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Abstract: This review evaluates the methods used for image quality analysis and tumour detection in
experimental breast microwave sensing (BMS), a developing technology being investigated for breast
cancer detection. This article examines the methods used for image quality analysis and the estimated
diagnostic performance of BMS for image-based and machine-learning tumour detection approaches.
The majority of image analysis performed in BMS has been qualitative and existing quantitative
image quality metrics aim to describe image contrast—other aspects of image quality have not been
addressed. Image-based diagnostic sensitivities between 63 and 100% have been achieved in eleven
trials, but only four articles have estimated the specificity of BMS. The estimates range from 20 to
65%, and do not demonstrate the clinical utility of the modality. Despite over two decades of research
in BMS, significant challenges remain that limit the development of this modality as a clinical tool.
The BMS community should utilize consistent image quality metric definitions and include image
resolution, noise, and artifacts in their analyses. Future work should include more robust metrics,
estimates of the diagnostic specificity of the modality, and machine-learning applications should be
used with more diverse datasets and with robust methodologies to further enhance BMS as a viable
clinical technique.

Keywords: breast imaging; microwave imaging; breast microwave imaging; breast cancer; breast
cancer detection

1. Introduction

The standard method of breast cancer detection is X-ray mammography; however,
the benefits of regular breast cancer screening with mammography have been a subject
of debate, in part due to the sizable false-positive rate of 20–60% (cumulative risk of
a false-positive after ten mammograms) [1] and the modality’s use of ionizing X-ray
radiation. Other imaging modalities currently used for breast cancer detection, including
magnetic resonance imaging (MRI) and ultrasound, have low specificity, are costly and time-
consuming, require a trained operator [2], and are not ideal as an independent screening
tool.

Microwave sensing has been investigated as a potential breast cancer detection tech-
nique for several decades [3], and the field remains active today [2]. The modality relies on
the observed contrast in the dielectric properties of malignant and healthy tissues [4–6] to
differentiate between healthy and cancerous breast tissues. However, several remaining
challenges must be addressed before the modality is ready for clinical use. A primary
challenge is the lack of robust image reconstruction methods.

Reconstruction methods in microwave sensing can be broadly grouped into two fami-
lies: tomographic and radar approaches. Detailed reviews of these reconstruction methods
can be found in [7–9]. Microwave tomography aims to reconstruct a quantitative image of
the complex permittivity distribution in the breast by solving the inverse electromagnetic
scattering problem. Radar methods create qualitative images by propagating signals onto
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the spatial domain under a particular propagation assumption. This model typically as-
sumes ray propagation of the microwave signal, a homogeneous propagation speed in the
medium, and assumes that dispersion, multiple scattering, and signal attenuation within
the breast tissues are negligible [7–10].

Tomographic approaches have some advantages because the reconstructions of the
complex permittivity directly describe the tissue properties that govern the contrast in
malignant and healthy tissues at microwave frequencies. However, these approaches also
face challenges due to the ill-posed nature of the inverse scattering problem [7–10].

Radar-based image reconstruction methods have seen more widespread experimen-
tal use than tomographic methods. Several research groups have built and evaluated
radar-based systems [11–14]. Most of the radar-based image reconstruction techniques
use the delay-and-sum (DAS) beamformer [15] or its derivatives, including the delay-
multiply-and-sum (DMAS) beamformer [16] and the improved delay-and-sum (IDAS)
beamformer [17]. Other review articles have summarized and compared the individual
reconstruction techniques [7–10].

The analysis of the quality of reconstructed images is an important aspect of research
into any diagnostic imaging modality. The quality of reconstructed images can be evaluated
quantitatively, using image quality metrics, or qualitatively [18]. Qualitative approaches
typically consist of subjective, textual descriptions of the images (without referring to
any quantitative image features) and are not well-suited for inter-image comparisons or
image quality analysis due to their subjective nature [18]. Quantitative descriptions are
advantageous because they allow for inter-image comparisons, facilitating the assessment
of different image reconstruction and signal processing algorithms. Traditional concepts
of image quality include image contrast, accuracy, noise, resolution, and artifacts [19].
A complete description of image quality is necessary to facilitate comparisons between
imaging systems, image reconstruction methods, experimental techniques, and signal
processing approaches in BMS.

In addition to quantitative and qualitative analysis at the individual image level, the
overall performance of breast tumour detection can be evaluated with respect to diagnostic
sensitivity and specificity. The sensitivity and specificity of a modality are two of the
primary metrics of clinical relevance and must be considered in tandem when evaluating
the efficacy of a diagnostic technique [18]. A sensitive method with poor specificity may
not be useful as a diagnostic tool, particularly for breast cancer screening, where many
more true negatives (healthy scans) exist in the screening population than true positives
(scans of tumour-containing breasts). The rigorous estimation of the potential diagnostic
performance of BMS is another existing challenge within the research field [18].

Notably, much of the research effort in BMS focuses on developing algorithms for
data processing and image reconstruction in simulation studies. Many research groups
have presented simulated results with significant progress in these areas, and the eventual
translation from simulation to clinical experimental research is eagerly awaited. However,
experimental work presents unique challenges that are not readily addressed in simulation,
and any clinical technique must be demonstrated first by experiment. Nevertheless, sig-
nificant progress has been made in experimental investigations, both in phantom-based
experiments and in clinical trials [20].

While several review articles describing the state of BMS research have been pub-
lished [2,7–10,20–23], including system design [7,8,20], reconstruction techniques [7–10],
antenna design [21], and dielectric properties studies [7–10,20,23], little attention has been
given to the aforementioned challenges—namely image quality analysis and the potential
diagnostic performance of the modality.

Only one review has examined the results of tumour detection in some clinical stud-
ies [18], but did not describe all estimates of the diagnostic performance of BMS. The review
by Porter and O’Loughlin in [18] described some of the challenges to demonstrating the
potential clinical efficacy of the modality, namely the variation in reporting standards across
studies, variation in system design across studies, and small sample sizes. This review [18]
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focused on summarizing the existing results, rather than critically analyzing the methods
used in the research articles examining the diagnostic potential of BMS. This article was also
the first review to describe image quality analysis in BMS, but a scoping review was not
performed, and several existing image quality metrics were not addressed. Additionally,
this article did not consider machine-learning methods in BMS.

This article presents a scoping review of the BMS literature and focuses on experimen-
tal investigations into the use of microwave sensing for breast cancer detection, specifically
examining image quality analysis and existing estimates of the diagnostic potential in
both image-based and machine-learning-based diagnosis. An exhaustive search of the
literature resulted in 184 papers fitting the review and research criteria [11–14,17,24–202].
This article reviews and critically analyzes the methods used for image quality analysis
and discusses how current methods relate to traditional aspects of image quality, including
image resolution, noise, contrast, accuracy, and artifacts. This review also critically analyzes
the estimated diagnostic performance of microwave-based breast cancer detection in both
image-based and algorithmic (machine learning) detection approaches.

2. Review Methodology

A scoping review of the breast microwave sensing literature was performed to identify
all published work that experimentally investigated tumour detection or image quality
analysis. Articles that exclusively presented results using simulated data were excluded
from this review, as were articles that:

• Used non-physical phantom materials (e.g., metal as a tumour analog);
• Examined contrast-enhanced breast microwave sensing;
• Examined multimodality imaging (e.g., using MRI-based prior information for mi-

crowave image reconstruction).

