2 in
this formula:

X2(p) =
m

∑
i=1

[
y(ti)− ŷ(ti; p)

σyi
]2 = (y − ŷ(p))TW(y − ŷ(p))

= yTWy − 2yTWŷ + ŷTWŷ

(5)

where X2 is the sum of the weighted square errors of the main y(ti) data and the curve fit
function ŷ(ti; p). σyi is the measurement error of the measurement y(ti) and, finally, W is
the weight matrix, calculated by Wii =

1
σ2

yi
. As mentioned above, LM seeks to find the best

perturbation h to parameter p, as shown in the following:[
JTW J + λI

]
hlm = JTW(y − ŷ) (6)

where J comes from

ŷ(p + h) ∼= ŷ(p) +
∂ŷ
∂p

h = ŷ + Jh (7)

The λ increases or decreases depending on the approximation of X2(p + hlm) > X2(p)
in each iteration. The small values of the damping parameter λ result in a Gauss–Newton
update and large values of λ result in a gradient descent update.

1. Classification Scheme Using RNN: Emotion classification on EEG data from the
DEAP dataset [17] was performed using an RNN classifier. The classification process
proceeded through the following two levels:

• ‘One-vs.-all’ level: A trial t is input into two classifiers from type ’one-vs.-all’.
The first is a high-level classifier (positive in valence, active in arousal, and low
in dominance). The second classifier is a low-level classifier (negative in valence,
passive in arousal, and high in dominance). The feature vector for each classifier
includes the event-related desynchronization (ERD) and event-related synchro-
nization (ERS) from the significant electrodes of the corresponding level. Figure 3
illustrates the structure of the classification process.

Significant electrodes of 
positive-level

Extract 
features

Positive-level       
(one-vs-all)

Significant electrodes of 
negative-level

Extract 
features

Negative-level 
(one-vs-all)

Normalization Valence final 
decision classifier

Valence 
level

A given 
target t

Significant electrodes of 
active-level

Extract 
features

Active-level       
(one-vs-all)

Significant electrodes of 
passive-level

Extract 
features

Passive-level 
(one-vs-all)

Normalization Arousal final 
decision classifier

Arousal
level

Significant electrodes of 
low dominance-level

Extract 
features

Low Dominance 
level(one-vs-all)

Significant electrodes of 
high dominance-level

Extract 
features

High Dominance 
level (one-vs-all)

Normalization Dominance final 
decision classifier

Dominance
level

Mapping Emotion label 

RNN classifier

Figure 3. Classification of emotions based on the VAD model using an RNN classifier

• ‘Final-decision classifier’ level: For each dimension, there is a final decision
classifier that decides on the level of the dimension from the two ‘one-vs.-all’
classifiers related to that dimension, as shown in Figure 3. The criteria used to
inform the final decision are given in Table 1.
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Table 1. Criteria majority voting classification

Final Decision Criteria
Classifier of Upper Level

(Target) Label (Outlier) Label

Classifier of Lower Level
(target) label Error Lower level of the dimension

(outlier) label Upper level of the dimension Neutral level of the dimension

2. Neural Network Structure: The considered classifier is based on an RNN with the
LM algorithm, Jacobian matrix calculation, and real-time recurrent learning. It uses
gradient descent to find the optimal values of weights, as well as a bias factor that
gives a low cost and error factor. The general structure of an RNN is illustrated
in Figure 2. However, details were obtained through various experiments, as well
as research surrounding the issue of what constitutes an optimal structure. Finally,
the highest results in terms of accuracy were obtained when the structure configura-
tion is as follows:

• The network consists of several input layers, equal in number to the total number
of selected significant electrodes. The size of the feature vector is different from
subject to subject, depending on the subject’s brain activity.

• There are 80 hidden layers for receiving each feature vector component. Each
layer is an MLP layer with a loop inside, along with delay factors. The MLP
layers contain 80 neurons for receiving input components, and then the activation
function tanh is applied.

• The proposed classification system is nearly static. In particular, the delay be-
tween inputs is set to be a naive value in order to avoid focusing on dependencies
in emotions between trials. The DEAP dataset used independent videos in the
experiment. The aim to set naive values for delay is to take advantage of RNN in
training the data.

2.4. Linking and Reporting

This is the final phase in the proposed framework. The emotions were linked to
the usability testing aspects—effectiveness, efficiency, and satisfaction—and a report
was generated.