These exclusion criteria were used to limit the scope of the review to experimental
tumour detection and image quality analysis in breast microwave sensing. Additionally, all
conference papers that were expanded into journal articles were excluded, and only the
journal articles were included in the review to prevent the double-counting of papers.

The Scopus search engine was used to identify all papers published before February
17th 2023 that satisfied these criteria. The search was performed with the following key-
words: “breast” AND (“microwave” OR “radar”) AND (“imaging” OR “detection” OR
“sensing”), and the search results were limited to journal articles and conference papers.
All studies in the search results (n = 2769) were initially evaluated for inclusion based
on their title and abstract. The studies that were selected for possible inclusion based
on their abstract and title (n = 468) were then evaluated with respect to the inclusion
and exclusion criteria. One hundred seventy-five papers were identified for inclusion
in this review [11–14,24–31,33–49,51–66,68–71,73–179,181–192,195–201]. Nine additional
papers [17,32,50,67,72,180,193,194,202] that were not in the Scopus search results but which
nonetheless fit the inclusion criteria were also selected for inclusion in this review. There-
fore, there were 184 papers selected for inclusion [11–14,17,24–202]. Figure 1 displays this
review methodology.
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Records identified (n = 2769)
from Scopus with search:

“breast” AND (“microwave” OR “radar”) AND
(“imaging” OR “detection” OR “sensing”)

Records screened
(n = 2769)

Records excluded
(n = 2283)

Reports sought for retrieval
and assessed for eligibility

(n = 468)

Reports selected
for inclusion

(n = 175)

Reports excluded
(n = 293)

Reports acquired through
author-based search

(n = 9)

Studies included review
(n = 184)

Figure 1. Flowchart describing review methodology. In total, 184 articles were identified for inclusion
after reviewing 2769 search results from Scopus.

3. Image Quality Analysis

Image-based analyses have been the primary form of tumour detection in the BMS
literature—of the 184 papers identified in this review, 164 (89%) exclusively examined
image-based tumour detection. However, image-based analysis has been primarily qual-
itative. Of the 164 papers that utilized image-based tumour detection, 89 (54%) pre-
sented images without any quantitative analysis of the image quality (see Table A1 in the
Appendix A). In all cases where quantitative image quality analysis was performed, the
quantitative techniques relied on single pixel/voxel responses or a priori knowledge of the
actual tissue dielectric properties or geometries. Eleven unique image quality metrics have
been defined in the literature, seven of which aim to describe image contrast. Table 1 and
the following discussion describe these metrics:

• The signal-to-clutter ratio (SCR);
• The signal-to-mean ratio (SMR);
• The mean-to-mean ratio (MMR);
• The tumour-to-fibroglandular response ratio (TFRR);
• The contrast-to-clutter ratio (CCR);
• The clutter-to-tumour ratio at threshold t (C/Tt);
• The localization error (LE);
• The mean squared error (and the associated family of error metrics) (MSE);
• The full-width at half-maximum area (FWHM);
• The f1 and f metrics presented in [70];
• The structural similarity index measure (SSIM).

Several quality metrics have been proposed to describe image quality, including the
SCR, SMR, MMR, TFRR, CCR, and C/Tt. The SCR has been the most commonly used
metric in breast microwave imaging and was used in 22 of the 76 papers which presented
quantitative image analysis as displayed in Table 1, but these metrics share a common
mathematical structure. The definitions of these metrics vary, as shown in Table 1, but they
all attempt to measure the contrast of the image. None of these metrics are robust due to
their reliance on single-pixel intensities (e.g., the maximum pixel intensity is used in the
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SCR, SMR, TFRR, and CCR) or their dependence on the definition of the imaging domain
or breast size and density (as in the SMR and MMR). These metrics also rely on defining a
tumour region and a non-tumour region, which typically requires a priori knowledge of
the tumour location within the image, making these metrics unsuitable for use outside of
controlled experimental conditions where the tumour location can be measured accurately
and precisely.

The SMR and MMR metrics are dependent on the choice of imaging domain (due to
the very low-intensity responses that occur outside of the breast tissues in the coupling
medium or air), breast density (due to the higher dielectric properties of fibroglandular
tissue than adipose tissue), and breast size. An independent variation in any of these three
parameters may change the value of the mean intensity in the clutter region, making these
techniques unsuitable for diagnosis without additional corrections. For example, a small,
dense breast may have a smaller SMR/MMR than a large, low-density breast with a single
fibroglandular inclusion located relatively superficially. In addition to these dependencies
on factors unrelated to tumour presence (breast size, imaging domain size), the authors
of [132] also identified that the metric fails in the case of a large lesion. In describing an
individual patient with a 4 cm carcinoma, the researchers stated, “The extremely large size
of such carcinoma leads to a low Max/Avg” [132], indicating that the interpretation of this
metric must account for other factors, including the lesion size, which may not be known
a priori.

The terms in Table 1 are the most commonly used terms for each of these mathematical
definitions, but significant confusion exists in the BMS literature surrounding the terms
and mathematical definitions of these metrics. For example, while the definition in Table 1
is the most common in the literature, several other definitions have been used. The SCR
was defined in [142,145] as the ratio between the maximum pixel response in an image
acquired from a tumour-containing phantom to the intensity in the corresponding pixel
in an image acquired from a tumour-free phantom. This definition was referred to as the
“S/C ratio” in [198]. The “S/C ratio” was also used in [131,132], but in these studies, it
referred to the ratio of the maximum pixel intensity to the average pixel intensity. The SCR
has also been defined in [11] as the ratio of the mean pixel intensity within a target region
of interest (ROI) to the mean pixel intensity outside the ROI. The ratio of the square of the
maximum tumour response to the standard deviation of the background pixel intensities
has also been defined as the SCR [26,69]. The term SCR has also been used as an image
quality metric but was not defined within the manuscripts where it was used [68,98]. The
definition of the SCR in Table 1 was used to define the tumour-to-clutter ratio (TCR) [24].
A metric similar to the SCR was defined in [58] as the ratio of peak clutter energy to peak
tumour energy, using the definition of the SCR, except the inverse of the argument of the
logarithm is used [58]. The term “signal-to-max ratio (SMXR)” was used in [78,142] but
was defined as the SCR is defined in Table 1.

This is also true for the SMR, which has been described by other names (e.g., “MAX/AVG”
in [132,133,162], “peak/mean” in [182], and the tumour-to-mean ratio in [24], and “S/C”
in [131]), and has been given other mathematical definitions (e.g., [178,190]). The MMR has
also been used under different names [14,99,164,173,178,190]. Other work has described an
SMR without definition [56,68,98,99,153,154].

The CCR is unique because of its use of the standard deviation of image intensities, σ,
as described in Table 1. However, the inclusion of this variable in the denominator obfus-
cates the interpretation of the CCR as a description of image contrast—a relatively noisy
image with relatively high contrast may have the same CCR as a relatively low-noise image
with relatively low contrast.
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Table 1. Summary of image quality metrics in breast microwave sensing.

Signal to Clutter
Ratio

Signal to Mean
Ratio

Tumour to
Fibroglandular
Response Ratio

Contrast to Clutter
Ratio

Mean-to-Mean
Ratio Localization Error Mean Squared Error

Structural
Similarity Index

Measure

Full Width at Half
Maximum

Mathematical
Definition a

Tmax
Cmax

Tmax
Cmean

T2
max

F2
max

T2
max−F2

max
σ

Tmean
Cmean

∣∣rmax − rtum
∣∣ 1

n ∑n
i

(
I(ri)−

Itrue(ri)
)2

(2µ1µ2+ca )(2σ12+cb )

(µ2
1+µ2

2+ca )(σ2
1+σ2

2+cb )
Various b

Publications
[13,36,61–63,65,100,
106,116,117,124,139,
140,153,165,189,199]

[61–
63,116,117,124,189] [26,69,147] [26,69,147] [14,99,164,173,178,

190]

[14,62,63,65,98,116,
117,124,137,139,153,

200]

[31,39,72,85,86,89,91,
125,180,193] [176] [101,114,189,190]

Measures Image contrast Image contrast Image contrast Ratio of contrast to
noise Image contrast Accuracy of target

localization Image accuracy Image accuracy Image accuracy

Best use
Contrast maximum
target to maximum
non-target response

Contrast maximum
target to mean

non-target response

Contrast maximum
target to maximum
non-target response

Compare contrast to
noise

Compare mean
target response to
mean non-target

response

Describe target
positioning error in

image

Summary
description of image

accuracy

Summary
description of image

accuracy

Describe extent of
the highest-intensity

response

Challenges Non-robust, requires subjective definition of target region and/or a priori knowledge of tis-
sue geometry.

Requires subjective
definition of target

region and/or a
priori knowledge of

tissue geometry.

Requires a priori
knowledge of tissue

geometry,
non-robust.

Requires a priori knowledge of tissue geome-
tries and properties. Only applicable to quan-
titative reconstruction methods. Only applica-
ble as a summary metric for image accuracy
due to summation over the image space.

FWHM may not be
limited to a tumour

response. The
FWHM from images

of healthy and
tumour-containing

breasts may be
similar, depending
on the geometry of
the fibroglandular

breast tissues.

a Tmax is the maximum pixel intensity of the tumour response, Tmean is the mean tumour response, Cmax is the maximum clutter response, Cmean is the mean clutter response, Fmax is the
maximum fibroglandular response, σ is the standard deviation of image intensities, rmax is the position of the maximum image response, rtum is the known position of the tumour, I(r) is
the image intensity at position r, and Itrue(r) is the true object property at position r. In the definition of the SSIM, µi and σi are the average pixel intensity and the standard deviation of
the pixel intensities of the image Ii and ca, cb is defined as ca = (0.01L)2 and cb = (0.03L)2, with L set to the dynamic range of the intensity values in [176]. b The FWHM may refer to the
volume or area of an image corresponding to the voxels/pixels that have intensities greater than 50% of the maximum image intensity, or it may refer to the FWHM along a particular
dimension within the image.
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The LE, MSE, and SSIM metrics aim to describe image accuracy, but are also non-
robust. The LE describes a single specific aspect of image accuracy: the accuracy of the
target (typically a tumour) positioning in the reconstructed image. This metric is non-robust
due to its reliance on a single pixel intensity to identify the tumour response in the image.
The MSE (and similar metrics that sum over all pixels in the image, including the mean
absolute error, the total squared error, residual error, etc.) provides a summary measure of
the image accuracy, but is only applicable when the underlying object properties are well
known. This limits the applicability of this metric in patient studies where the underlying
microwave properties of the tissues are not well known; while image registration using
traditional image modalities, including MRI and CT, may aid in this circumstance, image
registration is a challenging task and the MRI/CT reconstructions do not necessarily map
to the underlying microwave properties. Additionally, these metrics average over the entire
image and do not provide insight into reconstruction accuracy at the level of individual
image features (e.g., accurate reconstruction of a particular tissue or region of tissue). The
SSIM is an additional summary measure of image quality; it is a measure of the similarity
of two images, first proposed by [203], and is commonly used in medical imaging. The
application of the SSIM in BMS [176] has the same limitations as the MSE. It is a summary
image accuracy metric, and requires complete a priori knowledge of the ground truth
property distribution.

The area of the full-width at half-maximum (FWHM) of the image intensities has also
been used as an image quality metric [101,114,189,190], but this metric does not clearly
describe the quality of the image. In an image with a clear tumour response, the FWHM
may be expected to be approximately the same size as the tumour, but this may also be true
in an image of a relatively homogeneous breast with a single relatively small fibroglandular
inclusion. The presence of fibroglandular tissue may also produce responses that are
included in the FWHM of the image, given that the contrast in the dielectric properties of
malignant and fibroglandular tissue may be as small as 1.1:1 [5,6].

Unique metrics were proposed by the authors of [70]. The authors introduced the f1
image quality metric,

f1 =
Imax

N · A
(1)

where A is the area of the FWHM of the image and N is the number of distinct areas
within the FWHM. A modified version of this metric was also defined in [70] with the form
f = f1P where

P = min
(( d

3 mm

)3
, 1

)
(2)

and d is the distance from the boundary of the imaging domain to the pixel with intensity
Imax. This modifying factor P was introduced due to the observed presence of “small and
very bright artifacts [that] appear at the edges of the image” [70]. The penalty distance of
3 mm was selected due to an average skin thickness of 2 mm and a 1 mm “buffer” [70].

These metrics were developed for permittivity estimation [70] but may be considered
a measure of image quality. A large value of the metric indicates a high-quality image,
signifying an image with a high-intensity maximum and a small FWHM area. This metric
has demonstrated utility in determining the optimal permittivity estimate for image recon-
structions from a single scan [70] but is not appropriate for inter-image comparisons. Both
the f1 and f metrics are proportional to the maximum image intensity and are therefore not
appropriate for inter-image comparisons in radar-based imaging due to the qualitative na-
ture of radar reconstructions. The metric has not been applied to quantitative tomographic
reconstructions but is also not useful for inter-image comparisons due to the inter-patient
variations in dielectric properties. Measurements of the dielectric properties of malignant
and benign breast tissues demonstrate significant overlap in the malignant and benign
properties of tissues between patients [5].
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The image quality metrics described in this section are summarized in Table 1. The
f1 and f metrics [70] were excluded from Table 1 due to their limitations for inter-image
comparisons.

Notably, all existing image quality metrics aim to describe image contrast or accuracy.
A complete description of image quality includes descriptions of the spatial resolution,
contrast, contrast resolution, noise, accuracy, and artifacts.

Figure 2 describes these traditional aspects of image quality and illustrates the focus
of existing BMS research. Each of these aspects describes an important component of
image quality, and each must be considered when evaluating the reconstruction quality of
a particular system or method. The narrow focus on contrast in the existing BMS literature
limits the ability to compare the quality of images across the multiple important dimensions
of image quality.

Traditional
Aspects of

Image Quality

Resolution
The minimum separation

distance between the
centers of two point-like

objects for which the
objects are identifiable
as two distinct objects
in the resultant image.

Examples in BMS:
None available.

Noise
The magnitude of ran-
dom local variations

in image intensity.

Examples in BMS:
None available.

Contrast
The relative intensity differ-
ence between the responses

of objects in the image.

Examples in BMS:
SCR, MMR,

TFRR, CCR, C/Tt.

Contrast Resolution
The minimum object

property (i.e., permittivity)
contrast that is detectable
in a reconstructed image.