3. Results
3.1. Overview of the DEAP Dataset

One of the most well-known datasets in the area of emotion identification from EEG
signals is the DEAP dataset [17]. A total of 32 participants’ emotional states were monitored
as they watched music videos. Each subject was recorded over the course of 40 movies
(40 trials), which were captured at a sampling rate of 512 Hz before being down-sampled
to 128 Hz utilizing 40 channels, of which 32 were EEG electrodes. Figure 4 presents the
spatial partition of the electrodes to the related brain regions. Each color refers to a brain
region: frontal, central, temporal, occipital, and parietal lobe.

Arousal, valence, dominance, and liking/disliking were the four labels assigned to
each video/trial for each subject. Using a self-assessment questionnaire, the participants
also scored the valence, arousal, dominance, and like/dislike. Frontal face footage was
also taken for 22 of the 32 participants. Retrieval by affective tags from the database was
employed as a novel technique for selecting stimuli.
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Figure 4. Initial electrodes used in this research as the DEAP dataset.

The number of trials conducted for each subject at a particular level of a specific
dimension was insufficient. Thus, each trial was divided into equal-sized fragments.
Consider a trial t that lasts for T units of time, with each fragment having a window size of
W units of time. The overlapping ratio between two consecutive fragments is denoted by
O, which determines the amount of shared data. Trial t was divided into N fragments of
size W, with N calculated using the following equation (Equation (8)):

N = (
(T − w)

shi f t
) + 1

shi f t = (1 − O)W
(8)

For our experiment, we selected a window size of 12 s for each fragment and an
overlapping ratio of 50%. As a result, each trial t was split into eight fragments, effectively
increasing the number of trials by eight.

3.2. RNN Configuration Settings

Different values and settings were tested in order to find the optimal performance and
accuracy for the RNN classifier. Table 2 lists the settings of the RNN used in the simulation
of the work.

Table 2. RNN settings in emotion recognition with VAD model.

Factor Value

Adapt damping factor of LM 10
Damping factor of LM 3
Delay factor 0.01
Input nodes Same as the number of adaptive significant electrodes
Hidden layers 80
Nodes in each hidden layer 80
Output layers 1
Weight Random values [−0.5, +0.5]
Bias Random values [−0.5, +0.5]
Epochs 8
Error E (Cost function) 110−10
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3.3. Training and Testing Data

The processed data were augmented with a window of size 12 s and an overlap ratio
of 50%. As proposed, the network’s input size was set to n, which represents the number of
significant electrodes. The proposed method was implemented using the MATLAB pyrenn
toolbox [25], as well as the MATLAB machine learning toolbox.

3.4. Performance Evaluation

As previously mentioned, the first stage involved each dimension having two one-
class classifiers to distinguish between the high and low levels. The second stage involved
making a final decision between the one-class classifiers in each dimension. Table 3 shows
the results of using an RNN with the VAD model to estimate emotions during the usability
testing of a software on 32 subjects. The model was able to estimate three dimensions
of emotion—valence, arousal, and dominance—at two levels each: positive/negative,
active/passive, and low/high, respectively.

Table 3. RNN with VAD model results.

Dimension Level Accuracy (%) Precision (%) Recall (%) Specificity (%) TPR(%) F1-Score (%) Decision (%)

Valence Positive 90.19 84.12 94.12 86.24 94.12 88.84 85.88Negative 92.13 84.13 94.66 88.72 94.75 89.08

Arousal Active 92.13 80.12 95.45 88.33 95.95 87.11 87.32Passive 92.67 91.18 90.52 92.80 92.52 90.85

Dominance Low 92.24 83.63 96.06 88.72 96.06 89.41 87.56High 91.78 88.76 93.31 90.56 93.31 90.98

The model achieved an overall accuracy of above 90%, which is quite good [26].
Specifically, for valence, the model achieved an accuracy of 90.19% for positive valence and
92.13% for negative valence. This means that the model is better at identifying negative
valence than positive valence, which could indicate that the software being tested is more
likely to elicit negative emotions.

For arousal, the model achieved an accuracy of 92.13% for active arousal and 92.67%
for passive arousal. The model performed slightly better at identifying passive arousal,
indicating that the software may be more likely to elicit passive emotions.