Examples in BMS:
None available.

Accuracy
How accurately the

properties and geometries
of the material under
test are reconstructed.

Examples in BMS:
LE, MSE, SSIM.

Artifacts
Image features that do not

correspond to the actual
features of any object

in the imaging domain.

Examples in BMS:
None available.

Figure 2. Traditional aspects of medical image quality [19] and existing image quality metrics in
breast microwave imaging. Aspects described in boxes with red borders have not been addressed in
the BMS literature; aspects in boxes with green borders have been addressed in the BMS literature.

In particular, the presence of artifacts in reconstructed images has not been well
addressed in the research literature. Artifacts are image features that do not correspond to
the physical reality of the interrogated object (e.g., a high-intensity region within the image
that does not correspond to an actual high-scattering tissue component within the breast).
In radar-based image reconstruction, a common artifact observed in reconstructions is
the presence of a localized high-intensity region that does not correspond to the known
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location of a tumour. This hotspot artifact is readily discerned in the reconstructed images
of healthy breasts in several articles, including figures in [67,100,110,129,190].

To illustrate this artifact, typical DAS reconstructions are displayed in Figure 3, where
only Figure 3a accurately displays the true tumour response. In Figure 3a, a high-intensity
localized region is observed within the known tumour location. In Figure 3b, a similar
hotspot is observed, but this is an artifact in this reconstruction of a healthy phantom
(no tumour inclusion). Figure 3c displays a reconstructed image of a tumour-containing
phantom with a clear tumour-like response that does not correspond to the actual tumour
position within the phantom. The images reconstructed in Figure 3 were produced by our
research team using publicly available data (dataset described in [118]).

(a) (b) (c)
Figure 3. Coronal DAS reconstructions of breast phantoms from the open-access dataset presented
in [118]. The dashed white lines indicate the approximate phantom boundary, the black dashed lines
indicate the antenna trajectory during the scan, and the solid white circles in (a,c) indicate the known
tumour positions. (a) Displays a reconstruction with a tumour response that corresponds to the
known tumour position, (b) displays a reconstruction of a phantom that did not contain a tumour
but has a prominent tumour-like response (a false-positive), and (c) displays a reconstruction of a
tumour-containing phantom that has a prominent tumour-like response that does not correspond to
the known tumour position (a false-positive).

The presence of this hotspot artifact should be described in studies that utilize image-
based tumour detection in BMS, and a more thorough examination of its impact on the
potential specificity of the modality should be presented in future work within the research
field. Only 52 (32%) papers that presented image-based analyses did so using images of
healthy patients or phantoms (i.e., no tumour was present) (see Table A1(ii)). Comparisons
between healthy and unhealthy images are necessary to identify potential artifacts like
the hotspot artifact and to determine the diagnostic performance of image-based tumour
detection. Additionally, only 25 articles performed quantitative comparisons of healthy
and unhealthy images (see Table A1(iii)). Future work in image-based tumour detection
should present analyses using both healthy and unhealthy phantoms and patients.

4. Estimates of the Diagnostic Potential of Image-based Tumour Detection

Several research groups have attempted to estimate the diagnostic performance of
image-based tumour detection and twelve articles have reported estimates of the diagnostic
performance of image-based BMS (see Table A1(iv)). This section focuses on these key
articles that have pushed to estimate the diagnostic performance of BMS. Eleven of these
articles provided sensitivity estimates, ranging from 63% [47] to 100% [141,170], but only
four articles have estimated the specificity, and specificity estimates range from 20% [100]
to 65% [133]. Table 2 describes the diagnostic estimates presented in each of these articles.

The majority of estimates have come from patient datasets (see Table A1(v)) with sam-
ple sizes varying from 5 patients in [141] up to 225 patients in [143]. Two articles [100,120]
estimated the diagnostic performance using breast phantoms, under well-controlled exper-
imental conditions. Notably, the poorest specificity estimates in the literature are found in
these works (20% in [100] and as low as 40% in [120]); the majority of trials performed using
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patient data were not designed to evaluate specificity. The works in [47,94,111,141,143,170]
all exclusively examined patients with known breast lesions.

Table 2. Estimates of diagnostic performance in image-based tumour detection.

Article Image Reconstruction
Method

Sensitivity
Estimate

Specificity
Estimate

ROC AUC
Estimate Dataset Information

Poplack et al. [201] Tomographic – – (80 ± 12)% a <130 b patients (<80 with abnormal mammography, 50
with normal mammography)

Preece et al. [111] Modified DAS 74% – – 66 patients (all abnormal mammography)

Shere et al. [143] – c 76% – – 225 patients (all with benign or malignant lesions)

Sani et al. [132] Huygens Principle 91% – – 16 patients (8 healthy breasts, 12 non-healthy breasts)

Sani et al. [133] Huygens Principle 70% 65% d – 45 patients (22 healthy breasts, 29 non-healthy breasts)

Sani et al. [134] Huygens Principle 74% 62% – 58 patients (103 breasts, 52 with no radiological findings,
51 with radiological findings)

Sasada et al. [141] – c 100% – – 5 patients (all with tumours larger than 1 cm)

Adachi et al. [170] DAS 100% – – 9 patients with breast cancer

O’Loughlin et al. [100] DAS 80% 20% – 115 phantoms (110 with tumours, 5 without tumours)

Janjic et al. [47] Qualitative inverse
scattering 63% – – 115 patients, all with known breast lesions

Reimer et al. [120]
DAS ≤71% ≤44% –

200 phantom scans (100 healthy; 100 tumour-containing)DMAS ≤77% ≤40% –
ORR ≤82% ≤56% –

Moloney et al. [94] TR-MUSIC 87.5% – –
24 patients (11 patients with biopsy-proven malignancy,
13 patients with either unaspirated cysts or
biopsy-proven benign lesions)

a Reported ROC AUC for tumours with the largest dimension greater than 1 cm. b Eighty patients with abnormal
mammography were scanned with the system, but only the subset of these patients with lesions larger than 1 cm
was considered in this analysis. The article does not state the number of patients this included, but the mean and
median lesion sizes for the entire sample of patients with abnormal mammography were 11.7 mm and 10 mm,
respectively. c Image reconstruction technique was not stated in the article. d The authors of [133] reported the
FNR (0.35) that corresponded to a particular TPR (0.7). However, the sum of the FNR and TPR must be unity, and
this is presumably a textual error within the article.

Various diagnostic criteria have been used in these works. The phantom-based work
in [100,120] used a quantitative tumour-detection criteria that compared the SCR of each
image to a threshold of 1.5 dB—if the SCR was above this threshold, the image was
annotated as containing a tumour response. Images were then labelled as true positives by
comparing the localization error to the known tumour radius. In [100], an exception was
applied to account for a priori knowledge about the presence of hotspot artifacts near the
skin of the phantoms so that reconstructions exhibiting this artifact were not considered
false positives. Notably, of the images (incorrectly) annotated as tumour-free, 94% received
this annotation due to the exception (i.e., the high-intensity response was within 10 mm
of the boundary of the imaging domain, which was defined by the breast boundary),
and only 6% of the reconstructions that were labelled as tumour-free did not meet the
SCR criterion [100]. This indicates that while the reconstructions consistently displayed a
localized high-intensity region (as indicated by the proportion which met the SCR criterion
for tumour detection), localization was poor, and this high-intensity region was often not
due to the tumour itself. While this work estimated the diagnostic sensitivity and specificity,
the tumour-free dataset was too small (n = 5) to draw significant conclusions regarding the
specificity of the method, and the subjective selection of SCR threshold (1.5 dB) does not
provide a full description of the potential diagnostic performance of the method. Notably,
the work of Reimer et al. in [120] is the only published research comparing the diagnostic
performance of multiple image reconstruction methods (see Table 2). The authors also
presented an open-source analysis using an open-access dataset [120]. This was the only
article in the literature that reported the diagnostic performance using open-source analysis
and an open-access dataset.
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While phantom-based investigations lend themselves to quantitative diagnostic cri-
teria due to the well-controlled experimental conditions (where tissue properties and
geometries are known a priori), diagnosis in patient-based trials is more challenging. The
work in [93,132–134,201] applied quantitative tumour detection measures to evaluate the
diagnostic performance. The authors of [132–134] used the “MAX/AVG” metric to diag-
nose the presence of a tumour. A threshold value of this metric was determined from the
image dataset in these articles, and the reported sensitivities describe the percentage of
images corresponding to tumour-containing breasts that had metric values greater than
this threshold. However, the MAX/AVG metric may not be suitable as a universal metric
for tumour detection due to its dependence on the entire imaging domain—the MAX/AVG
metric is directly influenced by breast size. A larger tumour-containing breast is expected
to have a smaller MAX/AVG value than a smaller breast containing the same tumour and
healthy tissue components, because the larger volume of healthy tissue responses in the
large breast will skew the average image intensity to a smaller value. Additionally, there is
limited utility in extending a sample-scale threshold value to a patient population.

Region-of-interest (ROI)-based analyses, where the intensities in an ROI were com-
pared to intensities outside the ROI or to intensities in other images within the same ROI,
were used in [94,201]. The work in [201] is notable as being the first published work to
estimate the diagnostic performance of BMS and the only existing article that estimated the
diagnostic performance based on tomographic image reconstruction. The authors of [201]
used a non-blind approach to tumour detection where the mean permittivity and con-
ductivity values in an ROI (obtained from conventional imaging modalities, i.e., obtained
using a priori information of the tumour position) were compared in images of tumour-
containing breasts to images of healthy breasts. The ROIs used for the reconstructions
of healthy breasts were drawn using the previously drawn ROI for a tumour-containing
reconstruction. This approach ensured that the ROIs in the healthy breasts were dependent
on the ordering of the dataset, but no investigation into this effect was performed. The work
in [94] did not rely on a priori information, and instead created the ROI through image
thresholding. The ROI was labelled as corresponding to a lesion based on its size, solidity,
and contrast [94]. Notably, four of the twenty-four images in [94] contained a response that
was satisfied the tumour-detection criteria, but did not have an accurate position (i.e., the
tumour-like response did not occur at the known tumour location). The authors did not
discuss whether these responses were rightfully attributed to the breast lesion or were an
artifact, and the magnitude of the localization error was not described. These lesion-like
responses may not be attributable to the breast lesion.

Half of the research in image-based patient diagnosis has been performed using sub-
jective diagnostic criteria [49,111,141,143,170]. These articles relied on subjective judgments
of diagnosticians to determine the presence of a cancerous response in the reconstructed
image. These studies were also non-blind, and the diagnosticians may have known a priori
that the images corresponded to breasts with known abnormalities—this is explicit in [170],
where the reviewing radiologist was “told only that the patient had breast cancer” [170]. No
current work has implemented single- or double-blind protocols to estimate the diagnostic
performance of BMS. This limits the impact of the reported diagnostic estimates, and is
particularly limiting when subjective diagnosis by a human reviewer was performed with
the a priori knowledge of a known breast abnormality.

Despite the existing efforts to estimate the sensitivity of BMS, the impact and validity
of existing estimates is limited due to small sample sizes, subjective diagnostic processes,
the use of a priori knowledge in objective diagnostic processes, and the lack of single-
or double-blind protocols. Figure 4 summarizes these challenges. Subjective diagnostic
criteria limit reproducibility and obfuscate comparisons between studies. There has been a
particular focus on sensitivity in BMS, but the sensitivity and specificity of a modality must
be considered in tandem when evaluating the efficacy of a diagnostic technique. A sensitive
method with poor specificity may not be useful as a diagnostic tool, particularly for breast
cancer screening, where many more true negatives (healthy scans) exist in the screening
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population than true positives (scans of tumour-containing breasts). Obtaining a sufficiently
large sample size for statistical considerations in a clinical trial is also challenging, but
blind phantom studies could be performed readily to address this. Future work may
consider performing blind phantom-based trials to demonstrate the efficacy of the modality.
Phantoms offer several utilitarian advantages over patient data, and while patient-based
trials are ultimately the gold standard, little investigative work has been done to evaluate
the diagnostic performance of BMS with phantoms before clinical trials were performed.
Only two articles have attempted to estimate the diagnostic performance using phantom
datasets [100,120], published in 2019 and 2021, while several patient trials have been
ongoing since 2007 [201]. Robust demonstration of the diagnostic performance of the
methods in BMS should be achieved under the controlled experimental conditions offered
by phantoms before further, larger clinical trials are performed.

Challenges in Image-based BMS Diagnosis

Sample Size
Only three patient-based

studies have used datasets
of more than 100 patients.

Non-Blind Studies
The majority of studies
use a priori information

in the diagnostic protocol.

Subjective Diagnosis
Subjective diagnos-

tic criteria have been
commonly used.

Figure 4. Current challenges in image-based estimation of the diagnostic performance of BMS. Non-
blind studies [100,111,120,141,143,170,201], subjective diagnosis [49,111,141,143,170], and sample
size limitations were common [48,143,201].

5. Machine Learning-Based Tumour Detection
5.1. Appropriate Machine Learning Methodology

The recent advancements in machine-learning (ML) algorithms have increased interest
in automated and objective diagnosis throughout medical imaging, and these techniques
have been applied to both simulated [204,205] and experimental data [112,118] in breast
microwave sensing. ML methods for medical imaging techniques have not been as widely
investigated as image-based tumour detection methods, but the results that have been pre-
sented are promising. ML techniques do, however, face unique challenges. ML techniques
can be extremely powerful tools, capable of addressing numerous problems in a wide range
of problem domains. Like any tool, these methods can, however, be misused. Appropriate
ML methodology must be used in any application of ML methods to ensure the results
obtained with an ML model are responsibly reported and reasonably approximate the
real-world performance of the model. Specifically, the dataset size, dataset diversity, and
training/testing methods must be carefully considered when evaluating the application
of ML methods to a particular problem. Unfortunately, basic ML methodology is rarely
followed in the BMS literature.