Finally, for dominance, the model achieved an accuracy of 92.24% for low dominance
and 91.78% for high dominance. This means that the model is better at identifying low
dominance than high dominance, which could indicate that the software being tested is
more likely to make users feel less in control.

Overall, the results suggest that the RNN with the VAD model is effective at estimating
emotions during software usability testing, and could provide valuable insights into how
users feel about the software.

Using the RNN, the accuracy increased by 3% in valence, 8% in arousal, and 15%
in dominance compared to the previous results in [21]. Additionally, each level classifier
exceeded 90% in terms of accurate emotion recognition. The confusion matrices of the final
decision classifier for each dimension are presented in Table 4(a–c).

The receiver operating characteristic (ROC) curves for all subjects are presented in
Figure 5 for the three dimensions. The ROC represents the level of separability; in other
words, how much this classifier is capable of distinguishing between true positive and
false positive. From Figure 5, we can conclude that the model, in all dimensions, has an
acceptable separability feature for 96–100% of the subjects.
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Table 4. Confusion matrix of final decision classifier.

(a) Valence

Predicted Class

Actual Class Positive Neutral Negative Error

Positive 81.26 (TP) 14.77 1.10 2.85
Neutral 4.25 91.47 (TN) 2.57 1.69
Negative 2.22 13.64 82.71 (TN) 1.41

(b) Arousal

Predicted Class

Actual Class Active Neutral Passive Error

Active 80.35 (TP) 10.11 5.14 1.26
Neutral 3.28 88.66 (TN) 7.12 0.92
Passive 0 7.53 87.50 (TN) 1.83

(c) Dominance

Predicted Class

Actual Class Low Dominance Neutral High Dominance Error

Low dominance 72.63 (TP) 11.39 3.43 3.16
Neutral 0.62 94.70 (TN) 4.14 0.52
High dominance 1.59 8.24 76.21 (TP) 1.44

(a) (b) (c)

(d) (e) (f)

Figure 5. ROC curves for all dimensions in classification process using RNN. (a) Valence—
negative level; (b) Valence—positive level; (c) Arousal—passive level; (d) Arousal—active level;
(e) Dominance—low control level; (f) Dominance—high control level.
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4. Discussion

The performance of the proposed system was comparatively examined against the
results yielded by other recent methods in the field (see Table 5). All of the methods used
as a basis for the comparison had similar characteristics, including the fact that they used
the VAD model for emotion description, the DEAP dataset, and a deep learning technique
in the classification stage.

Table 5. Comparison of proposed method and related works.

Method Number of Classes Feature Extraction
Algorithm

Number of
Electrodes

Classifier Valence
(%)

Arousal
(%)

Dominance
(%)

[27] 2 levels of valence and arousal EMD and MEMD 18 ANN 75 72.87 N/A
[28] 2 levels of valence and arousal Time- and frequency-

domain, with DE as
selection method

5 PNN 67.47 67.47 N/A

[29] 2 levels of valence and arousal EEG raw signals 32 RNN 85.65 85.45 N/A
[30] 2 levels of valence and arousal PSD and VMD 4 DNN 62.50 61.25 N/A
[31] 2 levels of valence and arousal HOS 32 Proposed NN 85.21 84.16 N/A

Proposed
method

2 levels of valence, arousal, and
dominance

ERD/ERS of the sig-
nificant electrodes

Adaptive RNN 85.88 87.71 86.63

The results attest to the value of the RNN when applied to the proposed VAD-based
emotion recognition system. The extracted features from an adaptive-channel selection
algorithm were used to train an RNN classifier. The results indicate that the RNN outper-
formed the quadratic classifier with VAD dimensions. Moreover, comparing the results of
the RNN method to recent studies reveals that the proposed system outperformed other
state-of-the-art approaches in the field of DL applied to emotion recognition.

Two experimental approaches are applied when studying the user experience using
emotions [13], which are discrete and continuous approaches. The first one involves
applying specific events and analyzing physiological responses over a short-term period.
The continuous approach involves studying physiological states over a long-term period
under different circumstances. Arousal and valence levels are measured in this period. It
is crucial to establish a research goal before undertaking an experiment. In this work, we
applied both approaches. In the main screen of the interface, the user can choose between
the two testing approaches, as shown in Figure 6a.