ML methods, generally, require a large dataset (relative to those present in the BMS
literature to date) for model training and evaluation. Most work has investigated the
application of ML methods on no more than a few hundred individual samples (phantom
scans) [76,82,104,112,118,138]. Two articles have used datasets of more than 1000 sam-
ples [79,119], but the dataset size is not the only dataset parameter that must be considered.
Data diversity, the variation between individual samples in the dataset, is also essential to
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ensure that, during training, the ML model is exposed to data that represents the real-world
data landscape. Insufficient data diversity will likely limit performance when the model is
exposed to novel data (e.g., training using data from only relatively low-density breasts
will likely result in poor performance on relatively dense breasts). When evaluating or
testing the trained ML model, diversity is also important. The testing set should consist of
new or unseen data—data as dissimilar to the training samples as individual samples in the
real-world would be from each other. In BMS, the training and testing samples should be
as dissimilar as the data collected from breast scans obtained from different people. If the
diversity of the dataset is limited so that samples in the training and testing sets are more
similar than data obtained from different people (in the real-world deployment scenario),
then estimates of the model performance on the testing set will be overly optimistic. With-
out a sufficiently large dataset, model training and evaluation are challenging, and without
sufficient dataset diversity, the target population (on which the trained model would be
deployed) may not be wholly represented, limiting the real-world potential of the model.

A robust training and testing methodology is essential to appropriately interpret the
results obtained with an ML model. A separate, unique, unseen test set is necessary to
evaluate the performance of a trained ML model, and no information from the test set
should influence the trained ML model. To prevent data leakage, data from the testing set
should not be used for pre-processing (e.g., Z-score normalization, principal component
analysis, etc.), hyperparameter optimization, or training [206,207]. The most extreme case
of data leakage involves using the same samples for training and testing. However, even
the use of test set performance metrics to influence the choice of ML model or the choice
of ML model architecture qualifies as data leakage and can result in overly optimistic
estimates of the model performance [206]. The effect of data leakage can be significant
and results obtained when data leakage has occurred must be carefully interpreted and
may not be an accurate estimate of the model performance. Figure 5 illustrates appropriate
ML methodology.

Dataset

Training Set

Test Set

Pre-process data

Normalization,
PCA, etc.

Train Model

Hyperparameter
optimization,
model selec-

tion, stopping
criteria, etc.

Evaluate Model

Evaluate model
on test set and
report results.

Figure 5. Fundamentals of appropriate ML methodology. Dataset is split into training and testing
subsets before any further analysis. The training set is exclusively used to learn any pre-processing
transformation, for hyperparameter optimization, model selection, and stopping criteria selection.
The test set is only used at the model evaluation stage. The dashed line indicates that transformations
learned during pre-processing (e.g., PCA) may be applied to the test set before model evaluation, but
must not be obtained using information from the test set.

5.2. Analysis of Existing Estimates of the Diagnostic Performance of Machine Learning in Breast
Microwave Sensing

This section discusses the key works that have estimated the diagnostic performance
of ML in BMS; while several articles have attempted to use ML methods in BMS, the use
of ML tools has not been rigorous, and methodological errors are common. Additionally,
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the generalization of trained ML models in BMS is questionable. No trained model has
been evaluated using data obtained from a different imaging system or at a different
geographical location, and published work has limited dataset diversity. Machine-learning
methods have also been applied to classify phantom measurements known to have a benign
or malignant tumour as being benign or malignant [205,208–210]. These applications do
not aim to detect a tumour’s presence but rather to confirm the malignancy of a known
tumour in a phantom and were, therefore, not included in this review. These studies
are mentioned here for completeness as there are relatively few applications of machine
learning for tumour detection within breast microwave sensing. Other studies, which
classified known lesions in patient data [48,49,93,196], were included due to their use of
patient data.

There have been fifteen studies that have estimated the diagnostic performance of
microwave-based sensing for algorithmic breast cancer detection (see Table A1(vi)). The
techniques used in these studies include logistic regression, support vector machines
(SVM), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), classifier
ensembles, multilayer perceptrons (MLP), convolutional neural networks (CNN), dense
neural networks (DNN), gradient boosting methods, and k-nearest neighbour classifiers
(kNN). Table 3 summarizes these investigations into ML-based BMS cancer diagnosis.
Three additional articles are noteworthy [80,104,113], but are excluded from Table 3. The
work in [104] used the same dataset as [118] and used tree-based models, but none of the
models improved upon the results in [118]. The methods and results in [113] are expanded
upon in [202], and therefore only [202] is included in Table 3. The authors of [80] used a
dataset that combined experimental and simulated data. This article has been excluded
because of the use of simulated data in an unspecified subset of the dataset.

ML-based diagnostic methods in BMS have generally achieved better diagnostic
measures than image-based approaches with larger datasets. The largest dataset used
in an ML-based investigation was in [119] which used data from 1008 phantom scans.
ML methods have been applied to patient (see Table A1(vii)) and phantom datasets (see
Table A1(viii)). Estimates of the diagnostic performance obtained with patient and phantom
datasets are similar (see Table 3).

Notably, the MammoWave system [135] has been used in five ML-based investiga-
tions [112,113,135,188,202]. These works provide the most optimistic estimates of the
diagnostic performance of BMS in the literature, but the reported results are likely overesti-
mates due to methodological limitations in these works. These works suffered from data
leakage, incomplete methodological descriptions (insufficient to facilitate replication), and
lacked true test sets. The work in [112] ensured that hyperparameter tuning was specific
to the dataset used in the work due to the lack of a test set, as did [113,202]. Data leakage
was possible or explicitly described in each of these articles; while the reported results are
positive, these methodological concerns imply that the reported diagnostic estimates are
likely overestimates of the true performance.

Data leakage is a common issue in ML-based investigations in BMS. Data leakage
possibly occurred in five articles (see Table A1(ix)) and explicitly occurred in five articles
(see Table A1(x)). Data leakage is an avoidable methodological issue that ensures estimates
of the ML model performance are overestimates. Data leakage issues observed in BMS
included pre-processing methods applied before train/test set splitting was performed
(including PCA and Z-score normalization) and incorporating testing data into the training
procedure. Several articles did not use an explicit test set. The lack of an appropriate test set
limits the impact of the ML results, and while an appropriate test set requires a sufficiently
large dataset, k-fold validation may be performed, where the dataset is segmented into k-
subsets. For each of the subsets, the remaining dataset is used for all pre-processing, model
training, and hyperparameter optimization. This process allows a reasonable estimate of the
diagnostic performance. Several of these articles have also provided limited descriptions
of the ML methodology that either prohibit replication and leave open the possibility of
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methodological issues (primarily data leakage). However, some work has been done using
open-access datasets [53,104,118,119] and open-source methods [53,118,119].

Table 3. Estimates of diagnostic performance in machine learning-based tumour detection.