(a) (b)

(c) (d)
Figure 6. Example of testing framework. (a) Main screen of the prototype framework. (b) Instruction
screen. (c) Module testing screen. (d) Continuous mode in usability testing experiment.
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4.1. Discrete Method

The user opens the website and starts to complete the tasks shown on the list (see
Figure 6c). Each module has a start time and an end time, and the user must complete the
task within the defined period; otherwise, the next module begins.

The EEG recording is separate for each module, as shown in Figure 7.

First 
impression

Sec 1 … … Sec x

Module #1

First 
impression

Sec 1 … … Sec x

Module #2
First 

impression

Sec 1 … … Sec x

Module #3

EEG recording 

EEG recording 

EEG recording 

Figure 7. EEG recording segments in discrete mode

4.2. Continuous Method

EEG recordings are continuous from the start of the session to the end, and no timer
is established for each module. The user ends each module and moves on to the next one
while the EEG is recorded, as in Figure 7.

Later, the recording is divided depending on the module’s task periods. The first
impression period is specified in the beginning only in this method (Figure 6d).

Linking and reporting is the final phase in the proposed framework. The emotions
were linked to the usability testing aspects—effectiveness, efficiency, and satisfaction—
and a report was generated. Related to usability testing factors, we linked the proposed
framework processes with these factors in the following way:

• First impression factor: The classification result of the EEG period in CPT allows the
user’s first impression to be determined. This helps to improve design aspects such as
the use of color, alignment, typography, and so on.

• Task-based testing factor: This is mapped with the classification results of each module.
The feature vector is constructed for each module recording. The emotion label of
the classifier is the subject’s emotional state during this task. This factor helps in
improving the task design, and it has a direct impact on usability.

• Overall emotions factor: This factor is shown in the continuous method of the framework.
It is an important factor for facilitating a measurement of usability when we divide
the recording of each module and the satisfaction in general if we take the results of
the entire continuous period as a feature vector.

Furthermore, the approach to testing is linked to all aspects of usability testing,
as shown in the following:

• Effectiveness: In the ‘task-based test’, the level of each dimension in VAD is an indicator
of the quality of the design and the function of the interface [13]. The correlation
measurement is an accurate indicator of the emotion and the task/function of the
system during the user experience, which reflects effectiveness [32].

• Efficiency: Based on the definition of efficiency given in [2], groups of emotions (e.g.,
calm or miserable) are linked to measurements of resource consumption. The type
and level of correlation measurement leads to the level of system efficiency [2].

• Satisfaction: The appearance of emotions that are either pleasant or unpleasant during
the testing session can be used to draw an inference about user satisfaction. It is
an indicator of each task, function, and the overall system. Scenarios such as the
first impression test and free interaction test [33] are chosen in this step. Certain
measurements are suggested at this point to decide on the satisfaction level, including
the percentage change relative to a baseline state (i.e., neutral emotion or calm),
correlation, and the means of the changes [2,33].
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Regarding the VAD model, the dominance dimension has not been explored in any
depth in the context of usability testing [34]. Furthermore, there are no significant corre-
lations in usability testing [35] or in acceptance technology in general [36]. This aspect
should be examined and, in particular, researchers should seek to uncover new facts about
the relationship between dominance and usability testing. Another open question relates
to the issue of how to map this dimension to usability testing factors. However, this does
not omit the valuable role of dominance in determining an individual’s emotional state
during usability testing.

5. Conclusions

This paper presents a comprehensive study on the use of deep learning (DL) techniques
for emotion recognition using the VAD model. The main focus of the study was to evaluate
the performance of the recurrent neural network (RNN) in determining the levels of each
dimension of the VAD model for emotion recognition.

The results of the study show that the proposed RNN method outperforms other meth-
ods, including a quadratic classifier, in recognizing emotions based on VAD dimensions. It
surpasses the performance of state-of-the-art approaches in DL-based emotion recognition.

In addition to the evaluation of the emotion recognition system, the paper also outlined
an original usability testing framework that leverages the developed emotion recognition
system. The framework aims to provide objective, reliable, and valid measurements of
usability testing linked to a user’s emotional states. It is designed with two modes, discrete
and continuous, to cater to well-defined goals in usability testing.

By utilizing the accuracy of the proposed emotion classification system, the paper’s
usability testing framework serves as a foundation for an efficient, reliable, and automatic
usability testing process. Overall, the paper provides valuable insights into the use of
DL techniques for emotion recognition and a viable foundation for an efficient, reliable,
and automatic usability testing framework.
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