Article Classification
Algorithm

Sensitivity
Estimate

Specificity
Estimate

Accuracy
Estimate

ROC AUC
Estimate F1 Score Dataset Information

Santorelli
et al. [138] SVM, LDA 76.71% 67.48% – – – 230 phantom scans

Li et al. [76] SVM ensemble 97% 99% – – – 150 phantom scans a

Rana et al. [112] SVM, MLP, kNN 97.7% 99.7% 98.9% 93.7% 98.6% b 18 patients (12 healthy breast scans
and 11 non-healthy breast scans)

Sani et al. [135] – c 88% 59.3% 80.4% – 86.8% b
102 breast scans (27 without
radiological findings, 75 with
radiological findings)

Rana et al. [202]
SVMs with
quadratic and
Gaussian kernels

97.2% 94.5% 95.5% – 94.1% b 61 breast scans (36 with lesion, 25
without lesion) from 34 patients

Dey et al. [188] PCNN 81.82% 98% – – – 61 breast scans (36 with lesion, 25
without lesion) from 34 patients

Reimer et al. [118] Logistic
regression (95 ± 6)% (80 ± 10)% (85 ± 4)% (94.4 ± 0.5)% 80.85% b 249 phantom scans

Al Khatib et al. [53] CNN – – – – 92% 1008 phantom scans

Reimer et al. [119]
Logistic
regression, CNN,
DNN

– – – (90 ± 3)% – 1008 phantom scans

Martins et al. [82] kNN, LDA, SVM – – 85.00% – – 5 phantom scans

Fasoula et al. [196] QDA 77.1% 100.0% – – –

24 patients (11 patients with
biopsy-proven malignancy, 13
patients with either unaspirated cysts
or biopsy-proven benign lesions)

Moloney et al. [93] QDA 87.5% – – – – 24 patients

Janjic et al. [48] AdaBoost 79% 77% 78% 74% 78% b 113 patients (43 with malignant
lesions, 70 with benign lesions)

Janjic et al. [49] Gradient Boosting
Ensemble 80% 83% 81% 80% 85% b 54 patients (25 with malignant lesions,

29 with benign lesions)

Lu et al. [79] CNN LSTM – – 89.5% – – 1000 phantom scans

a While 96 healthy patient scans were also performed in [76], synthetic tumour responses were manually intro-
duced into the patient scans. Because the synthetic tumour responses were not experimentally measured, and
due to potential differences between true tumour responses and the synthetic tumour responses in [76], only
the results from the phantom measurements are reported here. b Value was calculated to facilitate comparisons
with [53] based on the reported sensitivity, specificity, and accuracy within the article, but was not reported
explicitly within the article. c The classifier was not specified in this work. The authors wrote, “An appropriate
combination of features...leads to sensitivity of. . . ” [135], but no classification method was specified.

Dataset diversity has been limited in BMS investigations, particularly in phantom-
based studies. Breast phantoms are useful experimental tools, particularly for machine
learning, where large datasets can be generated [118], but multiple measurements of the
same phantom have been observed to be more similar than measurements of different
phantoms [119], and repeated measurements of a given phantom may not be appropriately
considered as truly unique measurements [119]. Several articles used datasets with multiple
measurements of a given phantom (see Table A1(xi)). Additionally, the work in [196]
treated multiple images generated from a scan of a given patient’s breast as unique samples.
Notably, the authors of [119] used a leave-one-out testing strategy. The dataset used in this
work consisted of 1008 phantom scans of 66 unique phantoms. The phantoms were each
comprised of an adipose and a fibroglandular component (and, in some cases, a tumour).
The adipose component determined the outer shape of the phantom, and, therefore, the
most dominant reflections (due to the in-air imaging system). The authors trained the
classifiers using data from an all-but-one adipose component, and then tested on the
phantoms made with this left-out component. This procedure maximized data diversity
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between the training and testing sets and ensured that the trained models were tested
on truly unseen phantoms. The average ROC AUC was found to be (78 ± 3)% across all
phantoms, but if the testing set was constrained to consist of phantoms with breast volumes
within the bounds of the training set and to only contain data from scans where the tumour
was at the same vertical height of the antenna, the ROC AUC was found to be (90 ± 3)%.
This article was the first to explore the effects of a limited dataset in terms of breast diversity
(specifically, breast size and shape) on the diagnostic performance of a tumour detection
method. The authors observed that multiple measurements of a phantom (of a given
adipose component) were more similar than multiple measurements of unique phantoms.
This observation implies that data diversity may significantly affect model performance.

6. Achievements, Challenges, and Recommendations
6.1. Achievements in Breast Microwave Sensing

Several research groups have developed microwave sensing systems capable of clinical
operation and performed studies involving patients or volunteers [11,12,67,84,109,111,131].
Within the 184 papers examined in this literature review, experimental results of tumour
detection with microwave sensing systems were presented by more than two dozen unique
research groups, including multiple private corporations, with the majority of the results be-
ing reported in the last decade. The relatively large number of independent research groups
to develop and evaluate custom-made microwave sensing systems is an achievement for
the international BMS research community.

Microwave sensing systems are sensitive to the presence of tumours within the breast
and are capable of detecting the presence of sub-centimeter lesions. The smallest reported
detected lesion in a phantom had a largest dimension of 3 mm [43,199] and the smallest
reported detected lesion in a patient had a largest dimension of 4 mm [48], and numer-
ous investigations demonstrated detection of sub-centimeter tumours (see Table A1(xii)).
Sensitivity estimates obtained using phantom and patient datasets with image-based di-
agnostic criteria range from 63 to 100% (see Table A1(iv)). System bandwidth, antenna
design, and data collection protocols vary within the literature, but all current systems
have demonstrated sensitivity to the tumour response.

ML methods have been more frequently used for tumour detection than image-based
methods (see Table A1(v)). These methods illustrate a potential future approach whereby
breast cancer diagnosis is automatically performed using low-cost microwave systems
using objective and quantitative ML models. These methods are particularly well-suited
to low- and middle-income countries and rural locations, where access to healthcare may
be limited due to the automated diagnostic process. No trained diagnostician or reviewer
may be required. This research path may be fruitful in the future.

6.2. Challenges in Breast Microwave Sensing

This review reveals three significant challenges face the BMS research community:
the poor estimates of the modality’s specificity; the limited and poor methods of image
quality analysis; and the lack of robust methods and dataset diversity in machine-learning-
based investigations.

Only four articles have estimated the image-based specificity of the modality, and
the existing estimates range between 20 and 65% [100,120,133,134]. These estimates do
not demonstrate that microwave sensing is ready for clinical application; while sensitivity
estimates range from 63 to 100%, the sensitivity of a diagnostic technique is only informative
in the context of the specificity of the technique. Despite a push to perform larger clinical
trials, with the largest featuring 225 patients [143], existing specificity estimates are poor.
Only two articles have attempted to evaluate the diagnostic performance of the modality
using phantoms under controlled experimental conditions [100,120], and the specificity
estimates of 20% [100] and 56% [120] are not promising. Viable specificity of this modality
must be demonstrated under experimental conditions before further patient studies should
be performed, given the ethical considerations involved in clinical trials.
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Image quality analysis in BMS has been limited to analyses of the image contrast and
localization error. Various terms have been used for the same mathematical definitions of
image quality metrics (e.g., SCR, SMR sometimes refer to the same mathematical definition),
and various mathematical definitions have been applied to the same term (e.g., SCR has had
multiple definitions). This lack of consistency in the definitions of image quality metrics
obfuscates the analyses presented in the literature and limits the comparison of image
reconstruction techniques across publications. The research community in BMS should aim
to build upon the work of others and utilize consistent definitions of image quality metrics.
Current image quality metrics are also limited in their usefulness due to their reliance on a
priori knowledge of tissue properties and/or geometries. This requirement limits these
metrics to applications in well-controlled experiments, where this a priori information is
known. Most current metrics (including the most often used SCR, SMR, and localization
error) rely on single pixel/voxel intensities and are therefore non-robust. Several aspects of
traditional image quality have been neglected in the literature, including image resolution,
noise, and artifacts. The hotspot tumour-like artifact present in reconstructions of healthy
breasts is an example of this; while the artifact appears in several publications, no formal
discussion or characterization of it has been presented in the literature. Future work in
image-based BMS should aim to describe image quality more thoroughly.

Only one reliable estimate of the diagnostic performance obtained with ML has been
presented, and while the estimate of an ROC AUC of (90 ± 3)% is positive [119], further
work using more diverse datasets is necessary. The majority of existing ML-based work in
BMS has not adhered to appropriate ML methodological standards. The reported estimates
of the diagnostic performance of ML models in the literature are therefore overestimates.

6.3. Recommendations

Despite the significant progress in BMS research, several challenges remain. Several
of the identified challenges must be addressed before microwave-based systems can be
considered for clinical use as breast cancer detection systems. Therefore, we make the
following recommendations for future work in experimental breast microwave sensing:

1. Develop more robust image quality metrics that describe image contrast, resolution,
noise, accuracy, and artifacts. Metrics that utilize distributions of intensities within an
image may be more robust than current metrics, which use single-pixel values.

2. Coherence of image quality analysis within the literature should be considered when
performing research. Multiple definitions for a common term, or multiple terms
having the same definition, only obfuscate the academic literature surrounding breast
microwave sensing. We recommend that given their relative prevalence in the litera-
ture (as the most commonly used definitions) the following definitions for the SCR,
SMR, and localization error, should be used.

SCR =
Tmax

Cmax
(3)

SMR =
Tmax

Cmean
(4)

LE =
∣∣rmax − rtum

∣∣ (5)

3. Compare reconstructed images of tumour-free and tumour-containing phantoms. The
use of more robust image quality metrics will assist these comparisons, but even
qualitative comparisons should be made.

4. Estimate the specificity of the technique using controlled phantom studies. Despite
several patient-based investigations into the sensitivity of the modality, only two
estimates of the specificity have been presented. Before patient or volunteer trials are
conducted, the specificity must be estimated using controlled phantom studies.
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5. Develop objective and robust tumour-detection criteria and utilize these in blind
studies to estimate the modality’s diagnostic potential.

6. Published results should be reproducible, and methods should be transparent. Several
articles have been missing important information that precludes result reproduction,
including information regarding training and evaluation procedures of machine-
learning methods, propagation speed estimation methodology (in radar-based image
reconstruction), phantom information (dielectric property and geometry information),
and reconstruction method. Open-source analysis, as in [53,116,118,119], and open-
access datasets, as in [118–120], are the best methods for ensuring transparency and
reproducibility and should be used when appropriate.

7. Machine-learning applications should be evaluated using diverse datasets and appro-
priate ML methodologies that are fully described and reproducible. Valid estimates of
the diagnostic performance of ML-based diagnosis require adherence to appropriate
ML standards, the use of a valid test set, and sufficient dataset diversity. The results
from [118,119] should inform future work—the outer tissue geometries were a pri-
mary determinant of dataset diversity, and multiple measurements from the same
phantom should be constrained to only the training or testing sets, and should not be
used in both.

7. Conclusions

Breast microwave sensing is a potentially advantageous method for breast cancer
detection due to the use of non-ionizing radiation and the relatively large contrast in the
dielectric properties of malignant tissues compared to those of healthy tissues. Estimates of
the sensitivity of the modality have shown promise in both patient and phantom investiga-
tions, but the attention of the research community has been broadly focused on tumour
detection rather than diagnostic utility. Existing estimates of the modality’s specificity do
not demonstrate significant clinical utility, and range from 20 to 65% [100,120,134]. Speci-
ficity is a necessary measure to consider when evaluating the efficacy of a diagnostic tool,
particularly in breast cancer screening (where the negative impact of false positives in mam-
mography has been well-documented [1]). Further investigations should quantitatively
compare reconstructions of healthy and tumour-containing breasts.

Image quality analysis has been limited to metrics that rely on single-pixel intensity
values and/or complete knowledge of the true tissue properties and geometries. These
techniques are not suitable for use in blind or double-blind trials to evaluate the efficacy
of the modality and are non-robust. Current image quality metrics characterize image
contrast (e.g., signal-to-clutter ratio) or accuracy (e.g., localization error). Several aspects of
traditional image quality have been neglected, including resolution, noise, and artifacts.
The presence of tumour-like artifacts in reconstructed images of healthy breasts is observed
in several published studies but has not been adequately addressed.

Machine-learning methods have been explored as potential automated diagnostic tools,
but only one article has adhered to fundamental machine-learning methodological stan-
dards [120]. Despite fifteen articles reporting estimates of the diagnostic performance (see
Table A1(vi)), significant methodological flaws are common. Data contamination, limited
dataset diversity, and a lack of an appropriate testing set were observed in the majority of
articles exploring machine learning in this review.

Clinical applications of microwave sensing for breast cancer detection are an impor-
tant and expanding research field attracting international researchers and research group
collaborations. Before a microwave-based technique can be considered clinically feasible,
the diagnostic utility of the modality must be estimated with respect to sensitivity and
specificity. Methods of image quality analysis must extend beyond characterizing contrast,
and image artifacts must be analyzed. Despite the promising sensitivity of the modality,
much work must be done to characterize image quality and specificity before BMS systems
can be considered clinically viable.
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Appendix A

Table A1. References for specific claims.

Index Claim References

(i) Papers presenting images without quantitative analysis
of image quality

[12,17,27,29,30,32–35,37,38,40–43,47,49–51,54,55,57,59,64,66,67,73–75,77,81,84,87,88,92,95–97,102,
103,105,107–110,121–123,126–129,134,136,140,141,144,146,148,150,152,155–158,160,161,163,166–
172,174,175,177–180,184,185,187,191,192,194,195,197]

(ii) Papers presenting image-based analyses with healthy
patients or phantoms

[12,25,26,30,33,40–43,45,49,50,56,63,67,69,72,84,85,87,88,90,91,100,107–110,120,122,129,131–
135,140,142,148,158,162,165,166,169,173,175,184,186,188,190,195,198]

(iii) Papers that performed quantitative analysis of healthy
and unhealthy images [25,26,45,56,61,63,69,70,72,85,90,91,100,101,120,131–133,142,162,165,173,186,190,198]

(iv) Papers that have reported estimates of the diagnostic
performance of image-based BMS [47,94,100,111,120,132–134,141,143,170,201]

(v) Papers that have estimated image-based diagnostic per-
formance using patient datasets [47,94,111,132–134,141,143,170,201]

(vi) Papers that have estimated diagnostic performance us-
ing machine learning [48,49,53,76,79,82,93,104,112,118,119,135,138,188,196,202]

(vii) Papers that have estimated diagnostic performance us-
ing machine learning with patient datasets [48,49,93,112,135,188,196,202]

(viii) Papers that have estimated diagnostic performance us-
ing machine learning with phantom datasets [53,76,79,82,104,118,119,138]

(ix) Papers in which data leakage may have occurred [48,82,135,138,196]

(x) Papers in which data leakage explicitly occurred [53,112,113,188,202]

(xi) Papers that applied ML methods with datasets consist-
ing of multiple measurements of the same phantom [53,76,79,82,104,118,119,138]

(xii) Papers that have reported sub-centimeter lesion detec-
tion

[13,17,25,26,32,34,36,40,43,45,47,48,51,52,54,57,58,60,64,69,71,83,99,100,114,124,129,148,154,158,
163,164,167,168,170–175,177,182,187,199]
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